Skip to main content

Eosinophil Overview: Structure, Biological Properties, and Key Functions

  • Protocol
  • First Online:
Eosinophils

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1178))

Abstract

The eosinophil is an enigmatic cell with a continuing ability to fascinate. A considerable history of research endeavor on eosinophil biology stretches from the present time back to the nineteenth century. Perhaps one of the most fascinating aspects of the eosinophil is how accumulating knowledge has changed the perception of its function from passive bystander, modulator of inflammation, to potent effector cell loaded with histotoxic substances through to more recent recognition that it can act as both a positive and negative regulator of complex events in both innate and adaptive immunity. This book consists of 26 chapters written by experts in the field of eosinophil biology that provide comprehensive and clearly written protocols for techniques designed to underpin research into the function of the eosinophil in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanchard C, Rothenberg ME (2009) Biology of the eosinophil. Adv Immunol 101:81–121

    Article  CAS  PubMed  Google Scholar 

  2. Walsh GM (2013) Profile of reslizumab in eosinophilic disease and its potential in the treatment of poorly controlled eosinophilic asthma. Biologics 7:7–11

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P et al (1990) Eosinophilic inflammation in asthma. N Engl J Med 323:1033–1039

    Article  CAS  PubMed  Google Scholar 

  4. Nissim Ben Efraim AH, Levi-Schaffer F (2008) Tissue remodeling and angiogenesis in asthma: the role of the eosinophil. Ther Adv Respir Dis 2:163–171

    Article  CAS  PubMed  Google Scholar 

  5. Akuthota P, Wang H, Weller PF (2010) Eosinophils as antigen presenting cells in allergic upper airway disease. Curr Opin Allergy Clin Immunol 10(1):14–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Walsh ER, August A (2010) Eosinophils and allergic airway disease: there is more to the story. Trends Immunol 31:39–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wardlaw AJ (1999) Molecular basis for selective eosinophil trafficking in asthma: a mulitstep paradigm. J Allergy Clin Immunol 104:917–926

    Article  CAS  PubMed  Google Scholar 

  8. Walsh GM (2010) Antagonism of eosinophil accumulation in asthma. Recent Pat Inflamm Allergy Drug Discov 4:210–213

    Article  CAS  PubMed  Google Scholar 

  9. Matsumoto K, Bochner BS (2012) Adhesion molecules. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, NY

    Google Scholar 

  10. Robinson AJ, Kashanin D, O’Dowd F, Williams V, Walsh GM (2008) Montelukast inhibition of resting and GM-CSF-stimulated eosinophil adhesion to VCAM-1 under flow conditions appears independent of CysLT1 antagonism. J Leukoc Biol 83:1522–1529

    Article  CAS  PubMed  Google Scholar 

  11. Wu P, Mitchell S, Walsh GM (2005) A new antihistamine levocetirizine inhibits eosinophil adhesion to vascular cell adhesion molecule-1 under flow conditions. Clin Exp Allergy 35:1073–1079

    Article  CAS  PubMed  Google Scholar 

  12. Robinson AJ, Kashanin D, O’Dowd F, Fitzgerald K, Williams V, Walsh GM (2009) Fluvastain and lovastatin inhibit GM-CSF-stimulated human eosinophil adhesion to inter-cellular adhesion molecule-1 under flow conditions. Clin Exp Allergy 39:1866–1874

    Article  CAS  PubMed  Google Scholar 

  13. Walsh GM (2013) Eosinophil apoptosis and clearance in asthma. J Cell Death 6:17–25

    Article  Google Scholar 

  14. Gounni AS, Gregory B, Nutku E, Aris F, Latifa K, Minshall E et al (2000) Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils. Blood 96:2163–2171

    CAS  PubMed  Google Scholar 

  15. Luttmann W, Knoechel B, Foerster M, Matthys H, Virchow JC Jr, Kroegel C (1996) Activation of human eosinophils by IL-13. Induction of CD69 surface antigen, its relationship to messenger RNA expression, and promotion of cellular viability. J Immunol 157:1678–1683

    CAS  PubMed  Google Scholar 

  16. Hoontrakoon R, Chu HW, Gardai SJ, Wenzel SE, McDonald P, Fadok VA, Henson PM, Bratton DL (2002) Interlukin-15 inhibits spontaneous apoptosis in human eosinophils via autocrine production of granulocyte macrophage-colony stimulating factor and nuclear factor-kappaB activation. Am J Respir Cell Mol Biol 26:404–412

    Article  CAS  PubMed  Google Scholar 

  17. Leung DYM (1998) Molecular basis of allergic disease. Mol Genet Metab 63:177

    Article  Google Scholar 

  18. Cheung PF, Wong CK, Ip WK, Lam CW (2006) IL-25 regulates the expression of adhesion molecules on eosinophils: mechanism of eosinophilia in allergic inflammation. Allergy 61:878–885

    Article  CAS  PubMed  Google Scholar 

  19. Suzukawa M, Koketsu R, Iikura M, Nakae S, Matsumoto K, Nagase H, Saito H, Matsushima K, Ohta K, Yamamoto K, Yamaguchi M (2008) Interleukin-33 enhances adhesion, CD11b expression and survival in human eosinophils. Lab Invest 88:1245–1253

    Article  CAS  PubMed  Google Scholar 

  20. Wong C, Hu S, Cheung P, Lam C (2010) Thymic stromal lymphopoietin induces chemotactic and pro-survival effects in eosinophils: implications in allergic inflammation. Am J Respir Cell Mol Biol 43:305–315

    Article  CAS  PubMed  Google Scholar 

  21. Anwar ARE, Moqbel R, Walsh GM, Kay AB, Wardlaw AJ (1993) Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 177:839–843

    Article  CAS  PubMed  Google Scholar 

  22. Walsh GM, Symon FA, Wardlaw AJ (1995) Human eosinophils preferentially survive on tissue fibronectin compared with plasma fibronectin. Clin Exp Allergy 25:1128–1136

    Article  CAS  PubMed  Google Scholar 

  23. Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13:9–22

    Article  CAS  PubMed  Google Scholar 

  24. Hogan SP, Rosenberg HF, Moqbel R et al (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38:709–750

    Article  CAS  PubMed  Google Scholar 

  25. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174

    Article  CAS  PubMed  Google Scholar 

  26. Dvorak AM, Furitsu T, Letourneau L et al (1991) Mature eosinophils stimulated to develop in human cord blood mononuclear cell cultures supplemented with recombinant human interleukin-5. Part I. Piecemeal degranulation of specific granules and distribution of Charcot-Leyden crystal protein. Am J Pathol 138:69–82

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Melo RC, Spencer LA, Perez SA et al (2005) Human eosinophils secrete preformed, granule-stored interleukin-4 through distinct vesicular compartments. Traffic 6:1047–1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Melo RC, Weller PF (2010) Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histol Histopathol 25:1341–1354

    PubMed Central  PubMed  Google Scholar 

  29. Lacy P, Moqbel R (2000) Eosinophil cytokines. Chem Immunol 76:134–155

    Article  CAS  PubMed  Google Scholar 

  30. Peters MS, Rodriguez M, Gleich GJ (1986) Localization of human eosinophil granule major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin by immunoelectron microscopy. Lab Invest 54:656–662

    CAS  PubMed  Google Scholar 

  31. Lewis DM, Lewis JC, Loegering DA et al (1978) Localization of the guinea pig eosinophil major basic protein to the core of the granule. J Cell Biol 77:702–713

    Article  CAS  PubMed  Google Scholar 

  32. Lacy P, Adamko DJ, Moqbel R (2013) The human eosinophil. In: Greer JP, Arber DA, Glader B, List AF, Means RT, Paraskevas F, Rogers GM, Foerster J (eds) Wintrobe's Clinical hematology. Lippincott Williams & WIlkins, Philadelphia, PA, pp 214–235

    Google Scholar 

  33. Lacy P, Moqbel R (2013) Signaling and degranulation. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, NY, pp 206–219

    Google Scholar 

  34. Lacy P, Stow JL (2011) Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood 118:9–18

    Article  CAS  PubMed  Google Scholar 

  35. Erjefalt JS, Persson CG (2000) New aspects of degranulation and fates of airway mucosal eosinophils. Am J Respir Crit Care Med 161:2074–2085

    Article  CAS  PubMed  Google Scholar 

  36. Driss V, Legrand F, Capron M (2013) Eosinophil receptor profile. In: Lee JJ, Rosenberg HF (eds) Eosinophils in heatlh and disease. Elsevier, New York, NY, pp 30–38

    Google Scholar 

  37. Kita H (2013) Antifungal immunity by eosinophils: mechanisms and implications in human diseases. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, NY, pp 291–299

    Google Scholar 

  38. Adamko DJ, Wu Y, Gleich GJ et al (2004) The induction of eosinophil peroxidase release: improved methods of measurement and stimulation. J Immunol Methods 291:101–108

    Article  CAS  PubMed  Google Scholar 

  39. Melo RC, Perez SA, Spencer LA et al (2005) Intragranular vesiculotubular compartments are involved in piecemeal degranulation by activated human eosinophils. Traffic 6:866–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Lacy P, Mahmudi-Azer S, Bablitz B et al (1999) Rapid mobilization of intracellularly stored RANTES in response to interferon-γ in human eosinophils. Blood 94:23–32

    CAS  PubMed  Google Scholar 

  41. Spencer LA, Melo RC, Perez SA et al (2006) Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc Natl Acad Sci U S A 103:3333–3338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lacy P, Willetts L, Kim JD et al (2011) Agonist activation of F-actin-mediated eosinophil shape change and mediator release is dependent on Rac2. Int Arch Allergy Immunol 156:137–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lacy P, Logan MR, Bablitz B et al (2001) Fusion protein vesicle-associated membrane protein 2 is implicated in IFNγ-induced piecemeal degranulation in human eosinophils from atopic individuals. J Allergy Clin Immunol 107:671–678

    Article  CAS  PubMed  Google Scholar 

  44. Logan MR, Lacy P, Bablitz B et al (2002) Expression of eosinophil target SNAREs as potential cognate receptors for vesicle-associated membrane protein-2 in exocytosis. J Allergy Clin Immunol 109:299–306

    Article  CAS  PubMed  Google Scholar 

  45. Kim JD, Willetts L, Ochkur S et al (2013) An essential role for Rab27a GTPase in eosinophil exocytosis. J Leukoc Biol 94:1265–1274

    Article  CAS  PubMed  Google Scholar 

  46. McLaren DJ, Ramalho-Pinto FJ, Smithers SR (1978) Ultrastructural evidence for complement and antibody-dependent damage to schistosomula of Schistosoma mansoni by rat eosinophils in vitro. Parasitology 77:313–324

    Article  CAS  PubMed  Google Scholar 

  47. Foster PS, Rosenberg HF, Asquith KL et al (2008) Targeting eosinophils in asthma. Curr Mol Med 8:585–590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gentil K, Hoerauf A, Layland LE (2013) Eosinophil-mediated responses toward helminths. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, NY, pp 303–312

    Google Scholar 

  49. Nutman TB (2013) Immune responses in helminth infections. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, NY, pp 312–320

    Google Scholar 

  50. Rosenberg HF, Dyer KD, Domachowske JB (2013) Interactions of eosinophils with respiratory virus pathogens. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, NY, pp 281–290

    Google Scholar 

  51. Swartz JM, Dyer KD, Cheever AW et al (2006) Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood 108:2420–2427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Percopo CM, Dyer KD, Ochkur SI et al (2014) Activated mouse eosinophils protect against lethal respiratory virus infection. Blood 123(5):743–752

    Article  CAS  PubMed  Google Scholar 

  53. Evans RL, Nials AT, Knowles RG, Kidd EJ, Ford WR, Broadley KJ (2012) A comparison of antiasthma drugs between acute and chronic ovalbumin-challenged guinea-pig models of asthma. Pulm Pharmacol Ther 25:453–464

    Article  CAS  PubMed  Google Scholar 

  54. Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM, Doyle AD, Luo H, Zellner KR, Protheroe CA, Willetts L, Lesuer WE, Colbert DC, Helmers RA, Lacy P, Moqbel R, Lee NA (2012) Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red”. J Allergy Clin Immunol 130:572–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lee NA (2012) Mouse models manipulating eosinophilopoiesis. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, Waltham, MA, pp 111–120

    Google Scholar 

  56. Dent LA, Strath M, Mellor AL, Sanderson CJ (1990) Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med 172:1425–1431

    Article  CAS  PubMed  Google Scholar 

  57. Macias MP, Fitzpatrick LA, Brenneise I, McGarry MP, Lee JJ, Lee NA (2001) Expression of IL-5 alters bone metabolism and induces ossification of the spleen in transgenic mice. J Clin Invest 107:949–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Ochkur SI, Jacobsen EA, Protheroe CA, Biechele TL, Pero RS, McGarry MP, Wang H, O'Neill KR, Colbert DC, Colby TV, Shen H, Blackburn MR, Irvin CC, Lee JJ, Lee NA (2007) Co-expression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J Immunol 78:7879–7889

    Article  Google Scholar 

  59. Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ, Ovington KS, Behm CA, Köhler G, Young IG, Matthaei KI (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24

    Article  CAS  PubMed  Google Scholar 

  60. Yoshida T, Ikuta K, Sugaya H, Maki K, Takagi M, Kanazawa H, Sunaga S, Kinashi T, Yoshimura K, Miyazaki J, Takaki S, Takatsu K (1996) Defective B-1 cell development and impaired immunitiy against Angiostrongylus cantonensis in IL-5R alpha-deficient mice. Immunity 4:483–494

    Article  CAS  PubMed  Google Scholar 

  61. Yu C, Cantor AB, Yang H, Browne C, Wells RA, Fujiwara Y, Orkin SH (2002) Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 195:1387–1395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Nei Y, Obata-Ninomiya K, Tsutsui H, Ishiwata K, Miyasaka M, Matsumoto K, Nakae S, Kanuka H, Inase N, Karasuyama H (2013) GATA-1 regulates the generation and function of basophils. Proc Natl Acad Sci U S A 110:18620–18625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, O'Neill KR, Protheroe C, Pero R, Nguyen T, Cormier SA, Lenkiewicz E, Colbert D, Rinaldi L, Ackerman SJ, Irvin CG, Lee NA (2004) Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305:1773–1776

    Article  CAS  PubMed  Google Scholar 

  64. Jacobsen EA, Lesuer WE, Willetts L, Zellner KR, Mazzolini K, Antonios N, Beck B, Protheroe C, Ochkur SI, Colbert D, Lacy P, Moqbel R, Appleton J, Lee NA, Lee JJ (2014) Eosinophil activities modulate the immune/inflammatory character of allergic respiratory responses in mice. Allergy 69(3):315–327. doi:10.1111/all.12321

    Article  CAS  PubMed  Google Scholar 

  65. Doyle AD, Jacobsen EA, Ochkur SI, McGarry MP, Shim KG, Nguyen DT, Protheroe C, Colbert D, Kloeber J, Neely J, Shim KP, Dyer KD, Rosenberg HF, Lee JJ, Lee NA (2013) Expression of the secondary granule proteins major basic protein 1 (MBP-1) and eosinophil peroxidase (EPX) is required for eosinophilopoiesis in mice. Blood 122:781–790

    Article  CAS  PubMed  Google Scholar 

  66. Doyle AD, Jacobsen EA, Ochkur SI, Willetts L, Shim K, Neely J, Kloeber J, Lesuer WE, Pero RS, Lacy P, Moqbel R, Lee NA, Lee JJ (2013) Homologous recombination into the eosinophil peroxidase locus generates a strain of mice expressing Cre recombinase exclusively in eosinophils. J Leukoc Biol 94:17–24

    Article  CAS  PubMed  Google Scholar 

  67. Rosenberg HF (2013) Mouse eosinophils expressing Cre recombinase: endless “flox”ibilities. J Leukoc Biol 94:3–4

    Article  CAS  PubMed  Google Scholar 

  68. Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA (2010) Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy 40:563–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Akuthota P, Wang HB, Spencer LA, Weller PF (2008) Immunoregulatory roles of eosinophils: a new look at a familiar cell. Clin Exp Allergy 38:1254–1263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Wang HB, Ghiran I, Matthaei K, Weller PF (2007) Airway eosinophils: allergic inflammation recruited professional antigen presenting cells. J Immunol 179:7585–7592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Wang HB, Weller PF (2008) Pivotal Advance: eosinophils mediate early alum adjuvant elicited B cell priming and IgM production. J Leukoc Biol 83:817–821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Chu VT, Fröhlich A, Steinhauser G, Scheel T, Roch T, Fillatreau S, Lee JJ, Löhning M, Berek C (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 12:151–159

    Article  CAS  PubMed  Google Scholar 

  73. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, Michalek SM, Rosenberg HF, Zhang N, Oppenheim JJ (2008) Eosinophil-derived neurotoxin acts as an alarmin to activated the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 205:79–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Minai-Fleminger Y, Levi-Schaffer F (2009) Mast cells and eosinophils: the two key effector cells in allergic inflammation. Inflamm Res 58:631–638

    Article  CAS  PubMed  Google Scholar 

  76. Haskell MD, Moy JN, Gleich GJ, Thomas LL (1995) Analysis of signaling events associated with activation of neutrophil superoxide anion production by eosinophil granule major basic protein. Blood 86:4627–4637

    CAS  PubMed  Google Scholar 

  77. Klion AD, Nutman TB (2004) The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol 113:30–37

    Article  CAS  PubMed  Google Scholar 

  78. Fabre V, Beiting DP, Bliss SK, Gebreselassie NG, Gagliardo LF, Lee NA, Lee JJ, Appleton JA (2009) Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol 182:1577–1583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Gebreselassie NG, Moorhead AR, Fabre V, Gagliardo LF, Lee NA, Lee JJ, Appleton JA (2012) Eosinophils preserve parasitic nematode larvae by regulating local immunity. J Immunol 188:417–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Rosenberg HF, Dyer KD, Domachowske JB (2009) Respiratory viruses and eosinophils: exploring the connections. Antiviral Res 83:1–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ (1989) Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142:4428–4434

    CAS  PubMed  Google Scholar 

  82. Torrent M, Navarro S, Moussaoui M, Nogues MV, Boix E (2008) Eosinophil cationic protein high affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry 47:3544–3555

    Article  CAS  PubMed  Google Scholar 

  83. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14:949–953

    Article  CAS  PubMed  Google Scholar 

  84. Linch SN, Danielson ET, Kelly AM, Tamakawa RA, Lee JJ, Gold JA (2012) Interleukin 5 is protective during sepsis in an eosinophil-independent manner. Am J Respir Crit Care Med 186:246–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Herbst T, Sichelstiel A, Schar C, Yadava K, Burki K, Cahenzli J, McCoy K, Marsland BJ, Harris NL (2011) Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med 184:198–205

    Article  CAS  PubMed  Google Scholar 

  86. Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Muller G, Stokholm J, Smith B, Krogfelt KA (2011) Reduced diversity of the intestinal microbiotal during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 128:646–652

    Article  PubMed  Google Scholar 

  87. Raap U, Wardlaw AJ (2008) A new paradigm of eosinophil granulocytes: neuroimmune interactions. Exp Dermatol 17(9):731–738

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry M. Walsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Lacy, P., Rosenberg, H.F., Walsh, G.M. (2014). Eosinophil Overview: Structure, Biological Properties, and Key Functions. In: Walsh, G. (eds) Eosinophils. Methods in Molecular Biology, vol 1178. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1016-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1016-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1015-1

  • Online ISBN: 978-1-4939-1016-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics