Skip to main content

Polycationic Probe-Guided Nanopore Single-Molecule Counter for Selective miRNA Detection

  • Protocol
  • First Online:
RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1632))

Abstract

MicroRNAs (miRNAs) are a class of noncoding RNAs that are being explored as a new type of disease biomarkers. The nanopore single-molecule sensor offers a potential noninvasive tool to detect miRNAs for diagnostics and prognosis applications. However, one of the challenges that limits its clinical applications is the presence of a large variety of nontarget nucleic acids in the biofluid extracts. Upon interacting with the nanopore, nontarget nucleic acids produce “contaminative” nanopore signals that interfere with target miRNA discrimination, thus severely lowering the accuracy in target miRNA detection. We have reported a novel method that utilizes a designed polycationic peptide–PNA probe to specifically guide the target miRNA migration toward the nanopore, whereas any nontarget nucleic acids without the probe bound is rejected by the nanopore. Consequently, nontarget species are driven away from the nanopore and only the target miRNA can be detected at low concentration. This method is also able to discriminate miRNAs with single-nucleotide difference by using PNA to capture miRNA. Considering the significance and impact of this substantial advance for the future miRNA detection in biofluid samples, we prepared this detailed protocol, by which the readers can view the experimental procedure, data analysis, and resulting explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayley H et al (2008) Droplet interface bilayers. Mol Biosyst 4(12):1191–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bayley H, Jayasinghe L (2004) Functional engineered channels and pores (Review). Mol Membr Biol 21(4):209–220

    Article  CAS  PubMed  Google Scholar 

  3. L-Q G, Shim JW (2010) Single molecule sensing by nanopores and nanopore devices. Analyst 135(3):441–451

    Article  Google Scholar 

  4. Hall AR et al (2010) Hybrid pore formation by directed insertion of [alpha]-haemolysin into solid-state nanopores. Nat Nanotechnol 5(12):874–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hornblower B et al (2007) Single-molecule analysis of DNA-protein complexes using nanopores. Nat Methods 4(4):315–317

    CAS  PubMed  Google Scholar 

  6. Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38(8):2360–2384

    Article  CAS  PubMed  Google Scholar 

  7. Langecker M et al (2012) Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338(6109):932–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma L, Cockroft SL (2010) Biological nanopores for single-molecule biophysics. ChemBioChem 11(1):25–34

    Article  CAS  PubMed  Google Scholar 

  9. Majd S et al (2010) Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotechnol 21(4):439–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Movileanu L (2009) Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol 27(6):333–341

    Article  CAS  PubMed  Google Scholar 

  11. Olasagasti F et al (2010) Replication of individual DNA molecules under electronic control using a protein nanopore. Nat Nanotechnol 5(11):798–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6(10):615–624

    Article  CAS  PubMed  Google Scholar 

  13. Wanunu M, Morrison W, Rabin Y, Grosberg AY, Meller A (2010) Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol 5(2):160–165

    Article  CAS  PubMed  Google Scholar 

  14. Wendell D et al (2009) Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat Nanotechnol 4(11):765–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Branton D et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cherf GM et al (2012) Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nat Biotechnol 30(4):344–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93(24):13770–13773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manrao EA et al (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 30(4):349–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ashton PM et al (2015) MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 33(3):296–300

    Article  CAS  PubMed  Google Scholar 

  20. Bolisetty MT, Rajadinakaran G, Graveley BR (2015) Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biol 16(1):1–12

    Article  Google Scholar 

  21. Laszlo AH et al (2014) Decoding long nanopore sequencing reads of natural DNA. Nat Biotechnol 32(8):829–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Norris AL, Workman RE, Fan Y, Eshleman JR, Timp W (2016) Nanopore sequencing detects structural variants in cancer. Cancer Biol Ther 17(3):246–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quick J et al (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature 530(7589):228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wallace EVB et al (2010) Identification of epigenetic DNA modifications with a protein nanopore. Chem Commun 46(43):8195–8197

    Article  CAS  Google Scholar 

  25. An N, Fleming AM, White HS, Burrows CJ (2012) Crown ether–electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proc Natl Acad Sci U S A 109(29):11504–11509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Zheng D, Tan Q, Wang MX, L-Q G (2011) Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nanotechnol 6(10):668–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang X, Wang Y, Fricke BL, L-Q G (2014) Programming nanopore ion flow for encoded multiplex microRNA detection. ACS Nano 8(4):3444–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    Article  CAS  PubMed  Google Scholar 

  30. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  31. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    Article  CAS  PubMed  Google Scholar 

  32. Boeri M et al (2011) MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci U S A 108(9):3713–3718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu Z et al (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28(10):1721–1726

    Article  PubMed  Google Scholar 

  34. Hunt EA, Goulding AM, Deo SK (2009) Direct detection and quantification of microRNAs. Anal Biochem 387(1):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27(34):5848–5856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Landi MT et al (2010) MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 16(2):430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mitchell PS et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen J et al (2011) Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest 91(4):579–587

    Article  CAS  PubMed  Google Scholar 

  39. Sozzi G et al (2009) Plasma DNA quantification in lung cancer computed tomography screening. Am J Respir Crit Care Med 179(1):69–74

    Article  PubMed  Google Scholar 

  40. Zheng D et al (2011) Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol 4(6):575–586

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tian K, He Z, Wang Y, Chen SJ, LQ G (2013) Designing a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore. ACS Nano 7(5):39623969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Howorka S, Bayley H (1998) Improved protocol for high-throughput cysteine scanning mutagenesis. Biotechniques 25(5):764–766, 768, 770 passim

    CAS  PubMed  Google Scholar 

  43. Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A 69(12):3561–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takeshima K, Chikushi A, Lee K-K, Yonehara S, Matsuzaki K (2003) Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J Biol Chem 278(2):1310–1315

    Article  CAS  PubMed  Google Scholar 

  45. Mohammad MM, Movileanu L (2010) Impact of distant charge reversals within a robust beta-barrel protein pore. J Phys Chem B 114(26):8750–8759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We appreciate Amy Gu and Michael Pennella who contributed to the nanopore experiments as highschool student research trainees. This work was supported through initial NSF CAREER award 0546165 and NIH R01-GM079613, and current NIH R01-GM114204. This investigation was conducted in a facility constructed with support from the Research Facilities Improvement Program Grant C06-RR-016489-01 from the National Center for Research Resources, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tian, K., Shi, R., Gu, A., Pennella, M., Gu, LQ. (2017). Polycationic Probe-Guided Nanopore Single-Molecule Counter for Selective miRNA Detection. In: Bindewald, E., Shapiro, B. (eds) RNA Nanostructures . Methods in Molecular Biology, vol 1632. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7138-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7138-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7137-4

  • Online ISBN: 978-1-4939-7138-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics