Skip to main content

Fatigue at the Neuromuscular Junction

Branch Point vs. Presynaptic vs. Postsynaptic Mechanisms

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

There are several pre- and postsynaptic sites where neuromuscular transmission failure (NTF) can occur, leading to peripheral muscle fatigue. Presynaptic sites of NTF include: axonal branch point conduction block; a failure of excitation-secretion coupling at the presynaptic terminal; reductions in quantal release of ACh; and reductions in quantal size. Postsynaptic sites of NTF include: cholinergic receptor desensitization; and reduced sarcolemmal excitability. Susceptibility to NTF increases with stimulation frequency and is most prevalent in fatigable fast-twitch motor units. In addition, susceptibility to NTF varies with age and with conditions of altered use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adelman WJ, Plati Y & Senft JP (1973). Potassium ion accumulation in a periaxonal space and its effect on the measurements of membrane potassium ion conductance. Journal of Membrane Biology 12, 387–410.

    Google Scholar 

  • Albuquerque EX, Deshpande SS, Aracava Y, Alkondon M & Daly JW (1986). Possible involvement of cyclic AMP in the expression of desensitization of the nicotinic acetylcholine receptor. A study with forskolin and its analogs. FEBS Letters 199, 113–20.

    Article  PubMed  CAS  Google Scholar 

  • Aldrich TK, Shander A, Chaudhry I & Nagashima H (1986). Fatigue of isolated rat diaphragm: role of impaired neuromuscular transmission. Journal of Applied Physiology 61, 1077–1083.

    PubMed  CAS  Google Scholar 

  • Alshuaib WB & Fahim MA (1990). Aging increases calcium influx at motor nerve terminal. International Journal of Developmental Neuroscience 8, 655–666.

    Article  PubMed  CAS  Google Scholar 

  • Bagust J, Lewis DM & Westerman RA (1974). The properties of motor units in a fast and slow twitch muscle during postnatal development in the kitten. Journal of Physiology (London) 237, 75–90.

    CAS  Google Scholar 

  • Balice-Gordon RJ, Breedlove SM, Bernstein S & Lichtman JW (1990). Neuromuscular junctions shrink and expand as muscle fiber size is manipulated: in vivo observations in the androgen-sensitive bulbocavernosus muscle of mice. Journal of Neuroscience 10, 2660–2671.

    PubMed  CAS  Google Scholar 

  • Balice-Gordon RJ & Lichtman JW (1990). In vivo visualization of the growth of pre-and postsynaptic elements of neuromuscular junctions in the mouse. Journal of Neuroscience 10, 894–908.

    PubMed  CAS  Google Scholar 

  • Barron DH & Matthews BHC (1935). Intermittent conduction in the spinal cord. Journal of Physiology (London) 85, 73–103.

    CAS  Google Scholar 

  • Bazzy AR & Donnelly DF (1993). Diaphragmatic failure during loaded breathing: role of neuromuscular transmission. Journal of Applied Physiology 74, 1679–1683.

    Article  PubMed  CAS  Google Scholar 

  • Bellemare F & Bigland-Ritchie B (1987). Central components of diaphragm fatigue assessed by phrenic nerve stimulation. Journal of Applied Physiology 62, 1307–1316.

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B (1984). Muscle fatigue and the influence of changing neural drive. In: Loke J (ed.), Symposium on Exercise: Physiology and Clinical Applications. Clinics in Chest Medicine 5, 21–34.

    Google Scholar 

  • Bigland-Ritchie B, Jones DA, Hosking GP & Edwards RHT (1978). Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle. Clinical Science and Molecular Medicine 54, 609–614.

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Jones DA & Woods JA (1979). Excitation frequency and muscle fatigue: Electrical responses during human voluntary and stimulated contractions. Experimental Neurology 64, 414–427.

    Article  PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Kukulka CG, Lippold OCJ & Woods JJ (1982). The absence of neuromuscular transmission failure in sustained maximal voluntary contractions. Journal of Physiology (London) 330, 265–278.

    CAS  Google Scholar 

  • Bigland-Ritchie B & Lippold OCJ (1979). Changes in muscle activation during prolonged maximal voluntary contractions. Journal of Physiology (London) 292, 14–15P.

    Google Scholar 

  • Bittner GD (1968). Differentiation of nerve terminals in crayfish opener muscle and its functional significance. Journal of General Physiology 51, 731–758.

    Article  PubMed  CAS  Google Scholar 

  • Boyne AF, Bohan TP & Williams TH (1975). Changes in cholinergic synaptic vesicle populations and the ultrastructure of the nerve terminal membranes of Narcine brasiliensis electric organ stimulated to fatigue in vivo. Journal of Cell Biology 67, 814–25.

    Article  PubMed  CAS  Google Scholar 

  • Brody LR, Pollock MT, Roy SH, DeLuca CJ & Celli B (1991). pH-induced effects on median frequency and conduction velocity of the myoelectric signal. Journal of Applied Physiology 71, 1878–85.

    PubMed  CAS  Google Scholar 

  • Burke RE, Levine DN, Psairis P & Zajac FE (1973). Physiological types and histochemical profiles of motor units of cat gastrocnemius. Journal of Physiology (London) 234, 723–748.

    CAS  Google Scholar 

  • Clamann HP & Robinson AJ (1985). A comparison of electromyographic and mechanical fatigue properties in motor units of the cat hindlimb. Brain Research 327, 203–219.

    Article  PubMed  CAS  Google Scholar 

  • del Castillo J & Katz B (1954). The effect of magnesium on the activity of motor nerve endings. Journal of Physiology (London) 124, 553–559.

    Google Scholar 

  • DeLorenzo RJ (1981). The calmodulin hypothesis of neurotransmission. Cell Calcium 2, 365–385.

    Article  PubMed  CAS  Google Scholar 

  • Diamond J & Miledi R (1962). A study of foetal and new-born rat muscle fibers. Journal of Physiology (London) 162, 393–408.

    CAS  Google Scholar 

  • Edwards RHT (1984). New techniques for studying human muscle function, metabolism and fatigue. Muscle & Nerve 7, 599–609.

    Article  CAS  Google Scholar 

  • Ellisman MH, Rash JE, Staehelin LA & Porter KR (1976). Studies of excitable membranes II. A comparison of specializations at neuromuscular junctions and nonjunctional sarcolemmas of mammalian fast and slow twitch muscle fibers. Journal of Cell Biology 68, 752–774.

    Article  PubMed  CAS  Google Scholar 

  • Fahim MA, Holley JA & Robbins N (1984). Topographic comparison of neuromuscular junctions in mouse slow and fast twitch muscles. Neuroscience 13, 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Feldman JD, Bazzy AR, Cummins TR & Haddad GG (1991). Developmental changes in neuromuscular transmission in the rat diaphragm. Journal of Applied Physiology 71, 280–286.

    PubMed  CAS  Google Scholar 

  • Feltz A & Trautmann A (1982). Desensitization at the frog neuromuscular junction: A biphasic process. Journal of Physiology (London) 332, 257–272.

    Google Scholar 

  • Fournier M, Alula M & Sieck GC (1991). Neuromuscular transmission failure during postnatal development. Neuroscience Letters 125, 34–36.

    Article  PubMed  CAS  Google Scholar 

  • Frankenhaeuser B & Hodgkin AL (1956). The after-effects of impulses in the giant nerve fibres of Loligo. Journal of Physiology (London) 131, 341–376.

    CAS  Google Scholar 

  • Gertler RA & Robbins N (1978). Differences in neuromuscular transmission in red and white muscles. Brain Research 142, 160–164.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein SS & Rall W (1974). Changes of action potential shape and velocity for changing core conductor geometry. Biophysical Journal 14, 731–757.

    Article  PubMed  CAS  Google Scholar 

  • Grob D (1961). Muscular disease. Bulletin of the New York Academy of Medicine 37, 809–834.

    PubMed  CAS  Google Scholar 

  • Grossman Y, Parnas I & Spira ME (1979). Differential conduction block in branches of a bifurcating axon. Journal of Physiology (London) 295, 283–305.

    CAS  Google Scholar 

  • Grossman Y, Spira ME & Parnas I (1973). Differential flow of information into branches of a single axon. Brain Research 64, 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Gruber CM (1914). Studies in fatigue. IV. The relation of adrenalin to curare and fatigue in normal and denervated muscles. American Journal of Physiology 34, 89–96.

    CAS  Google Scholar 

  • Giniatullin RA, Baltser SK, Nikolskii EE & Magazanik LG (1986). Postsynaptic potentiation and desensitization of the myoneural synapse of the frog induced by rhythmic stimulation of a motor nerve. Neiroflziologiia 18, 645–54.

    CAS  Google Scholar 

  • Gutmann E, Hanlikova V & Vyskocil F (1971). Age changes in cross-striated muscle of the rat. Journal of Physiology (London) 216, 331–343.

    CAS  Google Scholar 

  • Hatt H & Smith DO (1976). Synaptic depression related to presynaptic axon conduction block. Journal of Physiology (London) 259, 367–393.

    CAS  Google Scholar 

  • Helgren ME, Squinto SP, Davis HL, Parry DJ, Boulton TG, Heck CS, Zhu Y, Yancopoulos GD, Lindsay RM & DiStefano PS (1994). Trophic effect of ciliary neurotrophic factor on denervated skeletal muscle. Cell 76, 493–504.

    Article  PubMed  CAS  Google Scholar 

  • Johnson BD & Sieck GC (1993). Differential susceptibility of diaphragm muscle fibers to neuromuscular transmission failure. Journal of Applied Physiology 75, 341–348.

    PubMed  CAS  Google Scholar 

  • Jones SF & Kwanbunbumpen S (1970). Some effects of nerve stimulation and hemicholinium on quantal transmitter release at the mammalian neuromuscular junction. Journal of Physiology (London) 207, 51–61.

    CAS  Google Scholar 

  • Juel C (1988). Muscle action potential propagation velocity changes during activity. Muscle Nerve 11, 714–719.

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER (1981). Calcium and the control of synaptic strength by learning. Nature 293, 697–700.

    Article  PubMed  CAS  Google Scholar 

  • Katz B & Thesleff S (1957). On the factors which determine the amplitude of the “miniature end-plate potential”. Journal of Physiology (London) 137, 267–278.

    CAS  Google Scholar 

  • Kelly AM & Zacks SI (1969). The fine structure of motor endplate histogenesis. Journal of Cell Biology 42, 154–169.

    Article  PubMed  CAS  Google Scholar 

  • Kelly SS (1978). The effect of age on neuromuscular transmission. Journal of Physiology (London) 274, 51–62.

    CAS  Google Scholar 

  • Kelly SS & Roberts DV (1977). The effect of age on the safety factor in neuromuscular transmission in the isolated diaphragm of the rat. British Journal of Anaesthesiology 49, 217–22.

    Article  CAS  Google Scholar 

  • Kernell D (1965). The adaptation and the relation between discharge frequencies and current strength of cat lumbosacral motoneurons stimulated by long-lasting injected current. Acta Physiologica Scandinavica 65, 65–73.

    Article  Google Scholar 

  • Kernell D & Monster AW (1982a). Time course and properties of late adaptation in spinal motoneurons of the cat. Experimental Brain Research 46, 191–196.

    CAS  Google Scholar 

  • Kernell D & Monster AW (1982b). Motoneuron properties and motor fatigue. An intracellular study of gastrocnemius motoneurons of the cat. Experimental Brain Research 46, 197–204.

    CAS  Google Scholar 

  • Khodorov BI, Timin YN, Vilenkin Y & Gul’ko FB (1969). Theoretical analysis of the mechanisms of conduction of a nerve pulse over an inhomogeneous axon. I. Conduction through a portion with increased diameter. Biofizika 14, 304–315.

    PubMed  CAS  Google Scholar 

  • Krnjevic K & Miledi R (1958). Failure of neuromuscular transmission in rats. Journal of Physiology (London) 140, 440–461.

    CAS  Google Scholar 

  • Krnjevic K & Miledi R (1959). Presynaptic failure of neuromuscular propagation in rats. Journal of Physiology (London) 149, 1–22.

    CAS  Google Scholar 

  • Kuei JH, Shadmehr R & Sieck GC (1990). Relative contribution of neuromuscular transmission failure to diaphragm fatigue. Journal of Applied Physiology 68, 174–180.

    PubMed  CAS  Google Scholar 

  • Kugelberg E & Lindegren B (1979). Transmission and contraction fatigue of rat motor units in relation to succinate dehydrogenase activity of motor unit fibers. Journal of Physiology (London) 288, 285–300.

    CAS  Google Scholar 

  • Kurihara T & Brooks JE (1975). The mechanism of neuromuscular fatigue: A study of mammalian muscle using excitation-contraction coupling. Archives of Neurology 32, 168–174.

    Article  PubMed  CAS  Google Scholar 

  • Lentz TL & Chester J (1982). Synaptic vesicle recycling at the neuromuscular junction in the presence of a presynaptic membrane marker. Neuroscience 7, 9–20.

    Article  PubMed  CAS  Google Scholar 

  • Llinas RR & Heuser JE (1977). Depolarization-release coupling systems in neurons. Neuroscience Research Program Bulletin 15, 555–687.

    CAS  Google Scholar 

  • McKenzie DK, Bigland-Ritchie B, Gorman RB & Gandevia SC (1992). Central and peripheral fatigue of human diaphragm and limb muscles assessed by twitch interpolation. Journal of Physiology (London) 454, 643–656.

    CAS  Google Scholar 

  • Meech RW (1974). The sensitivity of Helix aspersa neurones to injected calcium ions. Journal of Physiology (London) 237, 259–278.

    CAS  Google Scholar 

  • Merton PA (1954). Voluntary strength and fatigue. Journal of Physiology (London) 123, 553–564.

    CAS  Google Scholar 

  • Metzger JM & Fitts RH (1986). Fatigue from high-and low-frequency muscle stimulation: role of sarcolemma action potentials. Experimental Neurology 93, 320–333.

    Article  PubMed  CAS  Google Scholar 

  • Miyata H, Zhan WZ, Prakash YS & Sieck GC (1994). Influence of inactivity on contribution of neuromuscular transmission failure to diaphragm fatigue. Medicine and Science in Sports and Exercise 26, S167.

    Article  Google Scholar 

  • Naess K & Storm-Mathisen A (1955). Fatigue of sustained tetanic contractions. Acta Physiologica Scandinavica 34, 351–366.

    Article  PubMed  CAS  Google Scholar 

  • Nystrom B (1968). Postnatal development of motor nerve terminals in “slow-red” and “fast-white” cat muscles. Acta Neurologica Scandinavica 44, 363–383.

    Article  PubMed  CAS  Google Scholar 

  • Okano K, Monck JR & Fernandez JM (1993). GTP gamma S stimulates exocytosis in patch-clamped rat melanotrophs. Neuron 11, 165–72.

    Article  PubMed  CAS  Google Scholar 

  • Pamas I (1972). Differential block at high frequency of branches of a single axon innervating two muscles. Journal of Neurophysiology 35, 903–914.

    Google Scholar 

  • Raymond SA & Lettvin JA (1978). Aftereffects of activity in peripheral axons as a clue to nervous encoding. In: Waxman SG (ed.), Physiology and Pathobiology of Axons, pp. 203–225. New York: Raven Press.

    Google Scholar 

  • Redfern PA (1970). Neuromuscular transmission in newborn rats. Journal of Physiology (London) 209, 701–709.

    CAS  Google Scholar 

  • Renaud JM (1989). The effect of lactate on intracellular pH and force recovery of fatigued sartorius muscles of the frog, Rana pipiens. Journal of Physiology (London) 416, 21–47.

    Google Scholar 

  • Renaud JM & Light P (1992). Effects of K+ on the twitch and tetanic contraction in the sartorius muscle of the frog, Rana pipiens. Implication for fatigue in vivo. Canadian Journal of Physiology and Pharmacology 70, 1236–1246.

    Article  PubMed  CAS  Google Scholar 

  • Roed A (1988). Fatigue during continuous 20 Hz stimulation of the rat phrenic nerve diaphragm preparation. Acta Physiologica Scandinavica 134, 217–21.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblueth A (1940). The electrical excitability of mammalian striated muscle. American Journal of Physiology 129, 22–38.

    Google Scholar 

  • Sakmann B, Patlak J & Neher E (1980). Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature 286, 71–73.

    Article  PubMed  CAS  Google Scholar 

  • Sandercock TG, Faulkner JA, Albers JW & Abbrecht PH (1985). Single motor unit and fiber action potentials during fatigue. Journal of Applied Physiology 58, 1073–1079.

    PubMed  CAS  Google Scholar 

  • Schiller Y & Rahamimoff R (1989). Neuromuscular transmission in diabetes: response to high frequency activation. Journal of Neuroscience 9, 3709–3719.

    PubMed  CAS  Google Scholar 

  • Sieck GC & Fournier M (1990). Changes in diaphragm motor unit EMG during fatigue. Journal of Applied Physiology 68, 1917–1926.

    PubMed  CAS  Google Scholar 

  • Sieck GC & Fournier M (1991). Developmental aspects of diaphragm muscle cells. In: Haddad GG, Farber JP (eds.), Developmental Neurobiology of Breathing, pp. 375–478. New York: Dekker.

    Google Scholar 

  • Sieck GC, Fournier M & Enad JG (1989). Fiber type composition of muscle units in the cat diaphragm. Neuroscience Letters 97, 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Sjøgaard G (1991). Role of exercise-induced potassium fluxes underlying muscle fatigue: a brief review. Canadian Journal of Physiology and Pharmacology 69, 238–45.

    Article  PubMed  Google Scholar 

  • Smith DO (1980). Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. Journal of Physiology (London) 301, 243–259.

    CAS  Google Scholar 

  • Smith DO (1983). Axon conduction failure under in vivo conditions in crayfish. Journal of Physiology (London) 344, 327–333.

    CAS  Google Scholar 

  • Smith DO (1984). Acetylcholine storage, release and leakage at the neuromuscular junction of mature adult and aged rats. Journal of Physiology (London) 347, 161–76.

    CAS  Google Scholar 

  • Stephens JA & Taylor A (1972). Fatigue of maintained voluntary muscle contractions in man. Journal of Physiology (London) 220, 1–18.

    CAS  Google Scholar 

  • Stockbridge N (1988). Differential conduction at axonal bifurcations. II. Theoretical basis. Journal of Neurophysiology 59, 1286–1295.

    PubMed  CAS  Google Scholar 

  • Stockbridge N & Stockbridge LL (1988). Differential conduction at axonal bifurcations. I. Effect of electrotonic length. Journal of Neurophysiology 59, 1277–1285.

    PubMed  CAS  Google Scholar 

  • Swadlow HA, Kocsis JD & Waxman SG (1980). Modulation of impulse conduction along the axonal tree. Annual Review of Biophysics and Bioengineering 9, 143–179.

    Article  PubMed  CAS  Google Scholar 

  • Thesleff S (1959). Motor end-plate “desensitization” by repetitive nerve stimuli. Journal of Physiology (London) 148, 659–664.

    CAS  Google Scholar 

  • Tsujimoto T & Kuno M (1988). Calcitonin gene-related peptide prevents disuse-induced sprouting of rat motor nerve terminals. Journal of Neuroscience 8, 3951–3957.

    PubMed  CAS  Google Scholar 

  • Volle RL & Branisteanu DD (1976). Quantal parameters of transmitter release at the frog neuromuscular junction. Naunyn Schmiedebergs Archives of Pharmacology 295, 103–8.

    Article  CAS  Google Scholar 

  • Waxman SG (1975). Integrative properties and design principles of axons. International Review of Neurobiology 18, 1–40.

    Article  PubMed  CAS  Google Scholar 

  • Wernig A, Jans H & Zucker H (1986). A parametric study of the neuromuscular junction during ontogenesis and under different external conditions. In: Katz B, Rahamimoff R (eds.), Calcium, Neuronal Function and Transmitter Release, pp. 413–430. Boston: Martinus Nijhoff Publishers.

    Chapter  Google Scholar 

  • Woods JJ, Furbush F & Bigland-Ritchie B (1987). Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. Journal of Neurophysiology 58, 125–137.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sieck, G.C., Prakash, Y.S. (1995). Fatigue at the Neuromuscular Junction. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics