Skip to main content

Epigenetics in Breast and Prostate Cancer

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cutting-edge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4(12):988–993. doi:10.1038/nrc1507

    CAS  PubMed  Google Scholar 

  2. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153. doi:10.1038/nrc1279

    CAS  PubMed  Google Scholar 

  3. Urnov FD, Wolffe AP (2001) Above and within the genome: epigenetics past and present. J Mammary Gland Biol Neoplasia 6(2):153–167

    CAS  PubMed  Google Scholar 

  4. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254. doi:10.1038/ng1089

    CAS  PubMed  Google Scholar 

  5. Feinberg AP, Vogelstein B (1983) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111(1):47–54

    CAS  PubMed  Google Scholar 

  6. Jones PA (2002) DNA methylation and cancer. Oncogene 21(35):5358–5360. doi:10.1038/sj.onc.1205597

    CAS  PubMed  Google Scholar 

  7. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428. doi:10.1038/nrg816

    CAS  PubMed  Google Scholar 

  8. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A 95(12):6870–6875

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159. doi:10.1056/NEJMra072067

    CAS  PubMed  Google Scholar 

  10. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92(7):564–569

    CAS  PubMed  Google Scholar 

  11. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054. doi:10.1056/NEJMra023075

    CAS  PubMed  Google Scholar 

  12. Kass SU, Pruss D, Wolffe AP (1997) How does DNA methylation repress transcription? Trends Genet 13(11):444–449

    CAS  PubMed  Google Scholar 

  13. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1):103–107. doi:10.1038/5047

    CAS  PubMed  Google Scholar 

  14. Timp W, Feinberg AP (2013) Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 13(7):497–510. doi:10.1038/nrc3486

    CAS  PubMed  Google Scholar 

  15. Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB, Kinzler KW, Vogelstein B (2003) Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3(1):89–95

    CAS  PubMed  Google Scholar 

  16. Wu Y, Alvarez M, Slamon DJ, Koeffler P, Vadgama JV (2010) Caspase 8 and maspin are downregulated in breast cancer cells due to CpG site promoter methylation. BMC Cancer 10:32. doi:10.1186/1471-2407-10-32

    PubMed Central  PubMed  Google Scholar 

  17. Mishra DK, Chen Z, Wu Y, Sarkissyan M, Koeffler HP, Vadgama JV (2010) Global methylation pattern of genes in androgen-sensitive and androgen-independent prostate cancer cells. Mol Cancer Ther 9(1):33–45. doi:10.1158/1535-7163.mct-09-0486

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Jovanovic J, Ronneberg JA, Tost J, Kristensen V (2010) The epigenetics of breast cancer. Mol Oncol 4(3):242–254. doi:10.1016/j.molonc.2010.04.002

    CAS  PubMed  Google Scholar 

  19. Tian J, Lee SO, Liang L, Luo J, Huang CK, Li L, Niu Y, Chang C (2012) Targeting the unique methylation pattern of androgen receptor (AR) promoter in prostate stem/progenitor cells with 5-aza-2'-deoxycytidine (5-AZA) leads to suppressed prostate tumorigenesis. J Biol Chem 287(47):39954–39966. doi:10.1074/jbc.M112.395574

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Yang M, Park JY (2012) DNA methylation in promoter region as biomarkers in prostate cancer. Methods Mol Biol 863:67–109. doi:10.1007/978-1-61779-612-8_5

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29. doi:10.3322/caac.21208

    PubMed  Google Scholar 

  22. Hinshelwood RA, Clark SJ (2008) Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med 86(12):1315–1328. doi:10.1007/s00109-008-0386-3

    PubMed  Google Scholar 

  23. Bediaga NG, Acha-Sagredo A, Guerra I, Viguri A, Albaina C, Ruiz Diaz I, Rezola R, Alberdi MJ, Dopazo J, Montaner D, Renobales M, Fernandez AF, Field JK, Fraga MF, Liloglou T, de Pancorbo MM (2010) DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res 12(5):R77. doi:10.1186/bcr2721

    PubMed Central  PubMed  Google Scholar 

  24. van Hoesel AQ, Sato Y, Elashoff DA, Turner RR, Giuliano AE, Shamonki JM, Kuppen PJ, van de Velde CJ, Hoon DS (2013) Assessment of DNA methylation status in early stages of breast cancer development. Br J Cancer 108(10):2033–2038. doi:10.1038/bjc.2013.136

    PubMed Central  PubMed  Google Scholar 

  25. Park SY, Kwon HJ, Lee HE, Ryu HS, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH (2011) Promoter CpG island hypermethylation during breast cancer progression. Virchows Arch 458(1):73–84. doi:10.1007/s00428-010-1013-6

    CAS  PubMed  Google Scholar 

  26. Klajic J, Fleischer T, Dejeux E, Edvardsen H, Warnberg F, Bukholm I, Lonning PE, Solvang H, Borresen-Dale AL, Tost J, Kristensen VN (2013) Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors. BMC Cancer 13:456. doi:10.1186/1471-2407-13-456

    PubMed Central  PubMed  Google Scholar 

  27. Hu M, Yao J, Cai L, Bachman KE, van den Brule F, Velculescu V, Polyak K (2005) Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37(8):899–905. doi:10.1038/ng1596

    CAS  PubMed  Google Scholar 

  28. Feng W, Shen L, Wen S, Rosen DG, Jelinek J, Hu X, Huan S, Huang M, Liu J, Sahin AA, Hunt KK, Bast RC Jr, Shen Y, Issa JP, Yu Y (2007) Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res 9(4):R57. doi:10.1186/bcr1762

    PubMed Central  PubMed  Google Scholar 

  29. Widschwendter M, Siegmund KD, Muller HM, Fiegl H, Marth C, Muller-Holzner E, Jones PA, Laird PW (2004) Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res 64(11):3807–3813. doi:10.1158/0008-5472.CAN-03-3852

    CAS  PubMed  Google Scholar 

  30. Rodriguez-Antona C, Gomez A, Karlgren M, Sim SC, Ingelman-Sundberg M (2010) Molecular genetics and epigenetics of the cytochrome P450 gene family and its relevance for cancer risk and treatment. Hum Genet 127(1):1–17. doi:10.1007/s00439-009-0748-0

    CAS  PubMed  Google Scholar 

  31. Brodie AM, Njar VC (1998) Aromatase inhibitors in advanced breast cancer: mechanism of action and clinical implications. J Steroid Biochem Mol Biol 66(1–2):1–10

    CAS  PubMed  Google Scholar 

  32. Johnston SR, Dowsett M (2003) Aromatase inhibitors for breast cancer: lessons from the laboratory. Nat Rev Cancer 3(11):821–831. doi:10.1038/nrc1211

    CAS  PubMed  Google Scholar 

  33. Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9(9):631–643. doi:10.1038/nrc2713

    CAS  PubMed  Google Scholar 

  34. Pathiraja TN, Stearns V, Oesterreich S (2010) Epigenetic regulation in estrogen receptor positive breast cancer–role in treatment response. J Mammary Gland Biol Neoplasia 15(1):35–47. doi:10.1007/s10911-010-9166-0

    PubMed Central  PubMed  Google Scholar 

  35. Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54(10):2552–2555

    CAS  PubMed  Google Scholar 

  36. Lapidus RG, Nass SJ, Butash KA, Parl FF, Weitzman SA, Graff JG, Herman JG, Davidson NE (1998) Mapping of ER gene CpG island methylation-specific polymerase chain reaction. Cancer Res 58(12):2515–2519

    CAS  PubMed  Google Scholar 

  37. Martens JW, Nimmrich I, Koenig T, Look MP, Harbeck N, Model F, Kluth A, Bolt-de Vries J, Sieuwerts AM, Portengen H, Meijer-Van Gelder ME, Piepenbrock C, Olek A, Hofler H, Kiechle M, Klijn JG, Schmitt M, Maier S, Foekens JA (2005) Association of DNA methylation of phosphoserine aminotransferase with response to endocrine therapy in patients with recurrent breast cancer. Cancer Res 65(10):4101–4117. doi:10.1158/0008-5472.can-05-0064

    CAS  PubMed  Google Scholar 

  38. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi:10.1038/35021093

    CAS  PubMed  Google Scholar 

  39. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874. doi:10.1073/pnas.191367098

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21):2492–2502. doi:10.1001/jama.295.21.2492

    CAS  PubMed  Google Scholar 

  41. Potemski P, Kusinska R, Watala C, Pluciennik E, Bednarek AK, Kordek R (2005) Prognostic relevance of basal cytokeratin expression in operable breast cancer. Oncology 69(6):478–485. doi:10.1159/000090986

    PubMed  Google Scholar 

  42. Holm K, Hegardt C, Staaf J, Vallon-Christersson J, Jonsson G, Olsson H, Borg A, Ringner M (2010) Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 12(3):R36. doi:10.1186/bcr2590

    PubMed Central  PubMed  Google Scholar 

  43. Bardowell SA, Parker J, Fan C, Crandell J, Perou CM, Swift-Scanlan T (2013) Differential methylation relative to breast cancer subtype and matched normal tissue reveals distinct patterns. Breast Cancer Res Treat 142(2):365–380. doi:10.1007/s10549-013-2738-0

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Milani A, Montemurro F, Gioeni L, Aglietta M, Valabrega G (2010) Role of trastuzumab in the management of HER2-positive metastatic breast cancer. Breast Cancer (Dove Med Press) 2:93–109. doi:10.2147/bctt.s6070

    CAS  Google Scholar 

  45. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726

    CAS  PubMed  Google Scholar 

  46. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792. doi:10.1056/nejm200103153441101

    CAS  PubMed  Google Scholar 

  47. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354. doi:10.1038/nrc1609

    CAS  PubMed  Google Scholar 

  48. Branham MT, Marzese DM, Laurito SR, Gago FE, Orozco JI, Tello OM, Vargas-Roig LM, Roque M (2012) Methylation profile of triple-negative breast carcinomas. Oncogenesis 1:e17. doi:10.1038/oncsis.2012.17

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE (2006) Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res 8(4):R38. doi:10.1186/bcr1522

    PubMed Central  PubMed  Google Scholar 

  50. Mancini DN, Rodenhiser DI, Ainsworth PJ, O’Malley FP, Singh SM, Xing W, Archer TK (1998) CpG methylation within the 5' regulatory region of the BRCA1 gene is tumor specific and includes a putative CREB binding site. Oncogene 16(9):1161–1169. doi:10.1038/sj.onc.1201630

    CAS  PubMed  Google Scholar 

  51. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948. doi:10.1056/NEJMra1001389

    CAS  PubMed  Google Scholar 

  52. Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D, Savage K, Gillett CE, Schmitt FC, Ashworth A, Tutt AN (2007) BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26(14):2126–2132. doi:10.1038/sj.onc.1210014

    CAS  PubMed  Google Scholar 

  53. Stefansson OA, Jonasson JG, Olafsdottir K, Hilmarsdottir H, Olafsdottir G, Esteller M, Johannsson OT, Eyfjord JE (2011) CpG island hypermethylation of BRCA1 and loss of pRb as co-occurring events in basal/triple-negative breast cancer. Epigenetics 6(5):638–649. doi:10.4161/epi.6.5.15667

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Hsu NC, Huang YF, Yokoyama KK, Chu PY, Chen FM, Hou MF (2013) Methylation of BRCA1 promoter region is associated with unfavorable prognosis in women with early-stage breast cancer. PLoS One 8(2):e56256. doi:10.1371/journal.pone.0056256

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Khan S, Kumagai T, Vora J, Bose N, Sehgal I, Koeffler PH, Bose S (2004) PTEN promoter is methylated in a proportion of invasive breast cancers. Int J Cancer 112(3):407–410. doi:10.1002/ijc.20447

    CAS  PubMed  Google Scholar 

  56. Garcia JM, Silva J, Pena C, Garcia V, Rodriguez R, Cruz MA, Cantos B, Provencio M, Espana P, Bonilla F (2004) Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosomes Cancer 41(2):117–124. doi:10.1002/gcc.20062

    CAS  PubMed  Google Scholar 

  57. Muggerud AA, Ronneberg JA, Warnberg F, Botling J, Busato F, Jovanovic J, Solvang H, Bukholm I, Borresen-Dale AL, Kristensen VN, Sorlie T, Tost J (2010) Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res 12(1):R3. doi:10.1186/bcr2466

    PubMed Central  PubMed  Google Scholar 

  58. Lu Y, Lin YZ, LaPushin R, Cuevas B, Fang X, Yu SX, Davies MA, Khan H, Furui T, Mao M, Zinner R, Hung MC, Steck P, Siminovitch K, Mills GB (1999) The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene 18(50):7034–7045. doi:10.1038/sj.onc.1203183

    CAS  PubMed  Google Scholar 

  59. Chlebowski RT, Chen Z, Anderson GL, Rohan T, Aragaki A, Lane D, Dolan NC, Paskett ED, McTiernan A, Hubbell FA, Adams-Campbell LL, Prentice R (2005) Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst 97(6):439–448. doi:10.1093/jnci/dji064

    PubMed  Google Scholar 

  60. Amirikia KC, Mills P, Bush J, Newman LA (2011) Higher population-based incidence rates of triple-negative breast cancer among young African-American women: Implications for breast cancer screening recommendations. Cancer 117(12):2747–2753. doi:10.1002/cncr.25862

    PubMed Central  PubMed  Google Scholar 

  61. Stead LA, Lash TL, Sobieraj JE, Chi DD, Westrup JL, Charlot M, Blanchard RA, Lee JC, King TC, Rosenberg CL (2009) Triple-negative breast cancers are increased in black women regardless of age or body mass index. Breast Cancer Res 11(2):R18. doi:10.1186/bcr2242

    PubMed Central  PubMed  Google Scholar 

  62. Lund MJ, Butler EN, Hair BY, Ward KC, Andrews JH, Oprea-Ilies G, Bayakly AR, O’Regan RM, Vertino PM, Eley JW (2010) Age/race differences in HER2 testing and in incidence rates for breast cancer triple subtypes: a population-based study and first report. Cancer 116(11):2549–2559. doi:10.1002/cncr.25016

    PubMed  Google Scholar 

  63. Network NCC NCCN Clinical Practice Guidelines in Oncology - BREAST CANCER. http://www.nccn.org. Accessed 01 May 2013

  64. Mehrotra J, Ganpat MM, Kanaan Y, Fackler MJ, McVeigh M, Lahti-Domenici J, Polyak K, Argani P, Naab T, Garrett E, Parmigiani G, Broome C, Sukumar S (2004) Estrogen receptor/progesterone receptor-negative breast cancers of young African-American women have a higher frequency of methylation of multiple genes than those of Caucasian women. Clin Cancer Res 10(6):2052–2057

    CAS  PubMed  Google Scholar 

  65. Dumitrescu RG (2012) Epigenetic markers of early tumor development. Methods Mol Biol 863:3–14. doi:10.1007/978-1-61779-612-8_1

    CAS  PubMed  Google Scholar 

  66. Huang S (2002) Histone methyltransferases, diet nutrients and tumour suppressors. Nat Rev Cancer 2(6):469–476. doi:10.1038/nrc819

    CAS  PubMed  Google Scholar 

  67. Juttermann R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 91(25):11797–11801

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Bhalla KN (2005) Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23(17):3971–3993. doi:10.1200/jco.2005.16.600

    CAS  PubMed  Google Scholar 

  69. Jabbour E, Issa JP, Garcia-Manero G, Kantarjian H (2008) Evolution of decitabine development: accomplishments, ongoing investigations, and future strategies. Cancer 112(11):2341–2351. doi:10.1002/cncr.23463

    CAS  PubMed  Google Scholar 

  70. Fan J, Yin WJ, Lu JS, Wang L, Wu J, Wu FY, Di GH, Shen ZZ, Shao ZM (2008) ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol 134(8):883–890. doi:10.1007/s00432-008-0354-x

    CAS  PubMed  Google Scholar 

  71. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11(10):726–734. doi:10.1038/nrc3130

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Perry AS, Watson RW, Lawler M, Hollywood D (2010) The epigenome as a therapeutic target in prostate cancer. Nat Rev Urol 7(12):668–680. doi:10.1038/nrurol.2010.185

    CAS  PubMed  Google Scholar 

  73. Dobosy JR, Roberts JL, Fu VX, Jarrard DF (2007) The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia. J Urol 177(3):822–831. doi:10.1016/j.juro.2006.10.063

    CAS  PubMed  Google Scholar 

  74. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266. doi:10.1038/nature03672

    CAS  PubMed  Google Scholar 

  75. Yu J, Cao Q, Mehra R, Laxman B, Yu J, Tomlins SA, Creighton CJ, Dhanasekaran SM, Shen R, Chen G, Morris DS, Marquez VE, Shah RB, Ghosh D, Varambally S, Chinnaiyan AM (2007) Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 12(5):419–431. doi:10.1016/j.ccr.2007.10.016

    CAS  PubMed  Google Scholar 

  76. Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, Bova GS, De Marzo AM, Isaacs WB, Nelson WG (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64(6):1975–1986

    CAS  PubMed  Google Scholar 

  77. Vanaja DK, Ehrich M, Van den Boom D, Cheville JC, Karnes RJ, Tindall DJ, Cantor CR, Young CY (2009) Hypermethylation of genes for diagnosis and risk stratification of prostate cancer. Cancer Invest 27(5):549–560. doi:10.1080/07357900802620794

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Mahapatra S, Klee EW, Young CY, Sun Z, Jimenez RE, Klee GG, Tindall DJ, Donkena KV (2012) Global methylation profiling for risk prediction of prostate cancer. Clin Cancer Res 18(10):2882–2895. doi:10.1158/1078-0432.ccr-11-2090

    CAS  PubMed  Google Scholar 

  79. Lin PC, Giannopoulou EG, Park K, Mosquera JM, Sboner A, Tewari AK, Garraway LA, Beltran H, Rubin MA, Elemento O (2013) Epigenomic alterations in localized and advanced prostate cancer. Neoplasia 15(4):373–383

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Li LC, Carroll PR, Dahiya R (2005) Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst 97(2):103–115. doi:10.1093/jnci/dji010

    CAS  PubMed  Google Scholar 

  81. Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7(10):854–868. doi:10.1038/nrd2681

    CAS  PubMed  Google Scholar 

  82. Korkmaz CG, Fronsdal K, Zhang Y, Lorenzo PI, Saatcioglu F (2004) Potentiation of androgen receptor transcriptional activity by inhibition of histone deacetylation–rescue of transcriptionally compromised mutants. J Endocrinol 182(3):377–389

    CAS  PubMed  Google Scholar 

  83. Woodson K, Hayes R, Wideroff L, Villaruz L, Tangrea J (2003) Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites. Prostate 55(3):199–205. doi:10.1002/pros.10236

    CAS  PubMed  Google Scholar 

  84. Enokida H, Shiina H, Urakami S, Igawa M, Ogishima T, Pookot D, Li LC, Tabatabai ZL, Kawahara M, Nakagawa M, Kane CJ, Carroll PR, Dahiya R (2005) Ethnic group-related differences in CpG hypermethylation of the GSTP1 gene promoter among African-American, Caucasian and Asian patients with prostate cancer. Int J Cancer 116(2):174–181. doi:10.1002/ijc.21017

    CAS  PubMed  Google Scholar 

  85. Kwabi-Addo B, Wang S, Chung W, Jelinek J, Patierno SR, Wang BD, Andrawis R, Lee NH, Apprey V, Issa JP, Ittmann M (2010) Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men. Clin Cancer Res 16(14):3539–3547. doi:10.1158/1078-0432.ccr-09-3342

    CAS  PubMed  Google Scholar 

  86. Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25(12):2532–2534

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Yegnasubramanian S, Lin X, Haffner MC, DeMarzo AM, Nelson WG (2006) Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic Acids Res 34(3):e19. doi:10.1093/nar/gnj022

    PubMed Central  PubMed  Google Scholar 

  88. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266. doi:10.1038/nrc1045

    CAS  PubMed  Google Scholar 

  90. Zhang Y, Bailey V, Puleo CM, Easwaran H, Griffiths E, Herman JG, Baylin SB, Wang TH (2009) DNA methylation analysis on a droplet-in-oil PCR array. Lab Chip 9(8):1059–1064. doi:10.1039/b821780g

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32(3):e38. doi:10.1093/nar/gnh032

    PubMed Central  PubMed  Google Scholar 

  92. Lisanti S, Omar WA, Tomaszewski B, De Prins S, Jacobs G, Koppen G, Mathers JC, Langie SA (2013) Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One 8(11):e79044. doi:10.1371/journal.pone.0079044

    PubMed Central  PubMed  Google Scholar 

  93. Mikol YB, Hoover KL, Creasia D, Poirier LA (1983) Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis 4(12):1619–1629

    CAS  PubMed  Google Scholar 

  94. Uriarte G, Paternain L, Milagro FI, Martinez JA, Campion J (2013) Shifting to a control diet after a high-fat, high-sucrose diet intake induces epigenetic changes in retroperitoneal adipocytes of Wistar rats. J Physiol Biochem 69(3):601–611. doi:10.1007/s13105-012-0231-6

    CAS  PubMed  Google Scholar 

  95. Milagro FI, Campion J, Garcia-Diaz DF, Goyenechea E, Paternain L, Martinez JA (2009) High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem 65(1):1–9

    CAS  PubMed  Google Scholar 

  96. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348(17):1625–1638. doi:10.1056/NEJMoa021423

    PubMed  Google Scholar 

  97. Shankar S, Kumar D, Srivastava RK (2013) Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. Pharmacol Ther 138(1):1–17. doi:10.1016/j.pharmthera.2012.11.002

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Wang P, Vadgama JV, Said JW, Magyar CE, Doan N, Heber D, Henning SM (2014) Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea. J Nutr Biochem 25(1):73–80. doi:10.1016/j.jnutbio.2013.09.005

    CAS  PubMed  Google Scholar 

  99. Thakur VS, Gupta K, Gupta S (2012) The chemopreventive and chemotherapeutic potentials of tea polyphenols. Curr Pharm Biotechnol 13(1):191–199

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63(22):7563–7570

    CAS  PubMed  Google Scholar 

  101. Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH, Kang HB, Kim MJ, Cha JH, Kim YJ, Jun WJ, Lee JM, Yoon HG (2009) Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res 69(2):583–592. doi:10.1158/0008-5472.can-08-2442

    CAS  PubMed  Google Scholar 

  102. Li Y, Yuan YY, Meeran SM, Tollefsbol TO (2010) Synergistic epigenetic reactivation of estrogen receptor-alpha (ERalpha) by combined green tea polyphenol and histone deacetylase inhibitor in ERalpha-negative breast cancer cells. Mol Cancer 9:274. doi:10.1186/1476-4598-9-274

    PubMed Central  PubMed  Google Scholar 

  103. Medina-Franco JL, Lopez-Vallejo F, Kuck D, Lyko F (2011) Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers 15(2):293–304. doi:10.1007/s11030-010-9262-5

    CAS  PubMed  Google Scholar 

  104. Vadgama JV, Wu Y, Shen D, Hsia S, Block J (2000) Effect of selenium in combination with Adriamycin or Taxol on several different cancer cells. Anticancer Res 20(3a):1391–1414

    CAS  PubMed  Google Scholar 

  105. Xiang N, Zhao R, Song G, Zhong W (2008) Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis 29(11):2175–2181. doi:10.1093/carcin/bgn179

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Davis CD, Uthus EO (2003) Dietary folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats. J Nutr 133(9):2907–2914

    CAS  PubMed  Google Scholar 

  107. Majid S, Dar AA, Ahmad AE, Hirata H, Kawakami K, Shahryari V, Saini S, Tanaka Y, Dahiya AV, Khatri G, Dahiya R (2009) BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 30(4):662–670. doi:10.1093/carcin/bgp042

    CAS  PubMed Central  PubMed  Google Scholar 

  108. King-Batoon A, Leszczynska JM, Klein CB (2008) Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen 49(1):36–45. doi:10.1002/em.20363

    CAS  PubMed  Google Scholar 

  109. Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11(19 Pt 1):7033–7041. doi:10.1158/1078-0432.ccr-05-0406

    CAS  PubMed  Google Scholar 

  110. Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, Majid S, Igawa M, Dahiya R (2008) Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 123(3):552–560. doi:10.1002/ijc.23590

    CAS  PubMed  Google Scholar 

  111. Srivastava RK, Unterman TG, Shankar S (2010) FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Mol Cell Biochem 337(1–2):201–212. doi:10.1007/s11010-009-0300-5

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wang RH, Zheng Y, Kim HS, Xu X, Cao L, Luhasen T, Lee MH, Xiao C, Vassilopoulos A, Chen W, Gardner K, Man YG, Hung MC, Finkel T, Deng CX (2008) Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell 32(1):11–20. doi:10.1016/j.molcel.2008.09.011

    PubMed Central  PubMed  Google Scholar 

  113. Gaudet MM, Campan M, Figueroa JD, Yang XR, Lissowska J, Peplonska B, Brinton LA, Rimm DL, Laird PW, Garcia-Closas M, Sherman ME (2009) DNA hypermethylation of ESR1 and PGR in breast cancer: pathologic and epidemiologic associations. Cancer Epidemiol Biomarkers Prev 18(11):3036–3043. doi:10.1158/1055-9965.epi-09-0678

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Rosenbaum E, Hoque MO, Cohen Y, Zahurak M, Eisenberger MA, Epstein JI, Partin AW, Sidransky D (2005) Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clin Cancer Res 11(23):8321–8325. doi:10.1158/1078-0432.ccr-05-1183

    CAS  PubMed  Google Scholar 

  115. Cairns P, Esteller M, Herman JG, Schoenberg M, Jeronimo C, Sanchez-Cespedes M, Chow NH, Grasso M, Wu L, Westra WB, Sidransky D (2001) Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 7(9):2727–2730

    CAS  PubMed  Google Scholar 

  116. Hojfeldt JW, Agger K, Helin K (2013) Histone lysine demethylases as targets for anticancer therapy. Nat Rev Drug Discov 12(12):917–930. doi:10.1038/nrd4154

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support from NIH (Grant numbers: NCI U56CA101599-01; CA15083-25S3; U54CA14393; NIMHD U54MD007598; and NCATS CTSI UL1TR000124 to J.V.V., and a NIMHD-CRECD 5MD007610 to Y.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaydutt V. Vadgama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wu, Y., Sarkissyan, M., Vadgama, J.V. (2015). Epigenetics in Breast and Prostate Cancer. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics