Skip to main content

Analyzing Complex Patients’ Temporal Histories: New Frontiers in Temporal Data Mining

  • Protocol
  • First Online:
Data Mining in Clinical Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1246))

Abstract

In recent years, data coming from hospital information systems (HIS) and local healthcare organizations have started to be intensively used for research purposes. This rising amount of available data allows reconstructing the compete histories of the patients, which have a strong temporal component. This chapter introduces the major challenges faced by temporal data mining researchers in an era when huge quantities of complex clinical temporal data are becoming available. The analysis is focused on the peculiar features of this kind of data and describes the methodological and technological aspects that allow managing such complex framework. The chapter shows how heterogeneous data can be processed to derive a homogeneous representation. Starting from this representation, it illustrates different techniques for jointly analyze such kind of data. Finally, the technological strategies that allow creating a common data warehouse to gather data coming from different sources and with different formats are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parsons A, McCullough C, Wang J, Shih S (2012) Validity of electronic health record-derived quality measurement for performance monitoring. J Am Med Inform Assoc 19(4):604–609

    Article  PubMed Central  PubMed  Google Scholar 

  2. Mouttham A, Peyton L, Kuziemsky C (2011) Leveraging performance analytics to improve integration of care. Proceedings of the 3rd workshop on software engineering in health care (SEHC ‘11). pp 56–62. ACM New York, NY, USA, 2011

    Google Scholar 

  3. Kahn MG, Ranade D (2010) The impact of electronic medical records data sources on an adverse drug event quality measure. J Am Med Inform Assoc 17(2):185–191

    Article  PubMed Central  PubMed  Google Scholar 

  4. Brown DE (2008) Introduction to data mining for medical informatics. Clin Lab Med 28(1):9–35

    Article  PubMed  Google Scholar 

  5. Benin AL, Fenick A, Herrin J, Vitkauskas G, Chen J, Brandt C (2011) How good are the data? Feasible approach to validation of metrics of quality derived from an outpatient electronic health record. Am J Med Qual 26(6):441–451

    Article  PubMed  Google Scholar 

  6. Mitsa T (2010) Temporal data mining. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. ISBN:1420089765 9781420089769

    Google Scholar 

  7. Post AR, Harrison JH Jr (2008) Temporal data mining. Clin Lab Med 28(1):83–100

    Article  PubMed  Google Scholar 

  8. Mannila H, Toivonen H, Verkamo AI (1997) Discovery of frequent episodes in event sequences. Data Min Knowl Discov 1:259–289

    Article  Google Scholar 

  9. Kam PS, Fu AWC (2000) Discovering temporal patterns for interval-based events. In: Kambayashi Y, Mohania M, Tjoa AM (eds) 2nd International conference on data warehousing and knowledge discovery. Springer, London, UK, pp 317–326

    Chapter  Google Scholar 

  10. Combi C, Franceschet M, Peron A (2004) Representing and reasoning about temporal granularities. J Log Comput 14(1):51–77

    Article  Google Scholar 

  11. Bettini C, Wang XS, Jajodia S (1998) A general framework for time granularity and its application to temporal reasoning. Ann Math Artif Intell 22(1–2):29–58

    Article  Google Scholar 

  12. Shahar Y (1997) A framework for knowledge-based temporal abstraction. Artif Intell 90: 79–133

    Article  Google Scholar 

  13. Stacey M, McGregor C (2007) Temporal abstraction in intelligent clinical data analysis: a survey. Artif Intell Med 39:1–24

    Article  PubMed  Google Scholar 

  14. Post AR, Harrison JH Jr (2007) PROTEMPA: a method for specifying and identifying temporal sequences in retrospective data for patient selection. J Am Med Inform Assoc 14(5):674–683

    Article  PubMed Central  PubMed  Google Scholar 

  15. Verduijn M, Sacchi L, Peek N, Bellazzi R, de Jonge E, de Mol BA (2007) Temporal abstraction for feature extraction: a comparative case study in prediction from intensive care monitoring data. Artif Intell Med 41:1–12

    Article  PubMed  Google Scholar 

  16. Combi C, Chittaro L (1999) Abstraction on clinical data sequences: an object-oriented data model and a query language based on the event calculus. Artif Intell Med 17(3):271–301

    Article  CAS  PubMed  Google Scholar 

  17. Bellazzi R, Larizza C, Riva A (1998) Temporal abstractions for interpreting diabetic patients monitoring data. Intell Data Anal 2(1–4):97–122

    Article  Google Scholar 

  18. Shahar Y, Musen MA (1996) Knowledge-based temporal abstraction in clinical domains. Artif Intell Med 8:267–298

    Article  CAS  PubMed  Google Scholar 

  19. Post AR, Kurc T, Cholleti S, Gao J, Lin X, Bornstein W, Cantrell D, Levine D, Hohmann S, Saltz JH (2013) The Analytic Information Warehouse (AIW): a platform for analytics using electronic health record data. J Biomed Inform 46(3):410–424

    Article  PubMed Central  PubMed  Google Scholar 

  20. Batal I, Sacchi L, Bellazzi R, Hauskrecht M (2009) Multivariate time series classification with temporal abstractions. Int J Artif Intell Tools 22:344–349

    Google Scholar 

  21. Allen JF (1984) Towards a general theory of action and time. Artif Intell 23:123–154

    Article  Google Scholar 

  22. Sacchi L, Larizza C, Combi C, Bellazzi R (2007) Data mining with Temporal Abstractions: learning rules from time series. Data Min Knowl Disc 15(2):217–247

    Article  Google Scholar 

  23. Bellazzi R, Larizza C, Magni P, Bellazzi R (2005) Temporal data mining for the quality assessment of hemodialysis services. Artif Intell Med 34(1):25–39

    Article  PubMed  Google Scholar 

  24. Batal I, Valizadegan H, Cooper GF, Hauskrecht M (2011) A pattern mining approach for classifying multivariate temporal data. IEEE International Conference on Bioinformatics and Biomedicine (BIBM). pp 358–365

    Google Scholar 

  25. Combi C, Oliboni B (2012) Visually defining and querying consistent multi-granular clinical temporal abstractions. Artif Intell Med 54(2):75–101

    Article  PubMed  Google Scholar 

  26. Chittaro L, Combi C (2003) Visualizing queries on databases of temporal histories: new metaphors and their evaluation. Data Knowl Eng 44(2):239–264

    Article  Google Scholar 

  27. Shahar Y, Goren-Bar D, Boaz D, Tahan G (2006) Distributed, intelligent, interactive visualization and exploration of time-oriented clinical data and their abstractions. Artif Intell Med 38(2):115–135

    Article  PubMed  Google Scholar 

  28. Klimov D, Shahar Y, Taieb-Maimon M (2010) Intelligent visualization and exploration of time-oriented data of multiple patients. Artif Intell Med 49(1):11–31

    Article  PubMed  Google Scholar 

  29. Bellazzi R, Sacchi L, Concaro S (2009) Methods and tools for mining multivariate temporal data in clinical and biomedical applications. Conf Proc IEEE Eng Med Biol Soc, pp 5629–5632

    Google Scholar 

  30. Agrawal R, Srikant R (1995) Mining sequential patterns. In: Yu PS, Chen ALP (eds) Proceedings of the 11th international conference on data engineering. IEEE Comput Soc, pp 3–14

    Google Scholar 

  31. Zaki MJ (2001) SPADE: an efficient algorithm for mining frequent sequences. Mach Learn 42(1–2):31–60

    Article  Google Scholar 

  32. Ayres J, Flannick J, Gehrke J, Yiu T (2002) Sequential PAttern mining using a bitmap representation. In: Hand D, Keim D, Ng R (eds) Proceedings of the 8th ACM SIGKDD International conference on knowledge discovery and data mining. ACM, Edmonton, pp 429–435

    Google Scholar 

  33. Mörchen F, Ultsch A (2007) Efficient mining of understandable patterns from multivariate interval time series. Data Min Knowl Disc 15(2):181–215

    Article  Google Scholar 

  34. Patel D, Hsu W, Lee ML (2008) Mining relationships among interval-based events for classification. In: Lakshmanan L, Ng R, Shasha D (eds) Proceedings of the 2008 ACM SIGMOD International conference on management of data. ACM, New York, NY, pp 393–404

    Chapter  Google Scholar 

  35. Zhang L, Chen G, Brijs T, Zhang X (2008) Discovering during-temporal patterns (DTPs) in large temporal databases. Expert Syst Appl 34(2):1178–1189

    Article  Google Scholar 

  36. Höppner F, Klawonn F (2002) Finding informative rules in interval sequences. Intell Data Anal 3(6):237–256

    Google Scholar 

  37. Winarko E, Roddick JF (2007) ARMADA—an algorithm for discovering richer relative temporal association rules from interval-based data. Data Knowl Eng 63(1):76–90

    Article  Google Scholar 

  38. Bellazzi R, Ferrazzi F, Sacchi L (2011) Predictive data mining in clinical medicine: a focus on selected methods and applications. Wiley Interdiscip Rev Data Min Knowl Discov 1(5):416–430

    Article  Google Scholar 

  39. Concaro S, Sacchi L, Cerra C, Fratino P, Bellazzi R (2011) Mining health care administrative data with temporal association rules on hybrid events. Methods Inf Med 50(2):166–179

    Article  CAS  PubMed  Google Scholar 

  40. Concaro S, Sacchi L, Cerra C, Fratino P, Bellazzi R (2009) Mining healthcare data with temporal association rules: improvements and assessment for a practical use. In: Combi C, Shahar Y, Abu-Hanna A (eds) Proceedings of the 12th conference on artificial intelligence in medicine, AIME 2009. Springer, Verona, Italy, pp 16–25

    Google Scholar 

  41. Concaro S, Sacchi L, Cerra C, Bellazzi R (2009) Mining administrative and clinical diabetes data with temporal association rules. In: Studies in health technology and informatics. 150:574–8

    Google Scholar 

  42. Concaro S, Sacchi L, Cerra C, Stefanelli M, Fratino P, Bellazzi R (2009) Temporal data mining for the assessment of the costs related to diabetes mellitus pharmacological treatment. AMIA Annu Symp Proc 2009:119–123

    PubMed Central  PubMed  Google Scholar 

  43. Batal I, Fradkin D, Harrison J, Moerchen F, Hauskrecht M (2012) Mining recent temporal patterns for event detection in multivariate time series data. Proceedings of the international conference on knowledge discovery and data mining (SIGKDD). pp 280–288

    Google Scholar 

  44. Rebuge A, Ferreira DR (2012) Business process analysis in healthcare environments: a methodology based on process mining. Inf Syst 37(2):99–116

    Article  Google Scholar 

  45. Huang Z, Lu X, Duan H (2012) On mining clinical pathway patterns from medical behaviors. Artif Intell Med 56(1):35–50

    Article  PubMed  Google Scholar 

  46. Yang W, Hwang S (2006) A process-mining framework for the detection of healthcare fraud and abuse. Expert Syst Appl 31(1):56–68

    Article  Google Scholar 

  47. Lin F, Chen S, Pan S, Chen Y (2001) Mining time dependency patterns in clinical pathways. Int J Med Inform 62(1):11–25

    Article  CAS  PubMed  Google Scholar 

  48. van der Aalst WMP, Weijters AJMM, Maruster L (2004) Workflow mining: discovering process models from event logs. IEEE Trans Knowl Data Eng 16(9):1128–1142

    Article  Google Scholar 

  49. Agrawal R, Gunopulos D, Leymann F (1998) Mining process models from workflow logs. In: Schek HJ, Saltor F, Ramos I, Alonso G (eds) Sixth international conference on extending database technology. Springer, London, Uk, pp 469–483

    Google Scholar 

  50. Cook JE, Wolf AL (1998) Discovering models of software processes from event-based data. ACM Trans Softw Eng Methodol 7(3): 215–249

    Article  Google Scholar 

  51. Huang Z, Lu X, Duan H, Fan W (2013) Summarizing clinical pathways from event logs. J Biomed Inform 46(1):111–127

    Article  PubMed  Google Scholar 

  52. Fernandez-Llatas C, Meneu T, Benedi JM, Traver V (2010) Activity-based process mining for clinical pathways computer aided design. Conf Proc IEEE Eng Med Biol Soc 2010:6178–6181

    PubMed  Google Scholar 

  53. i2b2: Informatics for integrating biology & the bedside. https://www.i2b2.org/. Accessed 10 Oct, 2013

  54. National Institute of Health Roadmap for Biomedical Computing. http://www.ncbcs.org. Accessed 10 Oct, 2013

  55. Murphy SN, Weber G, Mendis M, Gainer V, Chueh HC, Churchill S, Kohane I (2010) Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). J Am Med Inform Assoc 17(2):124–130

    Article  PubMed Central  PubMed  Google Scholar 

  56. Business Intelligence Software. http://www54.sap.com/pc/analytics/business-intelligence.html. Accessed 10 Oct, 2013

  57. IBM Cognos Software. http://www-01.ibm.com/software/analytics/cognos/. Accessed 10 Oct, 2013

  58. Segagni D, Tibollo V, Dagliati A, Perinati L, Zambelli A, Priori S, Bellazzi R (2011) The ONCO-I2b2 project: integrating biobank information and clinical data to support translational research in oncology. Stud Health Technol Inform 169:87–91

    Google Scholar 

  59. BioPortal web services. http://bioportal.bioontology.org. Accessed 10 Oct, 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Sacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Sacchi, L., Dagliati, A., Bellazzi, R. (2015). Analyzing Complex Patients’ Temporal Histories: New Frontiers in Temporal Data Mining. In: Fernández-Llatas, C., García-Gómez, J. (eds) Data Mining in Clinical Medicine. Methods in Molecular Biology, vol 1246. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1985-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1985-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1984-0

  • Online ISBN: 978-1-4939-1985-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics