Skip to main content

Repo-Man at the Intersection of Chromatin Remodelling, DNA Repair, Nuclear Envelope Organization, and Cancer Progression

  • Chapter
  • First Online:
Cancer Biology and the Nuclear Envelope

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

Nuclear structure and chromatin changes are very useful biomarkers in cancer diagnosis. Despite this, their biological significance and relevance to cancer progression are still not well understood. The identification of new proteins that link the nuclear envelope to chromatin organization and the understanding of the molecular mechanisms underlying these connections have begun to provide some important clues. This review discusses the role of the nuclear protein Repo-Man (CDCA2) in the maintenance of genome stability. Repo-Man (CDCA2) is a targeting subunit for the protein phosphatase 1 involved in the dephosphorylation of histone H3 during mitotic exit. In this role, it is important for the chromatin organization in post-mitotic nuclei. Repo-Man (CDCA2) is also essential for proper nuclear envelope reformation and the regulation of DNA damage responses. The relevance of this complex for cancer biology is also corroborated by emerging evidence that provides a correlation between Repo-Man (CDCA2) expression levels and cancer progression; several studies now suggest that Repo-Man (CDCA2) represents a very strong prognostic marker for poor patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CDCA2:

Cell division cycle associated 2

CPC:

Chromosomal passenger complex

Cisplatin:

Cis-diamminedichloroplatinum(II)

DDR:

DNA damage response

FRAP:

Fluorescence recovery after photobleaching

MT:

Microtubule

OSCC:

Oral squamous cell carcinoma

PP1:

Protein phosphatase 1

Repo-Man:

Recruits PP1 onto mitotic chromatin at anaphase

RCA:

Regulator of chromatin architecture

SS:

Synovial sarcoma

References

  1. True LD, Jordan CD (2008) The cancer nuclear microenvironment: interface between light microscopic cytology and molecular phenotype. J Cell Biochem 104(6):1994–2003

    Article  CAS  PubMed  Google Scholar 

  2. Walker MG (2001) Drug target discovery by gene expression analysis: cell cycle genes. Curr Cancer Drug Targets 1(1):73–83

    Article  CAS  PubMed  Google Scholar 

  3. Trinkle-Mulcahy L, Andersen J, Lam YW, Moorhead G, Mann M, Lamond AI (2006) Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability. J Cell Biol 172(5):679–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Vagnarelli P, Earnshaw WC (2012) Repo-Man-PP1: a link between chromatin remodelling and nuclear envelope reassembly. Nucleus 3(2):138–142

    Article  PubMed Central  PubMed  Google Scholar 

  5. Vagnarelli P, Hudson DF, Ribeiro SA, Trinkle-Mulcahy L, Spence JM, Lai F, Farr CJ, Lamond AI, Earnshaw WC (2006) Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat Cell Biol 8(10):1133–1142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC (2003) Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev Cell 5(2):323–336

    Article  CAS  PubMed  Google Scholar 

  7. Samejima K, Samejima I, Vagnarelli P, Ogawa H, Vargiu G, Kelly DA, de Lima Alves F, Kerr A, Green LC, Hudson DF, Ohta S, Cooke CA, Farr CJ, Rappsilber J, Earnshaw WC (2012) Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIalpha. J Cell Biol 199(5):755–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Green LC, Kalitsis P, Chang TM, Cipetic M, Kim JH, Marshall O, Turnbull L, Whitchurch CB, Vagnarelli P, Samejima K, Earnshaw WC, Choo KH, Hudson DF (2012) Contrasting roles of condensin I and condensin II in mitotic chromosome formation. J Cell Sci 125(Pt 6):1591–1604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Vagnarelli P, Ribeiro S, Sennels L, Sanchez-Pulido L, de Lima Alves F, Verheyen T, Kelly DA, Ponting CP, Rappsilber J, Earnshaw WC (2011) Repo-Man coordinates chromosomal reorganization with nuclear envelope reassembly during mitotic exit. Dev Cell 21(2):328–342

    Article  CAS  PubMed  Google Scholar 

  10. Qian J, Lesage B, Beullens M, Van Eynde A, Bollen M (2011) PP1/Repo-man dephosphorylates mitotic histone H3 at T3 and regulates chromosomal aurora B targeting. Curr Biol 21(9):766–773

    Article  CAS  PubMed  Google Scholar 

  11. Wurzenberger C, Held M, Lampson MA, Poser I, Hyman AA, Gerlich DW (2012) Sds22 and Repo-Man stabilize chromosome segregation by counteracting Aurora B on anaphase kinetochores. J Cell Biol 198(2):173–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Qian J, Beullens M, Lesage B, Bollen M (2013) Aurora B defines its own chromosomal targeting by opposing the recruitment of the phosphatase scaffold repo-man. Curr Biol 23(12):1136–1143

    Article  CAS  PubMed  Google Scholar 

  13. Peng A, Lewellyn AL, Schiemann WP, Maller JL (2010) Repo-man controls a protein phosphatase 1-dependent threshold for DNA damage checkpoint activation. Curr Biol 20(5):387–396. doi:10.1016/j.cub.2010.01.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13(12):789–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Dai J, Higgins JM (2005) Haspin: a mitotic histone kinase required for metaphase chromosome alignment. Cell Cycle 4(5):665–668

    Article  CAS  PubMed  Google Scholar 

  16. Dai J, Sullivan BA, Higgins JM (2006) Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev Cell 11(5):741–750

    Article  CAS  PubMed  Google Scholar 

  17. Dai J, Sultan S, Taylor SS, Higgins JM (2005) The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev 19(4):472–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, Funabiki H (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330(6001):235–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Varier RA, Outchkourov NS, de Graaf P, van Schaik FM, Ensing HJ, Wang F, Higgins JM, Kops GJ, Timmers HT (2010) A phospho/methyl switch at histone H3 regulates TFIID association with mitotic chromosomes. EMBO J 29(23):3967–3978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wang F, Dai J, Daum JR, Niedzialkowska E, Banerjee B, Stukenberg PT, Gorbsky GJ, Higgins JM (2010) Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330(6001):231–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wang F, Ulyanova NP, van der Waal MS, Patnaik D, Lens SM, Higgins JM (2011) A positive feedback loop involving Haspin and Aurora B promotes CPC accumulation at centromeres in mitosis. Curr Biol 21(12):1061–1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Prevost M, Chamousset D, Nasa I, Freele E, Morrice N, Moorhead G, Trinkle-Mulcahy L (2013) Quantitative fragmentome mapping reveals novel, domain-specific partners for the modular protein RepoMan (recruits PP1 onto mitotic chromatin at anaphase). Mol Cell Proteomics 12(5):1468–1486

    Article  CAS  PubMed  Google Scholar 

  23. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355. doi:10.1126/science.1140735

    Article  CAS  PubMed  Google Scholar 

  24. Yamano Y, Uzawa K, Shinozuka K, Fushimi K, Ishigami T, Nomura H, Ogawara K, Shiiba M, Yokoe H, Tanzawa H (2008) Hyaluronan-mediated motility: a target in oral squamous cell carcinoma. Int J Oncol 32(5):1001–1009

    CAS  PubMed  Google Scholar 

  25. Uchida F, Uzawa K, Kasamatsu A, Takatori H, Sakamoto Y, Ogawara K, Shiiba M, Bukawa H, Tanzawa H (2013) Overexpression of CDCA2 in human squamous cell carcinoma: correlation with prevention of G1 phase arrest and apoptosis. PLoS One 8(2):e56381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506

    Article  CAS  PubMed  Google Scholar 

  27. Brew CT, Aronchik I, Hsu JC, Sheen JH, Dickson RB, Bjeldanes LF, Firestone GL (2006) Indole-3-carbinol activates the ATM signaling pathway independent of DNA damage to stabilize p53 and induce G1 arrest of human mammary epithelial cells. Int J Cancer 118(4): 857–868

    Article  CAS  PubMed  Google Scholar 

  28. He G, Siddik ZH, Huang Z, Wang R, Koomen J, Kobayashi R, Khokhar AR, Kuang J (2005) Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene 24(18):2929–2943

    Article  CAS  PubMed  Google Scholar 

  29. Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S, Bai C, Connell-Crowley L, Swindell E et al (1995) Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 6(4):387–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Tvrdik D, Djaborkhel R, Nagy A, Eckschlager T, Raska I, Muller J (2002) Cyclin D-cdk6 complex is targeted by p21(WAF) in growth-arrested lymphoma cells. J Struct Biol 140(1–3):49–56

    Article  CAS  PubMed  Google Scholar 

  31. Saito S, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E, Anderson CW (2002) ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J Biol Chem 277(15):12491–12494

    Article  CAS  PubMed  Google Scholar 

  32. Krasnoselsky AL, Whiteford CC, Wei JS, Bilke S, Westermann F, Chen QR, Khan J (2005) Altered expression of cell cycle genes distinguishes aggressive neuroblastoma. Oncogene 24(9):1533–1541

    Article  CAS  PubMed  Google Scholar 

  33. Ryu B, Kim DS, Deluca AM, Alani RM (2007) Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One 2(7):e594

    Article  PubMed Central  PubMed  Google Scholar 

  34. Wozniak A, Schoffski P, Terrier P, Neuville A, Coindre JM, Italiano A, Orbach D, Debiec-Rychter M, Chibon F (2013) Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas. J Clin Oncol 31(5):608–615

    Article  PubMed  Google Scholar 

  35. Corson TW, Zhu CQ, Lau SK, Shepherd FA, Tsao MS, Gallie BL (2007) KIF14 messenger RNA expression is independently prognostic for outcome in lung cancer. Clin Cancer Res 13(11):3229–3232

    Article  CAS  PubMed  Google Scholar 

  36. Corson TW, Gallie BL (2006) KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. Int J Cancer 119(5):1088–1094

    Article  CAS  PubMed  Google Scholar 

  37. Theriault BL, Pajovic S, Bernardini MQ, Shaw PA, Gallie BL (2012) Kinesin family member 14: an independent prognostic marker and potential therapeutic target for ovarian cancer. Int J Cancer 130(8):1844–1854

    Article  CAS  PubMed  Google Scholar 

  38. Kim TM, Yim SH, Shin SH, Xu HD, Jung YC, Park CK, Choi JY, Park WS, Kwon MS, Fiegler H, Carter NP, Rhyu MG, Chung YJ (2008) Clinical implication of recurrent copy number alterations in hepatocellular carcinoma and putative oncogenes in recurrent gains on 1q. Int J Cancer 123(12):2808–2815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482(7383):53–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW (2013) Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154(1):47–60

    Article  CAS  PubMed  Google Scholar 

  41. Vargas JD, Hatch EM, Anderson DJ, Hetzer MW (2012) Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3(1):88–100

    Article  PubMed Central  PubMed  Google Scholar 

  42. De Vos WH, Houben F, Kamps M, Malhas A, Verheyen F, Cox J, Manders EM, Verstraeten VL, van Steensel MA, Marcelis CL, van den Wijngaard A, Vaux DJ, Ramaekers FC, Broers JL (2011) Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum Mol Genet 20(21):4175–4186

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Vagnarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vagnarelli, P. (2014). Repo-Man at the Intersection of Chromatin Remodelling, DNA Repair, Nuclear Envelope Organization, and Cancer Progression. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_18

Download citation

Publish with us

Policies and ethics