Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 441))

Abstract

Fatty acids are the most abundant source of endogenous energy substrate. They can be mobilized from peripheral adipose tissue and transported via the blood to active muscle. During higher intensity exercise, triglyceride within the muscle can also be hydrolyzed to release fatty acids for subsequent direct oxidation. Control of fatty acid oxidation in exercise can potentially occur via changes in availability, or via changes in the ability of the muscle to oxidize fatty acids. We have performed a series of experiments to distinguish the relative importance of these potential sites of control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dagenais, G.R., R.G. Tancredi, and K.L. Zierler. Free fatty oxidation by forearm muscle at rest, and evidence for an intramuscular lipid pool in the human forearm. J. Clin Invest. 58: 421–431, 1986.

    Article  Google Scholar 

  2. Fritz, I.B. Action of carnitine on long chain fatty acid oxidation by liver. Am. J. Physiol. 197: 297–304, 1959.

    PubMed  CAS  Google Scholar 

  3. Hurley, B.F., P.M. Nemeth, W.H. Martin III, J.M. Gagbert, G.P. Dalsky, and J.O. Holloszy. Muscle triglyceride utilization during exercise:effect of training. J. Appl. Physiol. 60(2): 562–567, 1986.

    PubMed  CAS  Google Scholar 

  4. Klein, S., E.F. Coyle, and R.R. Wolfe. Effect of exercise on lipolytic sensitivity in endurance-trained athletes. J. Appl. Physiol. 78(6):2201–2206, 1995.

    PubMed  CAS  Google Scholar 

  5. Klein, S., E.F. Coyle, and R.R. Wolfe. Fat metabolism during low-intensity exercise in endurance-trained and untrained men. Am. J. Physiol. 267 (Endocrinol. Metab. 30):E934-E940, 1994.

    Google Scholar 

  6. Pande, S.V. A mitochondrial carnitine acyltransferase transolcase system. Proc. Natl. Acad. Sci. USA 72: 883–887, 1975.

    Article  PubMed  CAS  Google Scholar 

  7. Romijn, J.A., E.F. Coyle, J. Hibbert, and R.R. Wolfe. Comparison of indirect calorimetry and a new breath 13C/12C ratio method during strenuous exercise. Am. J. Physiol. 263 (Endocrinol. Metab. 28):E64-E71, 1992.

    Google Scholar 

  8. Romijn, J.A., E.F. Coyle, L.S. Sidossis, A. Gastaldelli, J.F. Horowitz, E. Endert, and R.R. Wolfe. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 265 (Endocrinol. Metab. 28):E380-E391, 1993.

    Google Scholar 

  9. Romijn, J.A., E.F. Coyle, X-J. Zhang, L.S. Sidossis, and R.R. Wolfe. Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J. Appl. Physiol. 79: 1939–1945, 1995.

    PubMed  CAS  Google Scholar 

  10. Romijn, J.A., S. Klein, E.F. Coyle, L.S. Sidossis, and R.R. Wolfe. Strenuous endurance training increases lipolysis and triglyceride-fatty acid cycling at rest. J. Appl. Physiol. 75(1): 108–113, 1993.

    PubMed  CAS  Google Scholar 

  11. Sidossis, L.S., A.R. Coggan, A. Gastaldelli, and R.R. Wolfe. Pathway of Free Fatty Acid oxidation in human subjects: implications for tracer studies. J. Clin. Invest. 95: 278–284, 1995.

    Article  PubMed  CAS  Google Scholar 

  12. Sidossis, L.S., A. Gastadelli, S. Klein and R.R. Wolfe. Regulation of plasma FFA oxidation during low and high intensity exercise. Am. J. Physiol. 272, E1065–E1070, 1997.

    PubMed  CAS  Google Scholar 

  13. Sidossis, L.S., R.R. Wolfe, and A.R. Coggan. Regulation of fatty acid oxidation in untrained versus trained men during exercise. Am. J. Physiol. 274: E510–E515, 1998.

    PubMed  CAS  Google Scholar 

  14. Wolfe, R.R. Radioactive and Stable Isotope Tracers In Biomedicine: Principles and Practice of Kinetic Analysis. Wiley-Liss, New York, 1992, 475 pages.

    Google Scholar 

  15. Wolfe, R.R. and E.J. Peters. Lipolytic response to glucose infusion in human subjects. Am. J. Physiol. 252 (Endocrinol. Metab. 15):E218-E223, 1987.

    Google Scholar 

  16. Wolfe, R.R., S. Klein, F. Carrari, and J.M. Weber. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am. J. Physiol. 258: E382–E389, 1990.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wolfe, R.R. (1998). Fat Metabolism in Exercise. In: Richter, E.A., Kiens, B., Galbo, H., Saltin, B. (eds) Skeletal Muscle Metabolism in Exercise and Diabetes. Advances in Experimental Medicine and Biology, vol 441. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1928-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1928-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1930-4

  • Online ISBN: 978-1-4899-1928-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics