Skip to main content

Utilization and Assessment of Throat Swab and Urine Specimens for Diagnosis of Chikungunya Virus Infection

  • Protocol
  • First Online:
Chikungunya Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1426))

Abstract

Chikungunya is a mosquito-borne infection with clinical presentation of fever, arthralgia, and rash. The etiological agent Chikungunya virus (CHIKV) is generally transmitted from primates to humans through the bites of infected Aedes aegypti and Aedes albopictus mosquitoes. Outbreaks of Chikungunya occur commonly with varied morbidity, mortality, and sequele according to the epidemiological, ecological, seasonal, and geographical impact. Investigations are required to be conducted as a part of the public health service to understand and report the suspected cases as confirmed by laboratory diagnosis. Holistic sampling at a time of different types would be useful for laboratory testing, result conclusion, and reporting in a valid way. The use of serum samples for virus detection, virus isolation, and serology is routinely practiced, but sometimes serum samples from pediatric and other cases may not be easily available. In such a situation, easily available throat swabs and urine samples could be useful. It is already well reported for measles, rubella, and mumps diseases to have the virus diagnosis from throat swabs and urine. Here, we present the protocols for diagnosis of CHIKV using throat swab and urine specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jupp PG, McIntosh BM (1988) Chikungunya virus disease. In: Monath TP (ed) The arboviruses: epidemiology and ecology. CRC, Boca Raton, FL, pp 137–157

    Google Scholar 

  2. Khan AH, Morita K, Mdel MD et al (2002) Complete nucleotide sequence of Chikungunya virus and evidence for an internal polyadenylation site. J Gen Virol 83:3075–3084

    Article  CAS  PubMed  Google Scholar 

  3. Simon F, Savini H, Parola P (2008) Chikungunya: a paradigm of emergence and globalization of vector- borne diseases. Med Clin North Am 92:1323–1343

    Article  PubMed  Google Scholar 

  4. Pialoux G, Gaüzère BA, Jauréguiberry S, St. robel M (2007) Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7:319–327

    Article  PubMed  Google Scholar 

  5. Powers AM, Logue CH (2007) Changing patterns of Chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88:2363–2377

    Article  CAS  PubMed  Google Scholar 

  6. Raut CG, Rao NM, Sinha DP, Hanumaiah H, Manjunath MJ (2015) Chikungunya, dengue, and malaria co-infection after travel to Nigeria, India. Emerg Infect Dis 21:908–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Robin S, Ramful D, Le Seach F, Jaffar-Bandjee MC, Rigou G, Alessandri JL (2008) Neurologic manifestations of pediatric Chikungunya infection. J Child Neurol 23:1028–1035

    Article  PubMed  Google Scholar 

  8. Shaikh NJ, Raut CG, Sinha DP, Manjunath MJ (2015) Detection of Chikungunya virus from a case of encephalitis, Bangalore, Karnataka State. Ind J Med Micro 33:454–455

    Article  CAS  Google Scholar 

  9. Guyton A (1992) Tratado de fisiología me´dica, 8th edn. Raven, New York, NY

    Google Scholar 

  10. Tencer J, Frick IM, Oquist BM, Alm P, Rippe B (1998) Size selectivity of the glomerular barrier to high molecular weight proteins: upper size limitations of shunt pathways. Kidney Int 53:709–715

    Article  CAS  PubMed  Google Scholar 

  11. Perry KR, Parry US, Vandervelde ME, Mortimer PP (1992) The detection in urine specimens of IgG and IgM antibodies to hepatitis A and hepatitis B core antigens. J Med Virol 38:265–270

    Article  CAS  PubMed  Google Scholar 

  12. Nitsan C, Fuchs E, Margalith M (1994) Antibodies to HIV-1 and to CMV, in serum and urine of HIV-1 and CMV infected individuals. AIDS Res Hum Retroviruses 10(S):98

    Google Scholar 

  13. Martínez P, Ortiz de Lejarazu R, Eiros JM, De Benito J, Rodríguez-Torres A (1996) Urine samples as a possible alternative to serum for human immunodeficiency virus antibody screening. Eur J Clin Microbiol Infect Dis 15:810–813

    Article  PubMed  Google Scholar 

  14. Elsana SE, Sikuler E, Yaari A et al (1998) HCV antibodies in saliva and urine. J Med Virol 55:24–27

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi S, Machikawa F, Noda A, Oda T, Tachikawa T (1998) Detection of immunoglobulin G and A antibodies to rubella virus in urine and antibody responses to vaccine-induced infection. Clin Diagn Lab Immunol 5:24–27

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yergolkar PN, Tandale BV, Arankalle VA, Sathe PS, Sudeep AB, Gandhe SS et al (2006) Chikungunya outbreaks caused by African genotype, India. Emerg Infect Dis 12:1580–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parida MM, Santhosh SR, Dash PK, Tripathi NK, Lakshmi V, Mamidi N, Shrivastva A, Gupta N, Saxena P, Pradeep Babu J, Lakshmana Rao PV, Kouichi M (2007) Rapid and real-time detection of chikungunya virus by reverse transcription loop-mediated isothermal amplification assay. J Clin Microbiol 45:351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lakshmi V, Neeraja M, Subbalaxmi MV, Parida MM, Dash PK, Santhosh SR et al (2008) Clinical features and molecular diagnosis of Chikungunya fever from South India. Clin Infect Dis 46:1436–1442

    Article  PubMed  Google Scholar 

  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Singh KRP (1967) Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.). Curr Sci 36:506–508

    Google Scholar 

  21. Raut CG, Deolankar RP, Kolhapure RM, Goverdhan MK (1996) Susceptibility of laboratory-bred rodents to the experimental infection with Dengue-2 virus. Acta Virol 40(3):143–146

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work supported by the National Institute of Virology, Pune, the National Vector Borne Disease Control Programme, New Delhi, and the State Health Department, Government of Karnataka. Thanks are due to Mr. D. P. Sinha and M. J. Manjunath for systematic technical works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrashekhar G. Raut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Raut, C.G., Hanumaiah, H., Raut, W.C. (2016). Utilization and Assessment of Throat Swab and Urine Specimens for Diagnosis of Chikungunya Virus Infection. In: Chu, J., Ang, S. (eds) Chikungunya Virus. Methods in Molecular Biology, vol 1426. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3618-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3618-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3616-8

  • Online ISBN: 978-1-4939-3618-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics