Skip to main content

Animal Models of Posttraumatic Seizures and Epilepsy

  • Protocol
  • First Online:
Injury Models of the Central Nervous System

Abstract

Posttraumatic epilepsy (PTE) is one of the most common and devastating complications of traumatic brain injury (TBI). Currently, the etiopathology and mechanisms of PTE are poorly understood and as a result, there is no effective treatment or means to prevent it. Antiepileptic drugs remain common preventive strategies in the management of TBI to control acute posttraumatic seizures and to prevent the development of PTE, although their efficacy in the latter case is disputed. Different strategies of PTE prophylaxis have been showing promise in preclinical models, but their translation to the clinic still remains elusive due in part to the variability of these models and the fact they do not recapitulate all complex pathologies associated with human TBI. TBI is a multifaceted disorder reflected in several potentially epileptogenic alterations in the brain, including mechanical neuronal and vascular damage, parenchymal and subarachnoid hemorrhage, subsequent toxicity caused by iron-rich hemoglobin breakdown products, and energy disruption resulting in secondary injuries, including excitotoxicity, gliosis, and neuroinflammation, often coexisting to a different degree. Several in vivo models have been developed to reproduce the acute TBI cascade of events, to reflect its anatomical pathologies, and to replicate neurological deficits. Although acute and chronic recurrent posttraumatic seizures are well-recognized phenomena in these models, there is only a limited number of studies focused on PTE. The most used mechanical TBI models with documented electroencephalographic and behavioral seizures with remote epileptogenesis include fluid percussion, controlled cortical impact, and weight-drop. This chapter describes the most popular models of PTE-induced TBI models, focusing on the controlled cortical impact and the fluid percussion injury models, the methods of behavioral and electroencephalogram seizure assessments, and other approaches to detect epileptogenic properties, and discusses their potential application for translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741

    Article  PubMed  Google Scholar 

  2. Raymont V, Salazar AM, Lipsky R, Goldman D, Tasick G, Grafman J (2010) Correlates of posttraumatic epilepsy 35 years following combat brain injury. Neurology 75:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salazar AM, Jabbari B, Vance SC, Grafman J, Amin D, Dillon JD (1985) Epilepsy after penetrating head injury. I. Clinical correlates: a report of the Vietnam Head Injury Study. Neurology 35:1406–1414

    Article  CAS  PubMed  Google Scholar 

  4. Scher AI, Wu H, Tsao JW, Blom HJ, Feit P, Nevin RL, Schwab KA (2011) MTHFR C677T genotype as a risk factor for epilepsy including post-traumatic epilepsy in a representative military cohort. J Neurotrauma 28:1739–1745

    Article  PubMed  Google Scholar 

  5. Kazemi H, Hashemi-Fesharaki S, Razaghi S, Najafi M, Kolivand PH, Kovac S, Gorji A (2012) Intractable epilepsy and craniocerebral trauma: analysis of 163 patients with blunt and penetrating head injuries sustained in war. Injury 43:2132–2135

    Article  PubMed  Google Scholar 

  6. Bruns J Jr, Hauser WA (2003) The epidemiology of traumatic brain injury: a review. Epilepsia 44(Suppl 10):2–10

    Article  PubMed  Google Scholar 

  7. Annegers JF, Hauser WA, Coan SP, Rocca WA (1998) A population-based study of seizures after traumatic brain injuries. N Engl J Med 338:20–24

    Article  CAS  PubMed  Google Scholar 

  8. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, Engel J Jr, Forsgren L, French JA, Glynn M, Hesdorffer DC, Lee BI, Mathern GW, Moshe SL, Perucca E, Scheffer IE, Tomson T, Watanabe M, Wiebe S (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55:475–482

    Article  PubMed  Google Scholar 

  9. Frey LC (2003) Epidemiology of posttraumatic epilepsy: a critical review. Epilepsia 44(Suppl 10):11–17

    Article  PubMed  Google Scholar 

  10. Cabral RJ, King TT, Scott DF (1976) Epilepsy after two different neurosurgical approaches to the treatment of ruptured intracranial aneurysm. J Neurol Neurosurg Psychiatry 39:1052–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Loscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6:591–602

    Article  PubMed  CAS  Google Scholar 

  12. Diaz-Arrastia R, Agostini MA, Frol AB, Mickey B, Fleckenstein J, Bigio E, Van Ness PC (2000) Neurophysiologic and neuroradiologic features of intractable epilepsy after traumatic brain injury in adults. Arch Neurol 57:1611–1616

    CAS  PubMed  Google Scholar 

  13. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319

    Article  CAS  PubMed  Google Scholar 

  14. Risdall JE, Menon DK (2011) Traumatic brain injury. Philos Trans R Soc Lond B Biol Sci 366:241–250

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen LL, Baca CB, Choe J, Chen JW, Ayad ME, Cheng EM (2014) Posttraumatic epilepsy in operation enduring freedom/operation Iraqi freedom veterans. Mil Med 179:492–496

    Article  PubMed  Google Scholar 

  16. Temkin NR (2003) Risk factors for posttraumatic seizures in adults. Epilepsia 44(Suppl 10):18–20

    Article  PubMed  Google Scholar 

  17. Statler KD, Swank S, Abildskov T, Bigler ED, White HS (2008) Traumatic brain injury during development reduces minimal clonic seizure thresholds at maturity. Epilepsy Res 80:163–170

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kramer G (2001) Epilepsy in the elderly: some clinical and pharmacotherapeutic aspects. Epilepsia 42(Suppl 3):55–59

    Article  PubMed  Google Scholar 

  19. Roberts I, Schierhout G, Alderson P (1998) Absence of evidence for the effectiveness of five interventions routinely used in the intensive care management of severe head injury: a systematic review. J Neurol Neurosurg Psychiatry 65:729–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang YH, Liao CC, Chen WF, Ou CY (2015) Characterization of acute post-craniectomy seizures in traumatically brain-injured patients. Seizure 25:150–154

    Article  PubMed  Google Scholar 

  21. Torbic H, Forni AA, Anger KE, Degrado JR, Greenwood BC (2013) Use of antiepileptics for seizure prophylaxis after traumatic brain injury. Am J Health Syst Pharm 70:759–766

    Article  CAS  PubMed  Google Scholar 

  22. Beghi E (2003) Overview of studies to prevent posttraumatic epilepsy. Epilepsia 44(Suppl 10):21–26

    Article  CAS  PubMed  Google Scholar 

  23. Jones KE, Puccio AM, Harshman KJ, Falcione B, Benedict N, Jankowitz BT, Stippler M, Fischer M, Sauber-Schatz EK, Fabio A, Darby JM, Okonkwo DO (2008) Levetiracetam versus phenytoin for seizure prophylaxis in severe traumatic brain injury. Neurosurg Focus 25, E3

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pagni CA, Zenga F (2005) Posttraumatic epilepsy with special emphasis on prophylaxis and prevention. Acta Neurochir Suppl 93:27–34

    Article  CAS  PubMed  Google Scholar 

  25. Temkin NR (2009) Preventing and treating posttraumatic seizures: the human experience. Epilepsia 50(Suppl 2):10–13

    Article  PubMed  Google Scholar 

  26. Kinirons P, McCarthy M, Doherty CP, Delanty N (2006) Predicting drug-resistant patients who respond to add-on therapy with levetiracetam. Seizure 15:387–392

    Article  CAS  PubMed  Google Scholar 

  27. Michelucci R (2006) Optimizing therapy of seizures in neurosurgery. Neurology 67:S14–S18

    Article  PubMed  Google Scholar 

  28. Treiman DM, Meyers PD, Walton NY, Collins JF, Colling C, Rowan AJ, Handforth A, Faught E, Calabrese VP, Uthman BM, Ramsay RE, Mamdani MB (1998) A comparison of four treatments for generalized convulsive status epilepticus. Veterans Affairs Status Epilepticus Cooperative Study Group. N Engl J Med 339:792–798

    Article  CAS  PubMed  Google Scholar 

  29. Zou H, Brayer SW, Hurwitz M, Niyonkuru C, Fowler LE, Wagner AK (2013) Neuroprotective, neuroplastic, and neurobehavioral effects of daily treatment with levetiracetam in experimental traumatic brain injury. Neurorehabil Neural Repair 27:878–888

    Article  PubMed  Google Scholar 

  30. Cernak I, O'Connor C, Vink R (2002) Inhibition of cyclooxygenase 2 by nimesulide improves cognitive outcome more than motor outcome following diffuse traumatic brain injury in rats. Exp Brain Res 147:193–199

    Article  CAS  PubMed  Google Scholar 

  31. Velioglu SK, Ozmenoglu M (1999) Migraine-related seizures in an epileptic population. Cephalalgia 19:797–801, discussion 766

    Article  CAS  PubMed  Google Scholar 

  32. Cernak I, O'Connor C, Vink R (2001) Activation of cyclo-oxygenase-2 contributes to motor and cognitive dysfunction following diffuse traumatic brain injury in rats. Clin Exp Pharmacol Physiol 28:922–925

    Article  CAS  PubMed  Google Scholar 

  33. Jordan KG (2004) Emergency EEG and continuous EEG monitoring in acute ischemic stroke. J Clin Neurophysiol 21:341–352

    PubMed  Google Scholar 

  34. Menon B, Shorvon SD (2009) Ischaemic stroke in adults and epilepsy. Epilepsy Res 87:1–11

    Article  PubMed  Google Scholar 

  35. Jordan KG (1993) Continuous EEG and evoked potential monitoring in the neuroscience intensive care unit. J Clin Neurophysiol 10:445–475

    Article  CAS  PubMed  Google Scholar 

  36. Privitera MD, Strawsburg RH (1994) Electroencephalographic monitoring in the emergency department. Emerg Med Clin North Am 12:1089–1100

    CAS  PubMed  Google Scholar 

  37. Jordan KG (1995) Neurophysiologic monitoring in the neuroscience intensive care unit. Neurol Clin 13:579–626

    CAS  PubMed  Google Scholar 

  38. Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, Phelps ME, McArthur DL, Caron MJ, Kraus JF, Becker DP (1997) Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 86:241–251

    Article  CAS  PubMed  Google Scholar 

  39. Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ (2004) Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology 62:1743–1748

    Article  CAS  PubMed  Google Scholar 

  40. Vespa PM, O'Phelan K, Shah M, Mirabelli J, Starkman S, Kidwell C, Saver J, Nuwer MR, Frazee JG, McArthur DA, Martin NA (2003) Acute seizures after intracerebral hemorrhage: a factor in progressive midline shift and outcome. Neurology 60:1441–1446

    Article  CAS  PubMed  Google Scholar 

  41. Grand'Maison F, Reiher J, Leduc CP (1991) Retrospective inventory of EEG abnormalities in partial status epilepticus. Electroencephalogr Clin Neurophysiol 79:264–270

    Article  PubMed  Google Scholar 

  42. Cavazos JE, Jones SM, Cross DJ (2004) Sprouting and synaptic reorganization in the subiculum and CA1 region of the hippocampus in acute and chronic models of partial-onset epilepsy. Neuroscience 126:677–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Golarai G, Greenwood AC, Feeney DM, Connor JA (2001) Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci 21:8523–8537

    CAS  PubMed  Google Scholar 

  44. Ariza M, Serra-Grabulosa JM, Junque C, Ramirez B, Mataro M, Poca A, Bargallo N, Sahuquillo J (2006) Hippocampal head atrophy after traumatic brain injury. Neuropsychologia 44:1956–1961

    Article  PubMed  Google Scholar 

  45. Palacios EM, Sala-Llonch R, Junque C, Fernandez-Espejo D, Roig T, Tormos JM, Bargallo N, Vendrell P (2013) Long-term declarative memory deficits in diffuse TBI: correlations with cortical thickness, white matter integrity and hippocampal volume. Cortex 49:646–657

    Article  PubMed  Google Scholar 

  46. Hickey RW, Adelson PD, Johnnides MJ, Davis DS, Yu Z, Rose ME, Chang YF, Graham SH (2007) Cyclooxygenase-2 activity following traumatic brain injury in the developing rat. Pediatr Res 62:271–276

    Article  CAS  PubMed  Google Scholar 

  47. Miller G (2011) Neuropathology. A battle no soldier wants to fight. Science 333:517–519

    Article  CAS  PubMed  Google Scholar 

  48. Menzler K, Thiel P, Hermsen A, Chen X, Benes L, Miller D, Sure U, Knake S, Rosenow F (2011) The role of underlying structural cause for epilepsy classification: clinical features and prognosis in mesial temporal lobe epilepsy caused by hippocampal sclerosis versus cavernoma. Epilepsia 52:707–711

    Article  PubMed  Google Scholar 

  49. Glushakov AV, Galvis JM, Solaski SL, Doré S (2015) Hippocampal degeneration after traumatic brain injury: the roles of the PGE2 EP1 receptor. J Trauma Care 1:1007

    Google Scholar 

  50. Hellewell SC, Yan EB, Agyapomaa DA, Bye N, Morganti-Kossmann MC (2010) Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses. J Neurotrauma 27:1997–2010

    Article  PubMed  Google Scholar 

  51. Teasdale GM, Graham DI (1998) Craniocerebral trauma: protection and retrieval of the neuronal population after injury. Neurosurgery 43:723–737, discussion 737-728

    Article  CAS  PubMed  Google Scholar 

  52. Franzblau M, Gonzales-Portillo C, Gonzales-Portillo GS, Diamandis T, Borlongan MC, Tajiri N, Borlongan CV (2013) Vascular damage: a persisting pathology common to Alzheimer's disease and traumatic brain injury. Med Hypotheses 81:842–845

    Article  CAS  PubMed  Google Scholar 

  53. Ferro JM, Pinto F (2004) Poststroke epilepsy: epidemiology, pathophysiology and management. Drugs Aging 21:639–653

    Article  CAS  PubMed  Google Scholar 

  54. Berges S, Moulin T, Berger E, Tatu L, Sablot D, Challier B, Rumbach L (2000) Seizures and epilepsy following strokes: recurrence factors. Eur Neurol 43:3–8

    Article  CAS  PubMed  Google Scholar 

  55. Bladin CF, Alexandrov AV, Bellavance A, Bornstein N, Chambers B, Cote R, Lebrun L, Pirisi A, Norris JW (2000) Seizures after stroke: a prospective multicenter study. Arch Neurol 57:1617–1622

    Article  CAS  PubMed  Google Scholar 

  56. Maganti R, Gerber P, Drees C, Chung S (2008) Nonconvulsive status epilepticus. Epilepsy Behav 12:572–586

    Article  PubMed  Google Scholar 

  57. Silverman IE, Restrepo L, Mathews GC (2002) Poststroke seizures. Arch Neurol 59:195–201

    Article  PubMed  Google Scholar 

  58. Berger AR, Lipton RB, Lesser ML, Lantos G, Portenoy RK (1988) Early seizures following intracerebral hemorrhage: implications for therapy. Neurology 38:1363–1365

    Article  CAS  PubMed  Google Scholar 

  59. Rhoney DH, Tipps LB, Murry KR, Basham MC, Michael DB, Coplin WM (2000) Anticonvulsant prophylaxis and timing of seizures after aneurysmal subarachnoid hemorrhage. Neurology 55:258–265

    Article  CAS  PubMed  Google Scholar 

  60. Pinto AN, Canhao P, Ferro JM (1996) Seizures at the onset of subarachnoid haemorrhage. J Neurol 243:161–164

    Article  CAS  PubMed  Google Scholar 

  61. Claassen J, Peery S, Kreiter KT, Hirsch LJ, Du EY, Connolly ES, Mayer SA (2003) Predictors and clinical impact of epilepsy after subarachnoid hemorrhage. Neurology 60:208–214

    Article  CAS  PubMed  Google Scholar 

  62. Burn J, Dennis M, Bamford J, Sandercock P, Wade D, Warlow C (1997) Epileptic seizures after a first stroke: the Oxfordshire Community Stroke Project. BMJ 315:1582–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Willmore LJ, Sypert GW, Munson JV, Hurd RW (1978) Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex. Science 200:1501–1503

    Article  CAS  PubMed  Google Scholar 

  64. Willmore LJ, Triggs WJ (1991) Iron-induced lipid peroxidation and brain injury responses. Int J Dev Neurosci 9:175–180

    Article  CAS  PubMed  Google Scholar 

  65. Kucukkaya B, Aker R, Yuksel M, Onat F, Yalcin AS (1998) Low dose MK-801 protects against iron-induced oxidative changes in a rat model of focal epilepsy. Brain Res 788:133–136

    Article  CAS  PubMed  Google Scholar 

  66. Glushakova OY, Johnson D, Hayes RL (2014) Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J Neurotrauma 31:1180–1193

    Article  PubMed  Google Scholar 

  67. Willmore LJ, Rubin JJ (1981) Antiperoxidant pretreatment and iron-induced epileptiform discharges in the rat: EEG and histopathologic studies. Neurology 31:63–69

    Article  CAS  PubMed  Google Scholar 

  68. Willmore LJ, Hiramatsu M, Kochi H, Mori A (1983) Formation of superoxide radicals after FeCl3 injection into rat isocortex. Brain Res 277:393–396

    Article  CAS  PubMed  Google Scholar 

  69. Glushakov AV, Robbins SW, Bracy CL, Narumiya S, Dore S (2013) Prostaglandin F2 alpha FP receptor antagonist improves outcomes after experimental traumatic brain injury. J Neurotrauma 30:A163

    Google Scholar 

  70. Oby E, Janigro D (2006) The blood-brain barrier and epilepsy. Epilepsia 47:1761–1774

    Article  CAS  PubMed  Google Scholar 

  71. Tomkins O, Shelef I, Kaizerman I, Eliushin A, Afawi Z, Misk A, Gidon M, Cohen A, Zumsteg D, Friedman A (2008) Blood-brain barrier disruption in post-traumatic epilepsy. J Neurol Neurosurg Psychiatry 79:774–777

    Article  CAS  PubMed  Google Scholar 

  72. Huang XJ, Glushakova O, Mondello S, Van K, Hayes RL, Lyeth BG (2015) Acute temporal profiles of serum levels of UCH-L1 and GFAP and relationships to neuronal and astroglial pathology following traumatic brain injury in rats. J Neurotrauma 32:1179–1189

    Article  PubMed  Google Scholar 

  73. Glushakova OY, Jeromin A, Martinez J, Johnson D, Denslow N, Streeter J, Hayes RL, Mondello S (2012) Cerebrospinal fluid protein biomarker panel for assessment of neurotoxicity induced by kainic acid in rats. Toxicol Sci 130:158–167

    Article  CAS  PubMed  Google Scholar 

  74. Gopez JJ, Yue H, Vasudevan R, Malik AS, Fogelsanger LN, Lewis S, Panikashvili D, Shohami E, Jansen SA, Narayan RK, Strauss KI (2005) Cyclooxygenase-2-specific inhibitor improves functional outcomes, provides neuroprotection, and reduces inflammation in a rat model of traumatic brain injury. Neurosurgery 56:590–604

    Article  PubMed  PubMed Central  Google Scholar 

  75. Strauss KI, Barbe MF, Marshall RM, Raghupathi R, Mehta S, Narayan RK (2000) Prolonged cyclooxygenase-2 induction in neurons and glia following traumatic brain injury in the rat. J Neurotrauma 17:695–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dash PK, Mach SA, Moore AN (2000) Regional expression and role of cyclooxygenase-2 following experimental traumatic brain injury. J Neurotrauma 17:69–81

    Article  CAS  PubMed  Google Scholar 

  77. Yang T, Zhou D, Stefan H (2010) Why mesial temporal lobe epilepsy with hippocampal sclerosis is progressive: uncontrolled inflammation drives disease progression? J Neurol Sci 296:1–6

    Article  PubMed  Google Scholar 

  78. Desjardins P, Sauvageau A, Bouthillier A, Navarro D, Hazell AS, Rose C, Butterworth RF (2003) Induction of astrocytic cyclooxygenase-2 in epileptic patients with hippocampal sclerosis. Neurochem Int 42:299–303

    Article  CAS  PubMed  Google Scholar 

  79. Turrin NP, Rivest S (2004) Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy. Neurobiol Dis 16:321–334

    Article  CAS  PubMed  Google Scholar 

  80. Takemiya T, Maehara M, Matsumura K, Yasuda S, Sugiura H, Yamagata K (2006) Prostaglandin E2 produced by late induced COX-2 stimulates hippocampal neuron loss after seizure in the CA3 region. Neurosci Res 56:103–110

    Article  CAS  PubMed  Google Scholar 

  81. Yasojima K, Schwab C, McGeer EG, McGeer PL (1999) Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res 830:226–236

    Article  CAS  PubMed  Google Scholar 

  82. Toti P, DE Felice C, SchĂ¼rfeld K, Stumpo M, Bartolommei S, Lombardi A, Petraglia E, Buonocore G (2001) Cyclooxygenase-2 immunoreactivity in the ischemic neonatal human brain. An autopsy study. J Submicrosc Cytol Pathol 33:245–249

    CAS  PubMed  Google Scholar 

  83. Tomimoto H, Akiguchi I, Wakita H, Lin JX, Budka H (2000) Cyclooxygenase-2 is induced in microglia during chronic cerebral ischemia in humans. Acta Neuropathol (Berl) 99:26–30

    Article  CAS  Google Scholar 

  84. Tomimoto H, Shibata M, Ihara M, Akiguchi I, Ohtani R, Budka H (2002) A comparative study on the expression of cyclooxygenase and 5-lipoxygenase during cerebral ischemia in humans. Acta Neuropathol (Berl) 104:601–607

    CAS  Google Scholar 

  85. Kunz T, Marklund N, Hillered L, Oliw EH (2002) Cyclooxygenase-2, prostaglandin synthases, and prostaglandin H2 metabolism in traumatic brain injury in the rat. J Neurotrauma 19:1051–1064

    Article  PubMed  Google Scholar 

  86. Ahmad M, Rose ME, Vagni V, Griffith RP, Dixon CE, Kochanek PM, Hickey RW, Graham SH (2008) Genetic disruption of cyclooxygenase-2 does not improve histological or behavioral outcome after traumatic brain injury in mice. J Neurosci Res 86:3605–3612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Strauss KI (2008) Antiinflammatory and neuroprotective actions of COX2 inhibitors in the injured brain. Brain Behav Immun 22:285–298

    Article  CAS  PubMed  Google Scholar 

  88. Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, Kunz A, Cho S, Orio M, Iadecola C (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 12:225–229

    Article  CAS  PubMed  Google Scholar 

  89. Ahmad AS, Saleem S, Ahmad M, Doré S (2006) Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci 89:265–270

    Article  CAS  PubMed  Google Scholar 

  90. Abe T, Kunz A, Shimamura M, Zhou P, Anrather J, Iadecola C (2009) The neuroprotective effect of prostaglandin E2 EP1 receptor inhibition has a wide therapeutic window, is sustained in time and is not sexually dimorphic. J Cereb Blood Flow Metab 29:66–72

    Article  CAS  PubMed  Google Scholar 

  91. Ahmad AS, Kim YT, Ahmad M, Maruyama T, Doré S (2008) Selective blockade of PGE2 EP1 receptor protects brain against experimental ischemia and excitotoxicity, and hippocampal slice cultures against oxygen-glucose deprivation. Neurotox Res 14:343–351

    Article  CAS  PubMed  Google Scholar 

  92. Zhen G, Kim YT, Li RC, Yocum J, Kapoor N, Langer J, Dobrowolski P, Maruyama T, Narumiya S, Doré S (2011) PGE(2) EP1 receptor exacerbated neurotoxicity in a mouse model of cerebral ischemia and Alzheimer's disease. Neurobiol Aging 33:2215–2219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Topol EJ (2004) Failing the public health—rofecoxib, Merck, and the FDA. N Engl J Med 351:1707–1709

    Article  CAS  PubMed  Google Scholar 

  94. Glushakov AV, Robbins SW, Bracy CL, Narumiya S, Doré S (2013) Prostaglandin F2alpha FP receptor antagonist improves outcomes after experimental traumatic brain injury. J Neuroinflammation 10:132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Willmore LJ, Ueda Y (2009) Posttraumatic epilepsy: hemorrhage, free radicals and the molecular regulation of glutamate. Neurochem Res 34:688–697

    Article  CAS  PubMed  Google Scholar 

  96. Oliveira MS, Furian AF, Rambo LM, Ribeiro LR, Royes LF, Ferreira J, Calixto JB, Mello CF (2008) Modulation of pentylenetetrazol-induced seizures by prostaglandin E2 receptors. Neuroscience 152:1110–1118

    Article  CAS  PubMed  Google Scholar 

  97. Fischborn SV, Soerensen J, Potschka H (2010) Targeting the prostaglandin E2 EP1 receptor and cyclooxygenase-2 in the amygdala kindling model in mice. Epilepsy Res 91:57–65

    Article  CAS  PubMed  Google Scholar 

  98. Khatibi NH, Jadhav V, Matus B, Fathali N, Martin R, Applegate R, Tang J, Zhang JH (2011) Prostaglandin E2 EP1 receptor inhibition fails to provide neuroprotection in surgically induced brain-injured mice. Acta Neurochir Suppl 111:277–281

    Article  PubMed  PubMed Central  Google Scholar 

  99. Glushakov AV, Fazal JA, Narumiya S, Dore S (2014) Role of the prostaglandin E2 EP1 receptor in traumatic brain injury. PLoS One 9, e113689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Shimamura M, Zhou P, Casolla B, Qian L, Capone C, Kurinami H, Iadecola C, Anrather J (2013) Prostaglandin E2 type 1 receptors contribute to neuronal apoptosis after transient forebrain ischemia. J Cereb Blood Flow Metab 33:1207–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Baik EJ, Kim EJ, Lee SH, Moon C (1999) Cyclooxygenase-2 selective inhibitors aggravate kainic acid induced seizure and neuronal cell death in the hippocampus. Brain Res 843:118–129

    Article  CAS  PubMed  Google Scholar 

  102. Kawaguchi K, Hickey RW, Rose ME, Zhu L, Chen J, Graham SH (2005) Cyclooxygenase-2 expression is induced in rat brain after kainate-induced seizures and promotes neuronal death in CA3 hippocampus. Brain Res 1050:130–137

    Article  CAS  PubMed  Google Scholar 

  103. Yoshikawa K, Kita Y, Kishimoto K, Shimizu T (2006) Profiling of eicosanoid production in the rat hippocampus during kainate-induced seizure: dual-phase regulation and differential involvement of COX-1 and COX-2. J Biol Chem 281:14663–14669

    Article  CAS  PubMed  Google Scholar 

  104. Toscano CD, Kingsley PJ, Marnett LJ, Bosetti F (2008) NMDA-induced seizure intensity is enhanced in COX-2 deficient mice. Neurotoxicology 29:1114–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Berchtold-Kanz E, Anhut H, Heldt R, Neufang B, Hertting G (1981) Regional distribution of arachidonic acid metabolites in rat brain following convulsive stimuli. Prostaglandins 22:65–79

    Article  CAS  PubMed  Google Scholar 

  106. Steinhauer HB, Anhut H, Hertting G (1979) The synthesis of prostaglandins and thromboxane in the mouse brain in vivo. Influence of drug induced convulsions, hypoxia and the anticonvulsants trimethadione and diazepam. Naunyn Schmiedebergs Arch Pharmacol 310:53–58

    Article  CAS  PubMed  Google Scholar 

  107. Steinhauer HB, Hertting G (1981) Lowering of the convulsive threshold by non-steroidal anti-inflammatory drugs. Eur J Pharmacol 69:199–203

    Article  CAS  PubMed  Google Scholar 

  108. Forstermann U, Heldt R, Hertting G (1983) Increase in brain prostaglandins during convulsions is due to increased neuronal activity and not to hypoxia. Arch Int Pharmacodyn Ther 263:180–188

    CAS  PubMed  Google Scholar 

  109. Forstermann U, Heldt R, Hertting G (1983) Effects of intracerebroventricular administration of prostaglandin D2 on behaviour, blood pressure and body temperature as compared to prostaglandins E2 and F2 alpha. Psychopharmacology (Berl) 80:365–370

    Article  CAS  Google Scholar 

  110. Forstermann U, Heldt R, Knappen F, Hertting G (1982) Potential anticonvulsive properties of endogenous prostaglandins formed in mouse brain. Brain Res 240:303–310

    Article  CAS  PubMed  Google Scholar 

  111. Naffah-Mazzacoratti MG, Bellissimo MI, Cavalheiro EA (1995) Profile of prostaglandin levels in the rat hippocampus in pilocarpine model of epilepsy. Neurochem Int 27:461–466

    Article  CAS  PubMed  Google Scholar 

  112. Okada K, Yuhi T, Tsuji S, Yamashita U (2001) Cyclooxygenase-2 expression in the hippocampus of genetically epilepsy susceptible El mice was increased after seizure. Brain Res 894:332–335

    Article  CAS  PubMed  Google Scholar 

  113. Forstermann U, Seregi A, Hertting G (1984) Anticonvulsive effects of endogenous prostaglandins formed in brain of spontaneously convulsing gerbils. Prostaglandins 27:913–923

    Article  CAS  PubMed  Google Scholar 

  114. Folco GC, Longiave D, Bosisio E (1977) Relations between prostaglandin E2, F2alpha, and cyclic nucleotides levels in rat brain and induction of convulsions. Prostaglandins 13:893–900

    Article  CAS  PubMed  Google Scholar 

  115. Kim HJ, Chung JI, Lee SH, Jung YS, Moon CH, Baik EJ (2008) Involvement of endogenous prostaglandin F2alpha on kainic acid-induced seizure activity through FP receptor: the mechanism of proconvulsant effects of COX-2 inhibitors. Brain Res 1193:153–161

    Article  CAS  PubMed  Google Scholar 

  116. Chung JI, Kim AY, Lee SH, Baik EJ (2013) Seizure susceptibility in immature brain due to lack of COX-2-induced PGF2alpha. Exp Neurol 249:95–103

    Article  CAS  PubMed  Google Scholar 

  117. Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, Young HF, Hayes RL (1987) A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67:110–119

    Article  CAS  PubMed  Google Scholar 

  118. Lighthall JW (1988) Controlled cortical impact: a new experimental brain injury model. J Neurotrauma 5:1–15

    Article  CAS  PubMed  Google Scholar 

  119. Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39:253–262

    Article  CAS  PubMed  Google Scholar 

  120. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg 80:291–300

    Article  CAS  PubMed  Google Scholar 

  121. Cernak I, Savic J, Malicevic Z, Zunic G, Radosevic P, Ivanovic I, Davidovic L (1996) Involvement of the central nervous system in the general response to pulmonary blast injury. J Trauma 40:S100–S104

    Article  CAS  PubMed  Google Scholar 

  122. Diaz-Arrastia R, Agostini MA, Madden CJ, Van Ness PC (2009) Posttraumatic epilepsy: the endophenotypes of a human model of epileptogenesis. Epilepsia 50(Suppl 2):14–20

    Article  PubMed  Google Scholar 

  123. Kovacs SK, Leonessa F, Ling GS (2014) Blast TBI models, neuropathology, and implications for seizure risk. Front Neurol 5:47

    Article  PubMed  PubMed Central  Google Scholar 

  124. Li BC, Li Y, Xu C, Wang J, Chen Z, Li G, Zhang J, Hu S, Wang L, Feng H (2014) Blast-induced traumatic brain injury of goats in confined space. Neurol Res 36:974–982

    Article  PubMed  Google Scholar 

  125. Cernak I (2010) The importance of systemic response in the pathobiology of blast-induced neurotrauma. Front Neurol 1:151

    Article  PubMed  PubMed Central  Google Scholar 

  126. Graham DI, McIntosh TK, Maxwell WL, Nicoll JA (2000) Recent advances in neurotrauma. J Neuropathol Exp Neurol 59:641–651

    Article  CAS  PubMed  Google Scholar 

  127. Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK (2005) Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 22:42–75

    Article  PubMed  Google Scholar 

  128. Kabadi SV, Hilton GD, Stoica BA, Zapple DN, Faden AI (2010) Fluid-percussion-induced traumatic brain injury model in rats. Nat Protoc 5:1552–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hayes RL, Stalhammar D, Povlishock JT, Allen AM, Galinat BJ, Becker DP, Stonnington HH (1987) A new model of concussive brain injury in the cat produced by extradural fluid volume loading: II. Physiological and neuropathological observations. Brain Inj 1:93–112

    Article  CAS  PubMed  Google Scholar 

  130. Hartl R, Medary M, Ruge M, Arfors KE, Ghajar J (1997) Blood-brain barrier breakdown occurs early after traumatic brain injury and is not related to white blood cell adherence. Acta Neurochir Suppl 70:240–242

    CAS  PubMed  Google Scholar 

  131. Stalhammar D, Galinat BJ, Allen AM, Becker DP, Stonnington HH, Hayes RL (1987) A new model of concussive brain injury in the cat produced by extradural fluid volume loading: I. Biomechanical properties. Brain Inj 1:73–91

    Article  CAS  PubMed  Google Scholar 

  132. Pierce JE, Smith DH, Trojanowski JQ, McIntosh TK (1998) Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience 87:359–369

    Article  CAS  PubMed  Google Scholar 

  133. McIntosh TK, Noble L, Andrews B, Faden AI (1987) Traumatic brain injury in the rat: characterization of a midline fluid-percussion model. Cent Nerv Syst Trauma 4:119–134

    Article  CAS  PubMed  Google Scholar 

  134. Carbonell WS, Maris DO, McCall T, Grady MS (1998) Adaptation of the fluid percussion injury model to the mouse. J Neurotrauma 15:217–229

    Article  CAS  PubMed  Google Scholar 

  135. Sullivan HG, Martinez J, Becker DP, Miller JD, Griffith R, Wist AO (1976) Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg 45:521–534

    Article  CAS  PubMed  Google Scholar 

  136. Millen JE, Glauser FL, Fairman RP (1985) A comparison of physiological responses to percussive brain trauma in dogs and sheep. J Neurosurg 62:587–591

    Article  CAS  PubMed  Google Scholar 

  137. Dixon CE, Lighthall JW, Anderson TE (1988) Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. J Neurotrauma 5:91–104

    Article  CAS  PubMed  Google Scholar 

  138. Alder J, Fujioka W, Lifshitz J, Crockett DP, Thakker-Varia S (2011) Lateral fluid percussion: model of traumatic brain injury in mice. J Vis Exp 54:pii 3063

    Google Scholar 

  139. Pfenninger EG, Reith A, Breitig D, Grunert A, Ahnefeld FW (1989) Early changes of intracranial pressure, perfusion pressure, and blood flow after acute head injury. Part 1: an experimental study of the underlying pathophysiology. J Neurosurg 70:774–779

    Article  CAS  PubMed  Google Scholar 

  140. Hicks R, Soares H, Smith D, McIntosh T (1996) Temporal and spatial characterization of neuronal injury following lateral fluid-percussion brain injury in the rat. Acta Neuropathol 91:236–246

    Article  CAS  PubMed  Google Scholar 

  141. Zink BJ, Walsh RF, Feustel PJ (1993) Effects of ethanol in traumatic brain injury. J Neurotrauma 10:275–286

    Article  CAS  PubMed  Google Scholar 

  142. Santhakumar V, Ratzliff AD, Jeng J, Toth Z, Soltesz I (2001) Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann Neurol 50:708–717

    Article  CAS  PubMed  Google Scholar 

  143. Neuberger EJ, Abdul Wahab R, Jayakumar A, Pfister BJ, Santhakumar V (2014) Distinct effect of impact rise times on immediate and early neuropathology after brain injury in juvenile rats. J Neurosci Res 92:1350–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK (1992) Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci 12:4846–4853

    CAS  PubMed  Google Scholar 

  145. Wang Y, Hameed MQ, Rakhade SN, Iglesias AH, Muller PA, Mou DL, Rotenberg A (2014) Hippocampal immediate early gene transcription in the rat fluid percussion traumatic brain injury model. Neuroreport 25:954–959

    Article  CAS  PubMed  Google Scholar 

  146. D'Ambrosio R, Fairbanks JP, Fender JS, Born DE, Doyle DL, Miller JW (2004) Post-traumatic epilepsy following fluid percussion injury in the rat. Brain 127:304–314

    Article  PubMed  Google Scholar 

  147. D'Ambrosio R, Maris DO, Grady MS, Winn HR, Janigro D (1999) Impaired K(+) homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J Neurosci 19:8152–8162

    PubMed  PubMed Central  Google Scholar 

  148. Cao R, Hasuo H, Ooba S, Akasu T, Zhang X (2006) Facilitation of glutamatergic synaptic transmission in hippocampal CA1 area of rats with traumatic brain injury. Neurosci Lett 401:136–141

    Article  CAS  PubMed  Google Scholar 

  149. Toth Z, Hollrigel GS, Gorcs T, Soltesz I (1997) Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex. J Neurosci 17:8106–8117

    CAS  PubMed  Google Scholar 

  150. Coulter DA, Rafiq A, Shumate M, Gong QZ, DeLorenzo RJ, Lyeth BG (1996) Brain injury-induced enhanced limbic epileptogenesis: anatomical and physiological parallels to an animal model of temporal lobe epilepsy. Epilepsy Res 26:81–91

    Article  CAS  PubMed  Google Scholar 

  151. Dewitt DS, Kong DL, Lyeth BG, Jenkins LW, Hayes RL, Wooten ED, Prough DS (1988) Experimental traumatic brain injury elevates brain prostaglandin E2 and thromboxane B2 levels in rats. J Neurotrauma 5:303–313

    Article  CAS  PubMed  Google Scholar 

  152. D'Ambrosio R, Fender JS, Fairbanks JP, Simon EA, Born DE, Doyle DL, Miller JW (2005) Progression from frontal-parietal to mesial-temporal epilepsy after fluid percussion injury in the rat. Brain 128:174–188

    Article  PubMed  Google Scholar 

  153. Curia G, Levitt M, Fender JS, Miller JW, Ojemann J, D'Ambrosio R (2011) Impact of injury location and severity on posttraumatic epilepsy in the rat: role of frontal neocortex. Cereb Cortex 21:1574–1592

    Article  PubMed  Google Scholar 

  154. Campbell JN, Gandhi A, Singh B, Churn SB (2014) Traumatic brain injury causes a tacrolimus-sensitive increase in non-convulsive seizures in a rat model of post-traumatic epilepsy. Int J Neurol Brain Disord 1:1–11

    PubMed  PubMed Central  Google Scholar 

  155. Kharatishvili I, Nissinen JP, McIntosh TK, Pitkanen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 140:685–697

    Article  CAS  PubMed  Google Scholar 

  156. Bao YH, Bramlett HM, Atkins CM, Truettner JS, Lotocki G, Alonso OF, Dietrich WD (2011) Post-traumatic seizures exacerbate histopathological damage after fluid-percussion brain injury. J Neurotrauma 28:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Huusko N, Pitkanen A (2014) Parvalbumin immunoreactivity and expression of GABAA receptor subunits in the thalamus after experimental TBI. Neuroscience 267:30–45

    Article  CAS  PubMed  Google Scholar 

  158. Atkins CM, Truettner JS, Lotocki G, Sanchez-Molano J, Kang Y, Alonso OF, Sick TJ, Dietrich WD, Bramlett HM (2010) Post-traumatic seizure susceptibility is attenuated by hypothermia therapy. Eur J Neurosci 32:1912–1920

    Article  PubMed  PubMed Central  Google Scholar 

  159. Mishra AM, Bai X, Sanganahalli BG, Waxman SG, Shatillo O, Grohn O, Hyder F, Pitkanen A, Blumenfeld H (2014) Decreased resting functional connectivity after traumatic brain injury in the rat. PLoS One 9, e95280

    Article  PubMed  PubMed Central  Google Scholar 

  160. Wallis RA, Panizzon KL (1995) Felbamate neuroprotection against CA1 traumatic neuronal injury. Eur J Pharmacol 294:475–482

    Article  CAS  PubMed  Google Scholar 

  161. Pitkanen A, Immonen R, Ndode-Ekane X, Grohn O, Stohr T, Nissinen J (2014) Effect of lacosamide on structural damage and functional recovery after traumatic brain injury in rats. Epilepsy Res 108:653–665

    Article  CAS  PubMed  Google Scholar 

  162. Lighthall JW, Goshgarian HG, Pinderski CR (1990) Characterization of axonal injury produced by controlled cortical impact. J Neurotrauma 7:65–76

    Article  CAS  PubMed  Google Scholar 

  163. Hamm RJ, Dixon CE, Gbadebo DM, Singha AK, Jenkins LW, Lyeth BG, Hayes RL (1992) Cognitive deficits following traumatic brain injury produced by controlled cortical impact. J Neurotrauma 9:11–20

    Article  CAS  PubMed  Google Scholar 

  164. Smith DH, Soares HD, Pierce JS, Perlman KG, Saatman KE, Meaney DF, Dixon CE, McIntosh TK (1995) A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma 12:169–178

    Article  CAS  PubMed  Google Scholar 

  165. Brody DL, Mac Donald C, Kessens CC, Yuede C, Parsadanian M, Spinner M, Kim E, Schwetye KE, Holtzman DM, Bayly PV (2007) Electromagnetic controlled cortical impact device for precise, graded experimental traumatic brain injury. J Neurotrauma 24:657–673

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lighthall JW, Dixon CE, Anderson TE (1989) Experimental models of brain injury. J Neurotrauma 6:83–97

    Article  CAS  PubMed  Google Scholar 

  167. Sanders MJ, Dietrich WD, Green EJ (1999) Cognitive function following traumatic brain injury: effects of injury severity and recovery period in a parasagittal fluid-percussive injury model. J Neurotrauma 16:915–925

    Article  CAS  PubMed  Google Scholar 

  168. Alessandri B, Heimann A, Filippi R, Kopacz L, Kempski O (2003) Moderate controlled cortical contusion in pigs: effects on multi-parametric neuromonitoring and clinical relevance. J Neurotrauma 20:1293–1305

    Article  PubMed  Google Scholar 

  169. Manley GT, Rosenthal G, Lam M, Morabito D, Yan D, Derugin N, Bollen A, Knudson MM, Panter SS (2006) Controlled cortical impact in swine: pathophysiology and biomechanics. J Neurotrauma 23:128–139

    Article  PubMed  Google Scholar 

  170. King C, Robinson T, Dixon CE, Rao GR, Larnard D, Nemoto CE (2010) Brain temperature profiles during epidural cooling with the ChillerPad in a monkey model of traumatic brain injury. J Neurotrauma 27:1895–1903

    Article  PubMed  Google Scholar 

  171. Hall ED, Sullivan PG, Gibson TR, Pavel KM, Thompson BM, Scheff SW (2005) Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: more than a focal brain injury. J Neurotrauma 22:252–265

    Article  PubMed  Google Scholar 

  172. Goodman JC, Cherian L, Bryan RM Jr, Robertson CS (1994) Lateral cortical impact injury in rats: pathologic effects of varying cortical compression and impact velocity. J Neurotrauma 11:587–597

    Article  CAS  PubMed  Google Scholar 

  173. Yang L, Afroz S, Michelson HB, Goodman JH, Valsamis HA, Ling DS (2010) Spontaneous epileptiform activity in rat neocortex after controlled cortical impact injury. J Neurotrauma 27:1541–1548

    Article  PubMed  Google Scholar 

  174. Sutton RL, Lescaudron L, Stein DG (1993) Unilateral cortical contusion injury in the rat: vascular disruption and temporal development of cortical necrosis. J Neurotrauma 10:135–149

    Article  CAS  PubMed  Google Scholar 

  175. Saatman KE, Feeko KJ, Pape RL, Raghupathi R (2006) Differential behavioral and histopathological responses to graded cortical impact injury in mice. J Neurotrauma 23:1241–1253

    Article  PubMed  Google Scholar 

  176. Dixon CE, Kraus MF, Kline AE, Ma X, Yan HQ, Griffith RG, Wolfson BM, Marion DW (1999) Amantadine improves water maze performance without affecting motor behavior following traumatic brain injury in rats. Restor Neurol Neurosci 14:285–294

    CAS  PubMed  Google Scholar 

  177. Dixon CE, Kochanek PM, Yan HQ, Schiding JK, Griffith RG, Baum E, Marion DW, DeKosky ST (1999) One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma 16:109–122

    Article  CAS  PubMed  Google Scholar 

  178. Vink R, Mullins PG, Temple MD, Bao W, Faden AI (2001) Small shifts in craniotomy position in the lateral fluid percussion injury model are associated with differential lesion development. J Neurotrauma 18:839–847

    Article  CAS  PubMed  Google Scholar 

  179. Fox GB, Fan L, Levasseur RA, Faden AI (1998) Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J Neurotrauma 15:599–614

    Article  CAS  PubMed  Google Scholar 

  180. Kochanek PM, Hendrich KS, Dixon CE, Schiding JK, Williams DS, Ho C (2002) Cerebral blood flow at one year after controlled cortical impact in rats: assessment by magnetic resonance imaging. J Neurotrauma 19:1029–1037

    Article  PubMed  Google Scholar 

  181. Hunt RF, Haselhorst LA, Schoch KM, Bach EC, Rios-Pilier J, Scheff SW, Saatman KE, Smith BN (2012) Posttraumatic mossy fiber sprouting is related to the degree of cortical damage in three mouse strains. Epilepsy Res 99:167–170

    Article  PubMed  Google Scholar 

  182. Kochanek PM, Vagni VA, Janesko KL, Washington CB, Crumrine PK, Garman RH, Jenkins LW, Clark RS, Homanics GE, Dixon CE, Schnermann J, Jackson EK (2006) Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab 26:565–575

    Article  CAS  PubMed  Google Scholar 

  183. Haselkorn ML, Shellington DK, Jackson EK, Vagni VA, Janesko-Feldman K, Dubey RK, Gillespie DG, Cheng D, Bell MJ, Jenkins LW, Homanics GE, Schnermann J, Kochanek PM (2010) Adenosine A1 receptor activation as a brake on the microglial response after experimental traumatic brain injury in mice. J Neurotrauma 27:901–910

    Article  PubMed  PubMed Central  Google Scholar 

  184. Zweckberger K, Simunovic F, Kiening KL, Unterberg AW, Sakowitz OW (2010) Anticonvulsive effects of the dopamine agonist lisuride maleate after experimental traumatic brain injury. Neurosci Lett 470:150–154

    Article  CAS  PubMed  Google Scholar 

  185. Hunt RF, Scheff SW, Smith BN (2009) Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol 215:243–252

    Article  PubMed  Google Scholar 

  186. Guo D, Zeng L, Brody DL, Wong M (2013) Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury. PLoS One 8, e64078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lei Z, Deng P, Li J, Xu ZC (2012) Alterations of A-type potassium channels in hippocampal neurons after traumatic brain injury. J Neurotrauma 29:235–245

    Article  PubMed  PubMed Central  Google Scholar 

  188. Bolkvadze T, Pitkanen A (2012) Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J Neurotrauma 29:789–812

    Article  PubMed  Google Scholar 

  189. Statler KD, Scheerlinck P, Pouliot W, Hamilton M, White HS, Dudek FE (2009) A potential model of pediatric posttraumatic epilepsy. Epilepsy Res 86:221–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hunt RF, Scheff SW, Smith BN (2011) Synaptic reorganization of inhibitory hilar interneuron circuitry after traumatic brain injury in mice. J Neurosci 31:6880–6890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kharlamov EA, Lepsveridze E, Meparishvili M, Solomonia RO, Lu B, Miller ER, Kelly KM, Mtchedlishvili Z (2011) Alterations of GABA(A) and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res 95:20–34

    Article  CAS  PubMed  Google Scholar 

  192. Osselton JW (1965) Acquisition of EEG data by bipolar, unipolar and average reference methods: a theoretical comparison. Electroencephalogr Clin Neurophysiol 19:527–528

    Article  CAS  PubMed  Google Scholar 

  193. Stover JF, Sakowitz OW, Beyer TF, Dohse NK, Kroppenstedt SN, Thomale UW, Schaser KD, Unterberg AW (2003) Effects of LY379268, a selective group II metabotropic glutamate receptor agonist on EEG activity, cortical perfusion, tissue damage, and cortical glutamate, glucose, and lactate levels in brain-injured rats. J Neurotrauma 20:315–326

    Article  PubMed  Google Scholar 

  194. Frey L, Lepkin A, Schickedanz A, Huber K, Brown MS, Serkova N (2014) ADC mapping and T1-weighted signal changes on post-injury MRI predict seizure susceptibility after experimental traumatic brain injury. Neurol Res 36:26–37

    Article  PubMed  Google Scholar 

  195. Macolino CM, Daiutolo BV, Albertson BK, Elliott MB (2014) Mechanical alloydnia induced by traumatic brain injury is independent of restraint stress. J Neurosci Methods 226:139–146

    Article  PubMed  Google Scholar 

  196. Sanchez JC, Alba N, Nishida T, Batich C, Carney PR (2006) Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study. IEEE Trans Neural Syst Rehabil Eng 14:217–221

    Article  PubMed  Google Scholar 

  197. Nandan M, Talathi SS, Myers S, Ditto WL, Khargonekar PP, Carney PR (2010) Support vector machines for seizure detection in an animal model of chronic epilepsy. J Neural Eng 7:036001

    Article  PubMed  Google Scholar 

  198. MacLennan AJ, Carney PR, Zhu WJ, Chaves AH, Garcia J, Grimes JR, Anderson KJ, Roper SN, Lee N (2001) An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur J Neurosci 14:203–209

    Article  CAS  PubMed  Google Scholar 

  199. Lu XC, Williams AJ, Tortella FC (2001) Quantitative electroencephalography spectral analysis and topographic mapping in a rat model of middle cerebral artery occlusion. Neuropathol Appl Neurobiol 27:481–495

    Article  CAS  PubMed  Google Scholar 

  200. Cao W, Glushakov A, Shah HP, Mecca AP, Sumners C, Shi P, Seubert CN, Martynyuk AE (2011) Halogenated aromatic amino acid 3,5-dibromo-D: -tyrosine produces beneficial effects in experimental stroke and seizures. Amino Acids 40:1151–1158

    Article  CAS  PubMed  Google Scholar 

  201. Cao W, Shah HP, Glushakov AV, Mecca AP, Shi P, Sumners C, Seubert CN, Martynyuk AE (2009) Efficacy of 3,5-dibromo-L-phenylalanine in rat models of stroke, seizures and sensorimotor gating deficit. Br J Pharmacol 158:2005–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lopez PH, Ahmad AS, Mehta NR, Toner M, Rowland EA, Zhang J, Dore S, Schnaar RL (2011) Myelin-associated glycoprotein protects neurons from excitotoxicity. J Neurochem 116:900–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Martynyuk AE, Seubert CN, Yarotskyy V, Glushakov AV, Gravenstein N, Sumners C, Dennis DM (2006) Halogenated derivatives of aromatic amino acids exhibit balanced antiglutamatergic actions: potential applications for the treatment of neurological and neuropsychiatric disorders. Recent Pat CNS Drug Discov 1:261–270

    Article  CAS  PubMed  Google Scholar 

  204. Moezi L, Shafaroodi H, Hojati A, Dehpour AR (2011) The interaction of melatonin and agmatine on pentylenetetrazole-induced seizure threshold in mice. Epilepsy Behav 22:200–206

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Glushakov Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Glushakov, A.V., Glushakova, O.Y., Doré, S., Carney, P.R., Hayes, R.L. (2016). Animal Models of Posttraumatic Seizures and Epilepsy. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics