Skip to main content

Regulation of Amniotic Fluid Volume: Evolving Concepts

  • Conference paper
  • First Online:
Advances in Fetal and Neonatal Physiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 814))

Abstract

Studies in late gestation fetal sheep have provided several new insights into the regulation of amniotic fluid (AF) volume (AFV): There are four quantitatively important amniotic inflows and outflows that include fetal urine production, lung liquid secretion, swallowing, and intramembranous absorption. Of these, AFV is regulated primarily by modulating the rate of intramembranous absorption of AF water and solutes across the amniotic epithelial cells into the underlying fetal vasculature. Modulation of the rate of intramembranous absorption depends on the presence of stimulators and inhibitors present in the AF. A stimulator of intramembranous absorption is present in fetal urine. In addition, AF contains a non-renal, non-pulmonary inhibitor of intramembranous absorption presumably secreted by the fetal membranes. Although passive bidirectional movements of water and solutes occur across the intramembranous pathway, intramembranous absorption is primarily a unidirectional, vesicular, bulk transport process mediated through VEGF activation of transcytotic transport via caveolae. Further, the stimulators and inhibitors of intramembranous absorption alter only the active, unidirectional component of intramembranous absorption while the passive components are not altered under experimental conditions studied thus far. Future progress depends on identifying the cellular and molecular mechanisms that regulate active and passive intramembranous absorption as well as their regulatory components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liley AW. Disorders of amniotic fluid. In: Assali NS, editor. Pathophysiology of gestation. New York: Academic; 1972. p. 157–206.

    Google Scholar 

  2. Wallenburg HCS. The amniotic fluid I: water and electrolyte homeostasis. J Perinat Med. 1977;5:193–205.

    CAS  PubMed  Google Scholar 

  3. Seeds AE. Current concepts of amniotic fluid dynamics. Am J Obstet Gynecol. 1980;138:575–86.

    CAS  PubMed  Google Scholar 

  4. Brace RA, Gilbert WM, Thornburg KL. Vascularization of the ovine amnion and chorion: a morphometric characterization of the surface area of the intramembranous pathway. Am J Obstet Gynecol. 1992;167:1747–55.

    CAS  PubMed  Google Scholar 

  5. Wlodek ME, Harding R, Thorburn GD. Fetal-maternal fluid and electrolyte relations during chronic fetal urine loss in sheep. Am J Physiol. 1992;263:F671–9.

    CAS  PubMed  Google Scholar 

  6. Brace RA. Amniotic fluid volume and its relationship to fetal fluid balance: a review of experimental data. Semin Perinatol. 1986;10:103–12.

    CAS  PubMed  Google Scholar 

  7. Abramovich DR, Page KR, Jandial L. Bulk flows through human fetal membranes. Gynecol Invest. 1976;7:157–64.

    CAS  PubMed  Google Scholar 

  8. Abramovich DR, Page KR. Fetal control of amniotic fluid volume in the human. Adv Gynecol Obstet. 1989;2:9–13.

    Google Scholar 

  9. Wintour EM, Lingwood BE, MacIsaac RJ, Ryan GB, Towstoless MK. Role of fetal membranes in determining the composition of amniotic fluid. In: Mitchell BF, editor. The physiology and biochemistry of human fetal membranes. Ithaca, NY: Perinatology Press; 1988. p. 199–211.

    Google Scholar 

  10. Wintour EM, Lingwood BE, Towstoless MK. Passive permeability of ovine amnion and allantois to chloride—gestational changes. Placenta. 1988;9:599–606.

    CAS  PubMed  Google Scholar 

  11. Gilbert WM, Brace RA. The missing link in amniotic fluid volume regulation: intramembranous absorption. Obstet Gynecol. 1989;74:748–54.

    CAS  PubMed  Google Scholar 

  12. Anderson DF, Borst NJP, Boyd RDH, Faber JJ. Filtration of water from mother to conceptus via paths independent of fetal placental circulation in sheep. J Physiol. 1990;431:1–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Abramovich DR, Garden A, Jandial L, Page KR. Fetal swallowing and voiding in relation to hydramnios. Obstet Gynecol. 1979;54:15–20.

    CAS  PubMed  Google Scholar 

  14. Tomoda S, Brace RA, Longo LD. Amniotic fluid volume regulation: basal volumes and responses to fluid infusion or withdrawal in sheep. Am J Physiol. 1987;252:R380–7.

    CAS  PubMed  Google Scholar 

  15. Adams FH, Desilets DT, Towers B. Control of flow of fetal lung fluid at the laryngeal outlet. Respir Physiol. 1967;2:302–9.

    CAS  PubMed  Google Scholar 

  16. Olver RE, Strang LB. Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb. J Physiol. 1974;241:327–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Adamson TM, Brodecky V, Lambert TF, Maloney JE, Ritchie BC, Walker AM. Lung liquid production and composition in the “in utero” foetal lamb. Aust J Exp Biol Med Sci. 1975;53:65–75.

    CAS  PubMed  Google Scholar 

  18. Mescher EJ, Platzker AC, Ballard PL, Kitterman JA, Clements JA, Tooley WH. Ontogeny of tracheal fluid, pulmonary surfactant, and plasma corticoids in the fetal lamb. J Appl Physiol. 1975;39:1017–21.

    CAS  PubMed  Google Scholar 

  19. Kitterman JA, Ballard PL, Clements JA, Mescher EJ, Tooley WH. Tracheal fluid in fetal lambs: spontaneous decrease prior to birth. J Appl Physiol. 1979;47:985–9.

    CAS  PubMed  Google Scholar 

  20. Hooper SB, Dickson KA, Harding R. Lung liquid secretion, flow and volume in response to moderate asphyxia in fetal sheep. J Dev Physiol. 1988;10:473–85.

    CAS  PubMed  Google Scholar 

  21. Hooper SB, Harding R. Changes in lung liquid dynamics induced by prolonged fetal hypoxemia. J Appl Physiol. 1990;69:127–35.

    CAS  PubMed  Google Scholar 

  22. Walters DV, Olver RE. The role of catecholamines in lung liquid absorption at birth. Pediatr Res. 1978;12:239–42.

    CAS  PubMed  Google Scholar 

  23. Ross MG, Ervin MG, Leake RD, Fu P, Fisher DA. Fetal lung liquid regulation by neuropeptides. Am J Obstet Gynecol. 1984;150:421–5.

    CAS  PubMed  Google Scholar 

  24. Cassin S, Gause G, Perks AM. The effects of bumetanide and furosemide on lung liquid secretion in fetal sheep. Proc Soc Exp Biol Med. 1986;181:427–31.

    CAS  PubMed  Google Scholar 

  25. Warburton D, Parton L, Buckley S, Cosico L, Saluna T. Effects of beta-2 agonist on tracheal fluid flow, surfactant and pulmonary mechanics in the fetal lamb. J Pharmacol Exp Ther. 1987;242:394–8.

    CAS  PubMed  Google Scholar 

  26. Sherman DJ, Ross MG, Ervin MG, Castro R, Hobel CJ, Fisher DA. Ovine fetal lung fluid response to intravenous saline solution infusion: fetal atrial natriuretic factor effect. Am J Obstet Gynecol. 1988;159:1347–52.

    CAS  PubMed  Google Scholar 

  27. Hooper SB, Harding R. Effect of beta-adrenergic blockade on lung liquid secretion during fetal asphyxia. Am J Physiol. 1989;257:R705–10.

    CAS  PubMed  Google Scholar 

  28. Wallace MJ, Hooper SB, Harding R. Regulation of lung liquid secretion by arginine vasopressin in fetal sheep. Am J Physiol. 1990;258:R104–11.

    CAS  PubMed  Google Scholar 

  29. Hooper SB, Harding R. Fetal lung liquid: a major determinant of the growth and functional development of the fetal lung. Clin Exp Pharmacol Physiol. 1995;22:235–47.

    CAS  PubMed  Google Scholar 

  30. Glantz JC, Woods Jr JR. Significance of amniotic fluid meconium. In: Creasy RK, Resnik R, Iams JD, editors. Maternal-fetal medicine: principles and practice. 5th ed. Philadelphia, PA: Saunders; 2004. p. 441–50.

    Google Scholar 

  31. Brace RA, Wlodek ME, Cock ML, Harding R. Swallowing of lung liquid and amniotic fluid by the ovine fetus under normoxic and hypoxic conditions. Am J Obstet Gynecol. 1994;171:764–70.

    CAS  PubMed  Google Scholar 

  32. Harding R, Bocking AD, Sigger JN, Wickham PJ. Composition and volume of fluid swallowed by fetal sheep. Q J Exp Physiol. 1984;69:487–95.

    CAS  PubMed  Google Scholar 

  33. Robertson P, Faber JJ, Brace RA, Louey S, Hohimer AR, Davis LE, et al. Responses of amniotic fluid volume and its four major flows to lung liquid diversion and amniotic infusion in the ovine fetus. Reprod Sci. 2009;16:88–93.

    PubMed Central  PubMed  Google Scholar 

  34. Anderson DF, Jonker SS, Louey S, Cheung CY, Brace RA. Regulation of intramembranous absorption and amniotic fluid volume by constituents in fetal sheep urine. Am J Physiol Regul Integr Comp Physiol. 2013;305:R506–11.

    CAS  PubMed  Google Scholar 

  35. Gilbert WM, Brace RA. Increase in fetal hydration during long-term intraamniotic isotonic saline infusion. Am J Obstet Gynecol. 1988;159:1413–7.

    CAS  PubMed  Google Scholar 

  36. Pritchard JA. Deglutition by normal and anencephalic fetuses. Obstet Gynecol. 1965;25:289–97.

    CAS  PubMed  Google Scholar 

  37. Bradley RM, Mistretta CM. Swallowing in fetal sheep. Science. 1973;179:1016–7.

    CAS  PubMed  Google Scholar 

  38. Tomoda S, Brace RA, Longo LD. Amniotic fluid volume and fetal swallowing rate in sheep. Am J Physiol. 1985;249:R133–8.

    CAS  PubMed  Google Scholar 

  39. Brans YW, Kuehl TJ, Hayashi RH, Andrew DS, Reyes P. Amniotic fluid in baboon pregnancies with normal versus growth-retarded fetuses. Am J Obstet Gynecol. 1986;155:216–9.

    CAS  PubMed  Google Scholar 

  40. Brans YW. Amniotic fluid volume, composition, ingestion, and digestion by the fetus. New York: Nonhuman Primates in Perinatal Res; 1988. p. 201–15.

    Google Scholar 

  41. Ross MG, Sherman DJ, Ervin MG, Day L, Humme J. Stimuli for fetal swallowing: systemic factors. Am J Obstet Gynecol. 1989;161:1559–65.

    CAS  PubMed  Google Scholar 

  42. Sherman DJ, Ross MG, Day L, Ervin MG. Fetal swallowing: correlation of electromyography and esophageal fluid flow. Am J Physiol. 1990;258:R1386–94.

    CAS  PubMed  Google Scholar 

  43. Harding R, Sigger JN, Poore ER, Johnson P. Ingestion in fetal sheep and its relation to sleep states and breathing movements. Q J Exp Physiol. 1984;69:477–86.

    CAS  PubMed  Google Scholar 

  44. Ross MG, Brace RA, National Institute of Child Health and Development Workshop Participants. National Institute of Child Health and Development Conference summary: amniotic fluid biology—basic and clinical aspects. J Matern Fetal Med. 2001;10:2–19.

    CAS  PubMed  Google Scholar 

  45. Brace RA. Fetal blood volume, urine flow, swallowing and amniotic fluid volume responses to long term intravascular saline infusions. Am J Obstet Gynecol. 1989;161:1049–54.

    CAS  PubMed  Google Scholar 

  46. Kullama LK, Agnew CL, Day L, Ervin MG, Ross MG. Ovine fetal swallowing and renal responses to oligohydramnios. Am J Physiol. 1994;266:R972–8.

    CAS  PubMed  Google Scholar 

  47. Brace RA, Anderson DF, Cheung CY. Fetal swallowing as a protective mechanism against oligohydramnios and polyhydramnios in late gestation sheep. Reprod Sci. 2013;20:326–30.

    PubMed Central  PubMed  Google Scholar 

  48. Brace RA, Anderson DF, Cheung CY. Ovine fetal swallowing responses to polyhydramnios. Physiol Rep. 2014;2(3):e00279.

    Google Scholar 

  49. McCarthy T, Saunders P. The origin and circulation of the amniotic fluid. In: Fairweather DVI, Eskes TKAB, editors. Amniotic fluid: research and clinical application. 2nd ed. Amsterdam: Excerpta Medica; 1978. p. 1–17.

    Google Scholar 

  50. Gresham EL, Rankin JH, Makowski EL, Meschia G, Battaglia FC. An evaluation of fetal renal function in a chronic sheep preparation. J Clin Invest. 1972;51:149–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Wintour EM, Hardy KJ, Hennessy DP, Lingwood BE. Fetal fluid and electrolyte balance. Proc Aust Physiol Pharmacol Soc. 1981;12:20–4.

    CAS  Google Scholar 

  52. Dickson KA, Harding R. Decline in lung liquid volume and secretion rate during oligohydramnios in fetal sheep. J Appl Physiol. 1989;67:2401–7.

    CAS  PubMed  Google Scholar 

  53. Dickson KA, Hooper SB, McMillen IC, Harding R. Endocrine and fluid-balance responses to amniotic and allantoic fluid loss in sheep. Am J Physiol. 1990;259:R745–52.

    CAS  PubMed  Google Scholar 

  54. Walker MP, Moore TR, Brace RA. Indomethacin and arginine vasopressin interaction in the fetal kidney: a mechanism of oliguria. Am J Obstet Gynecol. 1994;171:1234–41.

    CAS  PubMed  Google Scholar 

  55. Cabrol D, Landesman R, Muller J, Uzan M, Sureau C, Saxena BB. Treatment of polyhydramnios with prostaglandin synthetase inhibitor (indomethacin). Am J Obstet Gynecol. 1987;157:422–6.

    CAS  PubMed  Google Scholar 

  56. Kirshon B, Moise Jr KJ, Mari G, Willis R. Long-term indomethacin therapy decreases fetal urine output and results in oligohydramnios. Am J Perinatol. 1991;8:86–8.

    CAS  PubMed  Google Scholar 

  57. Kelly TF, Moore TR, Brace RA. Hemodynamic and fluid responses to furosemide infusion in the ovine fetus. Am J Obstet Gynecol. 1993;168:260–8.

    CAS  PubMed  Google Scholar 

  58. Brace RA, Cheung CY. Pre-delivery changes in amniotic fluid volume and composition in sheep. J Soc Gynecol Investig. 2005;12:396–401.

    CAS  PubMed  Google Scholar 

  59. Daneshmand SS, Cheung CY, Brace RA. Regulation of amniotic fluid volume by intramembranous absorption in sheep: role of passive permeability and vascular endothelial growth factor. Am J Obstet Gynecol. 2003;188:786–93.

    PubMed  Google Scholar 

  60. Gilbert WM, Cheung CY, Brace RA. Rapid intramembranous absorption into the fetal circulation of arginine vasopressin injected intraamniotically. Am J Obstet Gynecol. 1991;164:1013–20.

    CAS  PubMed  Google Scholar 

  61. Faber JJ, Anderson DF. Absorption of amniotic fluid by amniochorion in sheep. Am J Physiol Heart Circ Physiol. 2002;282:H850–4.

    CAS  PubMed  Google Scholar 

  62. Brace RA, Vermin ML, Huijssoon E. Regulation of amniotic fluid volume: intramembranous volume and solute fluxes in late gestation fetal sheep. Am J Obstet Gynecol. 2004;191:837–46.

    PubMed  Google Scholar 

  63. Gesteland KM, Anderson DF, Davis LE, Robertson P, Faber JJ, Brace RA. Intramembranous solute and water fluxes during high intramembranous absorption rates in fetal sheep with and without lung liquid diversion. Am J Obstet Gynecol. 2009;201:85.e1–6.

    Google Scholar 

  64. Cheung CY. Vascular endothelial growth factor activation of intramembranous absorption: a critical pathway for amniotic fluid volume regulation. J Soc Gynecol Investig. 2004;11:63–74.

    CAS  PubMed  Google Scholar 

  65. Beall MH, van den Wijngaard JP, van Gemert MJ, Ross MG. Amniotic fluid water dynamics. Placenta. 2007;28:816–23.

    CAS  PubMed  Google Scholar 

  66. Beall MH, van den Wijngaard JP, van Gemert MJ, Ross MG. Regulation of amniotic fluid volume. Placenta. 2007;28:824–32.

    CAS  PubMed  Google Scholar 

  67. Ross MG, Beall MH. Physiology of amniotic fluid volume regulation. Lockwood CJ, Barss VA, editors. Wellesley, MA: UpToDate; 2012.

    Google Scholar 

  68. Renaud R, Kirschtetter L, Koehl D, et al. Amino-acid intraamniotic injections. In: Persianinov LS, Chervakova TV, Presl J, editors. Recent progress in obstetrics and gynaecology. Amsterdam: Excerpta Medica; 1974.

    Google Scholar 

  69. Gilbert WM, Eby-Wilkens E, Tarantal AF. The missing link in rhesus monkey amniotic fluid volume regulation: intramembranous absorption. Obstet Gynecol. 1997;89:462–5.

    CAS  PubMed  Google Scholar 

  70. Schroder HJ, Dehne K, Andreas TH, Rago S, Rybakowski C. Diffusive transfer of water and glucose across the chorionic plate of the isolated human term placenta. Placenta. 1999;20:59–63.

    CAS  PubMed  Google Scholar 

  71. Albuquerque CA, Nijland MJ, Ross MG. Human and ovine amniotic fluid composition differences: implications for fluid dynamics. J Matern Fetal Med. 1999;8:123–9.

    CAS  PubMed  Google Scholar 

  72. Curran MA, Nijland MJ, Mann SE, Ross MG. Human amniotic fluid mathematical model: determination and effect of intramembranous sodium flux. Am J Obstet Gynecol. 1998;178:484–90.

    CAS  PubMed  Google Scholar 

  73. Gilbert WM, Brace RA. Novel determination of filtration coefficient of ovine placenta and intramembranous pathway. Am J Physiol. 1990;259:R1281–8.

    CAS  PubMed  Google Scholar 

  74. Jang PR, Brace RA. Amniotic fluid composition changes during urine drainage and tracheo esophageal occlusion in fetal sheep. Am J Obstet Gynecol. 1992;167:1732–41.

    CAS  PubMed  Google Scholar 

  75. Matsumoto LC, Cheung CY, Brace RA. Increased urinary flow without development of polyhydramnios in response to prolonged hypoxia in the ovine fetus. Am J Obstet Gynecol. 2001;184:1008–14.

    CAS  PubMed  Google Scholar 

  76. Thurlow RW, Brace RA. Swallowing, urine flow and amniotic fluid volume responses to prolonged hypoxia in the ovine fetus. Am J Obstet Gynecol. 2003;189:601–8.

    PubMed  Google Scholar 

  77. Jellyman JK, Anderson DF, Faber JJ, Cheung CY, Brace RA. Amniotic fluid volume and intramembranous absorption responses to tracheo-esophageal shunt or esophageal ligation in fetal sheep. Am J Obstet Gynecol. 2009;200:313.e1–6.

    Google Scholar 

  78. Adams EA, Choi HM, Cheung CY, Brace RA. Comparison of amniotic and intramembranous unidirectional permeabilities in late gestation sheep. Am J Obstet Gynecol. 2005;193:247–55.

    CAS  PubMed  Google Scholar 

  79. Lingwood BE, Wintour EM. Permeability of ovine amnion and amniochorion to urea and water. Obstet Gynecol. 1983;61:227–32.

    CAS  PubMed  Google Scholar 

  80. Brace RA, Cheung CY. Amniotic fluid volume and composition after fetal membrane resection in late-gestation sheep. J Am Assoc Lab Anim Sci. 2011;50:939–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Anderson D, Yang Q, Hohimer A, Faber J, Giraud G, Davis L. Intramembranous absorption rate is unaffected by changes in amniotic fluid composition. Am J Physiol Renal Physiol. 2005;288:F964–8.

    CAS  PubMed  Google Scholar 

  82. Yang Q, Davis L, Hohimer A, Faber J, Anderson D. Regulatory response to washout of amniotic fluid in sheep. Am J Physiol Heart Circ Physiol. 2005;288:H1339–43.

    CAS  PubMed  Google Scholar 

  83. Faber JJ, Brace RA, Davis LE, Anderson DF. Ovine amniotic fluid volume response to intra-amniotic balloon filling. Placenta. 2009;30:201–2.

    CAS  PubMed  Google Scholar 

  84. Faber J, Anderson D, Hohimer R, Yang Q, Giraud G, Davis L. Function curve of the membranes that regulate amniotic fluid volume in sheep. Am J Physiol Heart Circ Physiol. 2005;289:H146–50.

    CAS  PubMed  Google Scholar 

  85. Cheung CY, Beardall MK, Anderson DF, Brace RA. Amniotic fluid prostaglandin E2: sources and relationship with amniotic fluid volume in sheep. 2013 (Submitted).

    Google Scholar 

  86. Cheung CY, Brace RA. Unidirectional transport across cultured ovine amniotic epithelial cell monolayer. Reprod Sci. 2008;15:1054–8.

    PubMed  Google Scholar 

  87. Minshall RD, Malik AB. Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol. 2006;176:107–44.

    PubMed  Google Scholar 

  88. Brace RA, Wolf EJ. Normal amniotic fluid volume changes throughout pregnancy. Am J Obstet Gynecol. 1989;161:382–8.

    CAS  PubMed  Google Scholar 

  89. Kendal-Wright CE, Hubbard D, Bryant-Greenwood GD. Chronic stretching of amniotic epithelial cells increases pre-B cell colony-enhancing factor (PBEF/visfatin) expression and protects them from apoptosis. Placenta. 2008;29:255–65.

    CAS  PubMed  Google Scholar 

  90. Astern JM, Collier AC, Kendal-Wright CE. Pre-B cell colony enhancing factor (PBEF/NAMPT/Visfatin) and vascular endothelial growth factor (VEGF) cooperate to increase the permeability of the human placental amnion. Placenta. 2013;34:42–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Casey ML, Cutrer SI, Mitchell MD. Origin of prostanoids in human amniotic fluid: the fetal kidney as a source of amniotic fluid prostanoids. Am J Obstet Gynecol. 1983;147:547–51.

    CAS  PubMed  Google Scholar 

  92. Mitchell MD, MacDonald PC, Casey ML. Stimulation of prostaglandin E2 synthesis in human amnion cells maintained in monolayer culture by a substance(s) in amniotic fluid. Prostaglandins Leukot Med. 1984;15:399–407.

    CAS  PubMed  Google Scholar 

  93. Harada S, Nagy JA, Sullivan KA, Thomas KA, Endo N, Rodan GA, et al. Induction of vascular endothelial growth factor expression by prostaglandin E2 and E1 in osteoblasts. J Clin Invest. 1994;93:2490–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Cheng T, Cao W, Wen R, Steinberg RH, LaVail MM. Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Müller cells. Invest Ophthalmol Vis Sci. 1998;39:581–91.

    CAS  PubMed  Google Scholar 

  95. Feng Y, Venema VJ, Venema RC, Tsai N, Behzadian MA, Caldwell RB. VEGF-induced permeability increase is mediated by caveolae. Invest Ophthalmol Vis Sci. 1999;40:157–67.

    CAS  PubMed  Google Scholar 

  96. Chen J, Braet F, Brodsky S, Weinstein T, Romanov V, Noiri E, et al. VEGF-induced mobilization of caveolae and increase in permeability of endothelial cells. Am J Physiol Cell Physiol. 2002;282:C1053–63.

    CAS  PubMed  Google Scholar 

  97. Ahmed A, Li XF, Dunk C, Whittle MJ, Rushton DI, Rollason T. Colocalisation of vascular endothelial growth factor and its Flt-1 receptor in human placenta. Growth Factors. 1995;12:235–43.

    CAS  PubMed  Google Scholar 

  98. Clark DE, Smith SK, Sharkey AM, Charnock-Jones DS. Localization of VEGF and expression of its receptors flt and KDR in human placenta throughout pregnancy. Hum Reprod. 1996;11:1090–8.

    CAS  PubMed  Google Scholar 

  99. Cheung CY, Singh M, Ebaugh MJ, Brace RA. Vascular endothelial growth factor gene expression in ovine placenta and fetal membranes. Am J Obstet Gynecol. 1995;173:753–9.

    CAS  PubMed  Google Scholar 

  100. Cheung CY, Brace RA. Ovine vascular endothelial growth factor: nucleotide sequence and expression in fetal tissues. Growth Factors. 1998;16:11–22.

    CAS  PubMed  Google Scholar 

  101. Cheung CY, Brace RA. Developmental expression of vascular endothelial growth factor and its receptors in ovine placenta and fetal membranes. J Soc Gynecol Investig. 1999;6:179–85.

    CAS  PubMed  Google Scholar 

  102. Bogic LV, Brace RA, Cheung CY. Cellular localization of vascular endothelial growth factor in ovine placenta and fetal membranes. Placenta. 2000;21:203–9.

    CAS  PubMed  Google Scholar 

  103. Bogic LV, Brace RA, Cheung CY. Developmental expression of vascular endothelial growth factor (VEGF) receptors and VEGF binding in ovine placental and fetal membranes. Placenta. 2001;22:265–75.

    CAS  PubMed  Google Scholar 

  104. Cheung CY, Li S, Chen D, Brace RA. Regulation of caveolin-1 expression and phosphorylation by VEGF in ovine amnion cells. Reprod Sci. 2010;17:1112–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Shandley L, Alcorn D, Wintour EM. Ovine amniotic and allantoic epithelia across gestation. Anat Rec. 1997;248:542–53.

    CAS  PubMed  Google Scholar 

  106. Matsumoto LC, Bogic L, Brace RA, Cheung CY. Fetal esophageal ligation induces VEGF mRNA expression in fetal membranes. Am J Obstet Gynecol. 2001;184:175–84.

    CAS  PubMed  Google Scholar 

  107. Matsumoto LC, Bogic L, Brace RA, Cheung CY. Prolonged hypoxia up-regulates VEGF mRNA expression in ovine fetal membranes and placenta. Am J Obstet Gynecol. 2002;186:303–10.

    CAS  PubMed  Google Scholar 

  108. Cheung CY, Brace RA. Hypoxia modulation of caveolin-1 and vascular endothelial growth factor in ovine fetal membranes. Reprod Sci. 2008;15:469–76.

    CAS  PubMed  Google Scholar 

  109. Chou MT, Wang J, Fujita DJ. Src kinase becomes preferentially associated with the VEGFR, KDR/Flk-1, following VEGF stimulation of vascular endothelial cells. BMC Biochem. 2002;3:32–42.

    PubMed Central  PubMed  Google Scholar 

  110. Barleon B, Hauser S, Schöllmann C, Weindel K, Marmé D, Yayon A, et al. Differential expression of the two VEGF receptors flt and KDR in placenta and vascular endothelial cells. J Cell Biochem. 1994;54:56–66.

    CAS  PubMed  Google Scholar 

  111. Ahmad S, Ahmed A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ Res. 2004;95:884–91.

    CAS  PubMed  Google Scholar 

  112. Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 2002;62:4123–31.

    CAS  PubMed  Google Scholar 

  113. Ladomery MR, Harper SJ, Bates DO. Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer Lett. 2007;249:133–42.

    CAS  PubMed  Google Scholar 

  114. Bates DO, MacMillan PP, Manjaly JG, Qiu Y, Hudson SJ, Bevan HS, et al. The endogenous anti-angiogenic family of splice variants of VEGF, VEGFxxxb, are down-regulated in pre-eclamptic placentae at term. Clin Sci (Lond). 2006;110:575–85.

    CAS  Google Scholar 

  115. Doss AE, Beardall MK, Cheung CY, Brace RA. Regional distribution and differential expression of aquaporins in human amnion. Reprod Sci. 2013;20:286A. Abstract S-056.

    Google Scholar 

  116. Wilbur WJ, Power GG, Longo LD. Water exchange in the placenta: a mathematical model. Am J Physiol. 1978;235:R181–99.

    CAS  PubMed  Google Scholar 

  117. Brace RA, Moore TR. Transplacental, amniotic, urinary, and fetal fluid dynamics during very large volume fetal intravenous infusions. Am J Obstet Gynecol. 1991;164:907–16.

    CAS  PubMed  Google Scholar 

  118. Powell TL, Brace RA. Fetal fluid responses to long term 5 M NaCl infusion: where does all the salt go? Am J Physiol. 1991;261:R412–9.

    CAS  PubMed  Google Scholar 

  119. Powell TL, Brace RA. Elevated fetal plasma lactate produces polyhydramnios in the sheep. Am J Obstet Gynecol. 1991;165:1595–607.

    CAS  PubMed  Google Scholar 

  120. Scheve EJT, Brace RA. Amniotic fluid volume responses to intra-amniotic infusion of lactate in fetal sheep. J Soc Gynecol Investig. 2000;7:96–102.

    CAS  PubMed  Google Scholar 

  121. Zeuthen T. Water-transporting proteins. J Membr Biol. 2010;234:57–73.

    CAS  PubMed  Google Scholar 

  122. Hachez C, Chaumont F. Aquaporins: a family of highly regulated multifunctional channels. Adv Exp Med Biol. 2010;679:1–17.

    CAS  PubMed  Google Scholar 

  123. Mann SE, Ricke EA, Yang BA, Verkman AS, Taylor RN. Expression and localization of aquaporin 1 and 3 in human fetal membranes. Am J Obstet Gynecol. 2002;187:902–7.

    CAS  PubMed  Google Scholar 

  124. Mann SE, Dvorak N, Gilbert H, Taylor RN. Steady-state levels of aquaporin 1 mRNA expression are increased in idiopathic polyhydramnios. Am J Obstet Gynecol. 2006;194:884–7.

    CAS  PubMed  Google Scholar 

  125. Wang S, Kallichanda N, Song W, Ramirez BA, Ross MG. Expression of aquaporin-8 in human placenta and chorioamniotic membranes: evidence of molecular mechanism for intramembranous amniotic fluid resorption. Am J Obstet Gynecol. 2001;185:1226–31.

    CAS  PubMed  Google Scholar 

  126. Wang S, Amidi F, Beall M, Gui L, Ross MG. Aquaporin 3 expression in human fetal membranes and its up-regulation by cyclic adenosine monophosphate in amnion epithelial cell culture. J Soc Gynecol Investig. 2006;13:181–5.

    CAS  PubMed  Google Scholar 

  127. Prat C, Blanchon L, Borel V, Gallot D, Herbet A, Bouvier D, et al. Ontogeny of aquaporins in human fetal membranes. Biol Reprod. 2012;86:48.

    PubMed  Google Scholar 

  128. Zhang Y, Ding S, Shen Q, Wu J, Zhu X. The expression and regulation of aquaporins in placenta and fetal membranes. Front Biosci. 2012;17:2371–82.

    Google Scholar 

  129. Johnston H, Koukoulas I, Jeyaseelan K, Armugam A, Earnest L, Baird R, et al. Ontogeny of aquaporins 1 and 3 in ovine placenta and fetal membranes. Placenta. 2000;21:88–99.

    CAS  PubMed  Google Scholar 

  130. Wang S, Chen J, Huang B, Ross MG. Cloning and cellular expression of aquaporin 9 in ovine fetal membranes. Am J Obstet Gynecol. 2005;193:841–8.

    CAS  PubMed  Google Scholar 

  131. Beall MH, Wang S, Yang B, Chaudhri N, Amidi F, Ross MG. Placental and membrane aquaporin water channels: correlation with amniotic fluid volume and composition. Placenta. 2007;28:421–8.

    CAS  PubMed  Google Scholar 

  132. Mann SE, Ricke EA, Torres EA, Taylor RN. A novel model of polyhydramnios: amniotic fluid volume is increased in aquaporin 1 knockout mice. Am J Obstet Gynecol. 2005;192:2041–4.

    PubMed  Google Scholar 

  133. Zhu X, Jiang S, Hu Y, Zheng X, Zou S, Wang Y, et al. The expression of aquaporin 8 and aquaporin 9 in fetal membranes and placenta in term pregnancies complicated by idiopathic polyhydramnios. Early Hum Dev. 2010;86:657–63.

    CAS  PubMed  Google Scholar 

  134. Zhu XQ, Jiang SS, Zhu XJ, Zou SW, Wang YH, Hu YC. Expression of aquaporin 1 and aquaporin 3 in fetal membranes and placenta in human term pregnancies with oligohydramnios. Placenta. 2009;30:670–6.

    CAS  PubMed  Google Scholar 

  135. Liu H, Zheng Z, Wintour EM. Aquaporins and fetal fluid balance. Placenta. 2008;29:840–7.

    CAS  PubMed  Google Scholar 

  136. Jeng W, Mathieson IM, Ihara W, Ramirez G. Aquaporin-1: an osmoinducible water channel in cultured mIMCD-3 cells. Biochem Biophys Res Commun. 1998;245:804–9.

    Google Scholar 

  137. Moon Y, Hong SJ, Shin D, Jung Y. Increased aquaporin-1 expression in choroid plexus epithelium after systemic hyponatremia. Neurosci Lett. 2006;395:1–6.

    CAS  PubMed  Google Scholar 

  138. Qi H, Li L, Zong W, Hyer BJ, Huang J. Expression of aquaporin 8 is diversely regulated by osmotic stress in amnion epithelial cells. J Obstet Gynaecol Res. 2009;35:1019–25.

    CAS  PubMed  Google Scholar 

  139. Gagnon R, Harding R, Brace RA. Amniotic fluid and fetal urinary responses to severe placental insufficiency in sheep. Am J Obstet Gynecol. 2002;186:1076–84.

    PubMed  Google Scholar 

  140. Shioji M, Fukuda H, Kanzaki T, Wasada K, Kanagawa T, Shimoya K, et al. Reduction of aquaporin-8 on fetal membranes under oligohydramnios in mice lacking prostaglandin F2 alpha receptor. J Obstet Gynaecol Res. 2006;32:373–8.

    CAS  PubMed  Google Scholar 

  141. Ikeda M, Andoo A, Shimono M, Takamatsu N, Taki A, Muta K, et al. The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J Biol Chem. 2011;286:3342–50.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Brace Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Brace, R.A., Cheung, C.Y. (2014). Regulation of Amniotic Fluid Volume: Evolving Concepts. In: Zhang, L., Ducsay, C. (eds) Advances in Fetal and Neonatal Physiology. Advances in Experimental Medicine and Biology, vol 814. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1031-1_5

Download citation

Publish with us

Policies and ethics