Skip to main content

New Genome-Wide Methods for Elucidation of Candidate Copy Number Variations (CNVs) Contributing to Alzheimer’s Disease Heritability

  • Protocol
Systems Biology of Alzheimer's Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1303))

Abstract

The complexity of human genetic variation has been extended by the observation of abundant and widespread variation in the copy number of submicroscopic DNA segments. The discovery of this novel level of genome organization opened new possibilities concerning the genetic variation that may confer susceptibility to or cause disease. Copy number variants (CNVs) influence gene expression, phenotypic variation and adaptation by altering gene dosage and genome organization. Concordant with the common disease common variant hypothesis these structural variants are now subject to interrogation for disease association. Alzheimer’s disease (AD) is a progressive neurodegenerative disease with an estimated heritability of 60–80 %. Large scale genome-wide association studies (GWAS) using high frequency single nucleotide polymorphism (SNP) variants identified ten loci which do not account for the measured heritability. To find the missing heritability systematic assessment of all mutational mechanisms needs to be performed. Between the powerful SNP-GWAS studies and the planned Whole Genome Sequencing projects the contribution of copy number variation (CNV) to the genetic architecture of AD needs to be studied fully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kukull WA, Higdon R, Bowen JD et al (2002) Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol 59:1737–1746

    Article  PubMed  Google Scholar 

  2. Gatz M, Pedersen NL, Berg S et al (1997) Heritability for Alzheimer’s disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci 52:M117–M125

    Article  CAS  PubMed  Google Scholar 

  3. Naj AC, Jun G, Beecham GW et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset alzheimer’s disease. Nat Genet 43:436–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Feuk L, Carson AR, Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7:85–97

    Article  CAS  PubMed  Google Scholar 

  5. Redon R, Ishikawa S, Fitch KR et al (2006) Global variation in copy number in the human genome. Nature 444:444–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Stranger BE, Forrest MS, Dunning M et al (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315:848–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Rovelet-Lecrux A, Hannequin D, Raux G et al (2006) APP locus duplication causes autosomal dominant early-onset alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26

    Article  CAS  PubMed  Google Scholar 

  8. Singleton AB, Farrer M, Johnson J et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  CAS  PubMed  Google Scholar 

  9. Padiath QS, Saigoh K, Schiffmann R et al (2006) Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 38:1114–1123

    Article  CAS  PubMed  Google Scholar 

  10. Chapman J, Rees E, Harold D et al (2013) A genome-wide study shows a limited contribution of rare copy number variants to Alzheimer’s disease risk. Hum Mol Genet 22:816–824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Swaminathan S, Huentelman MJ, Corneveaux JJ et al (2012) Analysis of copy number variation in Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. PLoS One 7:e50640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Swaminathan S, Kim S, Shen L et al (2011) Genomic copy number analysis in Alzheimer’s disease and mild cognitive impairment: an ADNI study. Int J Alzheimers Dis 2011:729478

    PubMed Central  PubMed  Google Scholar 

  13. Swaminathan S, Shen L, Kim S et al (2012) Analysis of copy number variation in Alzheimer’s disease: the NIALOAD/NCRAD family study. Curr Alzheimer Res 9:801–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Heinzen EL, Need AC, Hayden KM et al (2010) Genome-wide scan of copy number variation in late-onset alzheimer’s disease. J Alzheimers Dis 19:69–77

    PubMed Central  PubMed  Google Scholar 

  15. Ghani M, Pinto D, Lee JH et al (2012) Genome-wide survey of large rare copy number variants in Alzheimer’s disease among Caribbean hispanics. G3 (Bethesda) 2:71–78

    Article  CAS  Google Scholar 

  16. Shaw CA, Li Y, Wiszniewska J et al (2011) Olfactory copy number association with age at onset of Alzheimer disease. Neurology 76:1302–1309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Szigeti K, Lal D, Li Y et al (2013) Genome-wide scan for copy number variation association with age at onset of Alzheimer’s disease. J Alzheimers Dis 33:517–523

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Conrad DF, Keebler JE, DePristo MA et al (2011) Variation in genome-wide mutation rates within and between human families. Nat Genet 43:712–714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. McConnell MJ, Lindberg MR, Brennand KJ et al (2013) Mosaic copy number variation in human neurons. Science 342:632–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Pinto D, Darvishi K, Shi X et al (2011) Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat Biotechnol 29:512–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Seshadri S, Fitzpatrick AL, Ikram MA et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303:1832–1840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    Article  CAS  PubMed  Google Scholar 

  24. Ku CS, Loy EY, Pawitan Y et al (2010) The pursuit of genome-wide association studies: where are we now? J Hum Genet 55:195–206

    Article  CAS  PubMed  Google Scholar 

  25. Florez JC (2008) Clinical review: the genetics of type 2 diabetes: a realistic appraisal in 2008. J Clin Endocrinol Metab 93:4633–4642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nicolae DL, Gamazon E, Zhang W et al (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 6:e1000888

    Article  PubMed Central  PubMed  Google Scholar 

  27. Carter NP (2007) Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 39(7 Suppl):S16–S21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Scherer SW, Lee C, Birney E et al (2007) Challenges and standards in integrating surveys of structural variation. Nat Genet 39(7 Suppl):S7–S15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Duan J, Zhang JG, Deng HW, Wang YP (2013) Comparative studies of copy number variation detection methods for next-generation sequencing technologies. PLoS One 8:e59128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an Alzheimer Association New Investigator Research Grant to K.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinga Szigeti M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Szigeti, K. (2016). New Genome-Wide Methods for Elucidation of Candidate Copy Number Variations (CNVs) Contributing to Alzheimer’s Disease Heritability. In: Castrillo, J., Oliver, S. (eds) Systems Biology of Alzheimer's Disease. Methods in Molecular Biology, vol 1303. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2627-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2627-5_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2626-8

  • Online ISBN: 978-1-4939-2627-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics