Skip to main content

Wound Repair

Overview and General Considerations

  • Chapter
The Molecular and Cellular Biology of Wound Repair

Abstract

When tissue loss disrupts normal architecture in higher vertebrate adult animals, the organ fails to regenerate. Instead, repair proceeds as a fibroproliferative response that develops into a fibrotic scar. Thus, the organ is patched rather then restored. Alterations in the normal healing processes produce even less desirable outcomes. For example, when injurious events persist or recur, inflammation is perpetuated, extending tissue damage and repair. In addition, a plethora of pathobiological states, such as diabetes, Cushing’s syndrome, poor arterial perfusion, venous hypertension, poor nutrition, and sepsis, disrupt normal repair processes. Such situations often lead to nonhealing wounds or excessive fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abercrombie, M., Flint, M. H., and James, D. W., 1956, Wound contraction in relation to collagen formation in scorbutic guinea pigs, J. Embryol. Exp. Morph. 4:167–175.

    Google Scholar 

  • Adzick, N. S., and Longaker, M. T., 1992, Fetal Wound Healing, Elsevier, New York.

    Google Scholar 

  • Ahlen, K., and Rubin, K., 1994, Platelet-derived growth factor-BB stimulates synthesis of the integrin α2-subunit in human diploid fibroblasts, Exp. Cell Res. 215:347–353.

    Article  PubMed  CAS  Google Scholar 

  • Albelda, S. M., and Buck, C. A., 1990, Integrins and other cell adhesion molecules, FASEB J. 4:2868–2880.

    PubMed  CAS  Google Scholar 

  • Alho, A. M., and Underhill, C. M., 1989, The hyaluronate receptor is preferentially expressed on poliferating epithelial cells, J. Cell Biol. 108:1557–1566.

    Article  PubMed  CAS  Google Scholar 

  • Assoian, R. K., Frolik, C. A., Roberts, A. B., Miller, D. M., and Sporn, M. B., 1984, Transforming growth factor-β controls receptor levels for epidermal growth factor in NRK fibroblasts, Cell 36:35–41.

    Article  PubMed  CAS  Google Scholar 

  • Assoian, R. K., Fleurdelys, B. E., Stevenson, H. C., Miller, P. J., Madtes, D. K., Raines, E. W., Ross, R., and Sporn, M. B., 1987, Expression and secretion of type β transforming growth factor by activated human macrophages, Proc. Natl. Acad. Sci. USA 84:6020–6024.

    Article  PubMed  CAS  Google Scholar 

  • Ausprunk, D. H., and Folkman, J., 1977, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis, Microvasc. Res. 14:53–65.

    Article  PubMed  CAS  Google Scholar 

  • Ausprunk, D. H., Falterman, K., and Folkman, J., 1978, The sequence of events in the regression of corneal capillaries, Lab. Invest. 38:284–294.

    PubMed  CAS  Google Scholar 

  • Ausprunk, D. H., Boudreau, C. L., and Nelson, D. A., 1981, Proteoglycans in the microvasculature. II. Histochemical localization in proliferating capillaries of the rabbit cornea, Am. J. Pathol. 103:367–375.

    PubMed  CAS  Google Scholar 

  • Azizkhan, R. G., Azizkhan, J. C., Zetter, B. R., and Folkman, J., 1980, Mast cell heparin stimulates migration of capillary endothelial cells in vitro, J. Exp. Med. 152:931–944.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, A. J., Bazin, S., Sims, T. J., LeLeus, M., Nicholetis, C., and Delaunay, A., 1975, Characterization of the collagen of human hypertrophic and normal scars, Biochim. Biophys. Acta 405:412–421.

    Article  PubMed  CAS  Google Scholar 

  • Baird, A., and Durkin, T., 1986, Inhibition of endothelial cell proliferation by type-beta transforming growth factor: Interactions with acidic and basic fibroblast growth factors, Biochem. Biophys. Res. Commun. 138:476–482.

    Article  PubMed  CAS  Google Scholar 

  • Baird, A., Mormede, P., and Bohlen, P., 1985, Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage growth factor, Biochem. Biophys. Res. Commun. 126:358–364.

    Article  PubMed  CAS  Google Scholar 

  • Barrandon, Y., and Green, H., 1987, Cell migration is essential for sustained growth of keratinocytes colonies: The roles of transforming growth factor-α and epidermal growth factor, Cell 50:1131–1137.

    Article  PubMed  CAS  Google Scholar 

  • Bar-Shavit, R., Kahn, A., Fenton, J. W., and Wilner, G. D., 1983, Chemotactic response of monocytes to thrombin, J. Cell Biol. 96:282–285.

    Article  PubMed  CAS  Google Scholar 

  • Battegay, E. F., Rupp, J., Iruela-Arispe, L., Sage, E. H., and Pech, M., 1994, PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF β-receptors, J. Cell Biol. 125:917–928.

    Article  PubMed  CAS  Google Scholar 

  • Bazin, S., and Delaunay, A., 1964, Biochimie de l’inflammation. VI. Fluctuations du taux de collagene et des proteines non fibrillaires dans differents types de foyers inflammatoires, Am. Inst. Pasteur 107:163–172.

    CAS  Google Scholar 

  • Bell, E., Ivarsson, B., and Merrill, C., 1979, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro, Proc. Natl. Acad. Sci. USA 76:1274–1278.

    Article  CAS  Google Scholar 

  • Bell, E., Sher, S., Hull, B., Merrill, C., Rosen, S., Chamson, A., Asselineau, D., Dubertret, L., Coulomb, B., Lepiere, C., Nusgens, B., and Neveux, Y., 1983, The reconstitution of living skin, J. Invest. Dermatol. 81(suppl.):2S–10S.

    Article  PubMed  CAS  Google Scholar 

  • Bently, J. P., 1967, Rate of chondroitin sulfate formation in wound healing, Ann. Surg. 165:186–191.

    Article  Google Scholar 

  • Bergmann, J. E., Kupfer, A., and Singer, S. J., 1983, Membrane insertion at the leading edge of motile fibroblasts, Proc. Natl. Acad. Sci. USA 80:1367–1371.

    Article  PubMed  CAS  Google Scholar 

  • Berk, B. C., Alexander, R. W., Brock, T. A., and Gimbrone, J. M.A., 1986, Vasoconstriction: A new activity for platelet-derived growth factor, Science 232:87–90.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, L. R., Antoniades, H., and Zetter, B. R., 1982, Migration of cultured vascular cells in response to plasma and platelet-derived factors, J. Cell Sci. 56:71–82.

    PubMed  CAS  Google Scholar 

  • Bertolami, C. N., and Donoff, R. B., 1982, Identification, characterization, and partial purification of mammalian skin wound hyaluronidase, J. Invest. Dermatol. 79:417–421.

    Article  PubMed  CAS  Google Scholar 

  • Birk, D. E., Zycband, E. I., Winkelmann, D. A., and Trelstad, R. L., 1989, Collagen fibrillogenesis in situ: Fibril segments are intermediates in assembly, Proc. Natl. Acad. Sci. USA 86:4549–4553.

    Article  PubMed  CAS  Google Scholar 

  • Birk, D. E., Zycband, E. I., Winkleman, D. A., and Trelstad, R. L., 1990, Collagen fibrilogenesis in situ, NY Acad. Sci. 580:176–194.

    Article  CAS  Google Scholar 

  • Bowersox, J. C., and Sorgente, N., 1982, Chemotaxis of aortic endothelial cells in response to fibronectin, Cancer Res. 42:2547–2551.

    PubMed  CAS  Google Scholar 

  • Brachmann, R., Lindquist, P. B., Nagashima, M., Kohr, W., Lipari, T., Napier, M., and Derynck, R., 1989, Transmembrane TGF-α precursors activate EGF/TGF-α receptors, Cell 56:691–700.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, C. A., Adler, R. R., Rappolee, D. A., Pederson, R. A., and Werb, Z., 1989, Genes for extracellular matrix-degrading metalloproteases and their inhibitor, TIMP, are expressed during early mammalian development, Genes Dev. 3:848–859.

    Article  PubMed  CAS  Google Scholar 

  • Bronson, R. E., Bertolami, C. N., and Siebert, E. P., 1987, Modulation of fibroblast growth and glycosaminoglycan synthesis by interleukin-1, Coll. Rel. Res. 7:323–332.

    Article  CAS  Google Scholar 

  • Bronson, R. E., Argenta, J. G., and Bertolami, N., 1988, Interleukin-1 induced changes in extracellular glycosaminoglycan composition of cutaneous scar-derived fibroblasts in culture, Coll. Rel. Res. 8:199–208.

    Article  CAS  Google Scholar 

  • Brooks, P. C., Clark, R. A. F., and Cheresh, D. A., 1994a, Requirement of vascular integrin αvβ3 for angiogenesis, Science 264:569–571.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, P. C., Montgomery, A. M. P., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., and Cheresh, D. A., 1994b, Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels, Cell 79:1157–1164.

    Article  PubMed  CAS  Google Scholar 

  • Brown, E. J., and Goodwin, J. L., 1988, Fibronectin receptors of phagocytes. Characterization of the arg-glyasp binding proteins of human monocytesj and polymorphonuclear leukocytes, J. Exp. Med. 167:777–793.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G. L., Nanney, L. B., Griffen, J., Cramer, A. B., Yancey, J. M., Curtsinger, L. J., Holtzin, L., Schultz, G. S., Jurkiewicz, M. H., and Lynch, J. B., 1989, Enhancement of wound healing by topical treatment with epidermal growth factor, N. Engl. J. Med. 321:76–79.

    Article  PubMed  CAS  Google Scholar 

  • Brown, L. F., Yeo, K.-T., Berse, B., Yeo, T.-K., Senger, D. R., Dvorak, H. F., and Van De Water, L., 1992, Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing, J. Exp. Med. 176:1375–1379.

    Article  PubMed  CAS  Google Scholar 

  • Brown, L. F., Dubin, D., Lavigne, L., Logan, B., Dvorak, H. F., and Van De Water, L., 1993a, Macrophages and fibroblasts express “embryonic” fibronectins during cutaneous wound healing, Am. J. Pathol. 142:793–801.

    PubMed  CAS  Google Scholar 

  • Brown, L. F., Lanir, N., McDonagh, J., Tognazzi, K., Dvorak, A. M., and Dvorak, H. F., 1993b, Fibroblast migration in fibrin gel matrices, Am. J. Pathol. 142(1):273–283.

    PubMed  CAS  Google Scholar 

  • Bruns, R. R., Press, W., Engvall, E., Timpl, R., and Gross, J., 1986, Type VI collagen in extracellular, 100 nm periodic filaments and fibrils: Identification by immunoelectron microscopy, J. Cell Biol. 103:393–404.

    Article  PubMed  CAS  Google Scholar 

  • Butler, P. E., and Bond, J. S., 1988, A latent proteinase in mouse kidney membranes. Characterization and relationship to meprin, J. Biol. Chem. 263:13419–13426.

    PubMed  CAS  Google Scholar 

  • Campbell, E. J., Cury, J. D., Lazarus, C. J., and Welgus, H. G., 1987, Monocyte procollagenase and tissue inhibitor of metallopoteinases. Identification, characterization and regulation of secretion, J. Biol. Chem. 262:15862–15868.

    PubMed  CAS  Google Scholar 

  • Carter, S. B., 1970, Cell movement and cell spreading: A passive or an active process? Nature 255:858–859.

    Article  Google Scholar 

  • Castellino, F. J., Strickland, D. K., Morris, J. P., Smith, J., and Chibber, B., 1983, Enhancement of the streptokinase-induced activation of human plasminogen by human fibrinogen and human fibrinogen fragment D1, Ann. NY Acad. Sci. 408:595–601.

    Article  PubMed  CAS  Google Scholar 

  • Castellot, J. J., Addonizio, M. L., Rosenberg, R., and Karnovosky, M. J., 1981, Vascular endothelial cells produce a heparin-like inhibitor of smooth muscle growth, J. Cell Biol. 90:372–379.

    Article  PubMed  CAS  Google Scholar 

  • Cavani, A., Zambruno, G., Marconi, A., Manca, V., Marchetti, M., and Giannetti, A., 1993, Distinctive integrin expression in the newly forming epidermis during wound healing in humans, J. Invest. Dermatol. 101:600–604.

    Article  PubMed  CAS  Google Scholar 

  • Chan, B. M., Kassner, P. D., Schiro, J. A., Byers, R., Kupper, T. S., and Hemler, M. E., 1992, Distinct cellular functions mediated by different VLA integrin a subunit cytoplasmic domains, Cell 68:1051–1060.

    Article  PubMed  CAS  Google Scholar 

  • Checovich, W. J., and Mosher, D. F., 1993, Lysophosphatidic acid enhances fibronectin binding to adherent cells, Arterioscler. Thromb. 13:1662–1667.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W.-T., 1981, Mechanism of retraction of the trailing edge during fibroblast movement, J. Cell Biol. 90:187–200.

    Article  PubMed  CAS  Google Scholar 

  • Ciano, P. S., Colvin, R. B., Dvorak, A. M., McDonagh, J., and Dvorak, H. F., 1986, Macrophage migration in fibrin gel matrices, Lab. Invest. 54:62–70.

    PubMed  CAS  Google Scholar 

  • Circolo, A., Welgus, H. G., Pierce, G. F., Kramer, J., and Strunk, R. C., 1991, Differential regulation of the expression of proteinases/antiproteinases in fibroblasts. Effects of interleukein-1 and platelet-derived growth factor, J. Biol. Chem. 266:12283–12288.

    PubMed  CAS  Google Scholar 

  • Clark, R. A. F., 1988, Potential roles of fibronectin in cutaneous wound repair, Arch. Dermatol. 124:201–206.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F., 1990, Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin, J. Invest. Dermatol. 94(Suppl):128S–134S.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F., 1993, Mechanisms of cutaneous wound repair, in: Dermatology in General Medicine (T. B. Fitzpatrick, A. Z. Eisen, K. Wolff, I. M. Freedberg, and K. F. Austen, eds.), pp. 473–486, McGraw Hill, New York.

    Google Scholar 

  • Clark, R. A. F., DellaPelle, P., Manseau, E., Lanigan, J. M., Dvorak, H. F., and Colvin, R. B., 1982a, Blood vessel fibronectin increases in conjunction with endothelial cell proliferation and capillary ingrowth during wound healing, J. Invest. Dermatol. 79:269–276.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Lanigan, J. M., DellaPelle, P., Manseau, E., Dvorak, H. F., and Colvin, R. B., 1982b, Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reep-ithelialization, J. Invest. Dermatol. 70:264–269.

    Article  Google Scholar 

  • Clark, R. A. F., Quinn, J. H., Winn, H. J., Lanigan, J. M., DellaPelle, P., and Colvin, R. B., 1982c, Fibronectin is produced by blood vessels in response to injury, J. Exp. Med. 156:646–651.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Quinn, H. J., Winn, H. J., and Colvin, R. B., 1983, Fibronectin beneath reepithelializing epidermis in vivo: Sources and significance, J. Invest. Dermatol. 80(Suppl):26S–30S.

    Article  CAS  Google Scholar 

  • Clark, R. A. F., Folkvord, J. M., and Wertz, R. L., 1985, Fibronectin, as well as other extracellular matrix proteins, mediates human keratinocyte adherence, J. Invest. Dermatol. 84:378–383.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Folkvord, J. M., and Nielsen, L. D., 1986, Either exogenous or endogenous fibronectin can promote adherence of human endothelial cells, J. Cell Sci. 82:263–280.

    PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Wikner, N. E., Doherty, D. E., and Noms, D. A., 1988, Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120 kDa fibroblastic cell-binding fragment, J. Biol. Chem. 263:12115–12123.

    PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Folkvord, J. M., Hart, C. E., Murray, M. J., and McPherson, J. M., 1989, Platelet isoforms of platelet-derived growth factor stimulate fibroblasts to contract collagen matrices, J. Clin. Invest. 84:1036–140.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Nielsen, L. D., Welch, M. P., and McPherson, J. M., 1995a, Collagen matrices attenuate the collagen synthetic response of cultured fibroblasts to TGF-β, J. Cell Sci. 108:1251–1261.

    PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Tonnesen, M. G., Gailit, J., and Cheresh, D. A., 1995b, Transient functional expression of αvβ3 on vascular cells during wound repair, Am. J. Path., in press.

    Google Scholar 

  • Clore, J. N., Cohen, I. K., and Biegelmann, R. F., 1979, Quantitation of collagen type I and III during wound healing in rat skin, Proc. Soc. Exp. Biol. Med. 161:337–340.

    Article  PubMed  CAS  Google Scholar 

  • Coffey, R. J., Derynck, R., Wilcox, J. N., Bringman, T. S., Goustin, A. S., Moses, H. L., and Pittelkow, M. R., 1987, Induction and autoinduction of TGF-α in human keratinocytes, Nature 328:817–820.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, I. K., Keiser, H. R., and Sjoerdsma, A., 1971, Collagen synthesis in human keloid and hypertrophic scar, Surg. Forum 22:488–489.

    PubMed  CAS  Google Scholar 

  • Compton, C. C., Gill, J. M., Bradford, D. A., Regauer, S., Galico, C. G., and O’Conner, N. E., 1989, Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscope and immunohistochemical study, Lab. Invest. 60:600–612.

    PubMed  CAS  Google Scholar 

  • Cotsarelis, G., Sun, T.-T., and Lavker, R. M., 1990, Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis, Cell 61:1329–1337.

    Article  PubMed  CAS  Google Scholar 

  • Damsky, C. H., and Werb, Z., 1992, Signal transduction by integrin receptors for extracellular matrix: Cooperative processing of extracellular information, Curr. Opin. Cell Biol. 4:772–781.

    Article  PubMed  CAS  Google Scholar 

  • Danielson, A., Raub, E., Lindahl, U., and Bjork, I., 1986, Role of ternary complexes, in which heparin binds both antithrombin and proteinase, in the aceceleration of the reactions between antithrombin and thrombin or factor Xa, J. Biol. Chem. 261:15467–15473.

    Google Scholar 

  • Davis, E. D., 1992, Affinity of integrins for damaged extracellular matrix: avb3 binds to denatured collagen type I through RGD sites, Biochem. Biophys. Res. Commun. 182:1025–1031.

    Article  PubMed  CAS  Google Scholar 

  • Dejana, E., Vergara-Dauden, M., Balconi, G., Pietra, A., Cherel, G., Bonati, M. B., Larrieu, M. J., and Marguerie, G., 1984, Specific binding of human fibrinogen to cultured human fibroblasts. Evidence for the involvement of the E domain, Eur. J. Biochem. 139:657–662.

    Article  PubMed  CAS  Google Scholar 

  • Derynck, R., 1988, Transforming growth factor-α, Cell 54:593–595.

    Article  PubMed  CAS  Google Scholar 

  • Diegelmann, R. F., Rothkopf, L. C., and Cohen, I. K., 1975, Measurement of collagen biosynthesis during wound healing, J. Surg. Res. 19:239–243.

    Article  PubMed  CAS  Google Scholar 

  • Dinarello, C. A., 1984, Interleukin-1 and the pathogenesis of the acute-phase response, N. Engl. J. Med. 311:1413–1418.

    Article  PubMed  CAS  Google Scholar 

  • DiScipio, R. G., 1982, The activation of the alternative pathway C3 convertase by human plasma kallikrein, Immunology 45:587–595.

    PubMed  CAS  Google Scholar 

  • Doherty, D. E., Haslet, C., Tonnesen, M. G., and Henson, P. M., 1987, Human monocyte adherence: A primary effect of chemotactic factors on the monocyte to stimulate adherence to human endothelium, J. Immunol. 138:1762–1771.

    PubMed  CAS  Google Scholar 

  • Doherty, D. E., Henson, P. M., and Clark, R. A. F., 1990, Fibronectin fragments containing the RGDS cell-binding domain mediate monocyte migration into the rabbit lung, J. Clin. Invest. 86:1065–1075.

    Article  PubMed  CAS  Google Scholar 

  • Du, X. P., Plow, E. F., Frelinger, A. L., O’Toole, T. E., Loftus, J. C., and Ginsberg, M. H., 1991, Ligands activate integrin αIIbβ3 (platelet GPIIb-IIIa), Cell 65:409–416.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, M. R., and Berman, B., 1985, Gamma interferon is the lymphokine and beta interferon the monokine responsible for inhibition of fibroblast collagen production and late but not early fibroblast proliferation, J. Exp. Med. 162:516–527.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, H. P., and White, B. S., 1981, The identification of A and B collagen chains in hypertrophie scars, Exp. Mol. Pathol. 34:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Elenius, K., Vainio, S., Laato, M., Salmivirta, M., Theslef, I., and Jalkanen, M., 1991, Induced expression of syndecan in healing wounds, J. Cell. Biol. 114:585–595.

    Article  PubMed  CAS  Google Scholar 

  • Elsbach, P., and Weiss, J., 1992, Oxygen-independent antimicrobial systems of phagocytosis, in: Inflammation: Basic Principles and Clinical Correlates (J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 603–636, Raven Press, New York.

    Google Scholar 

  • Epstein, E. H. J., 1974, α1(III)3 human skin collagen. Release by pepsin digestion and preponderance in fetal life, J. Biol. Chem. 249:3225–3231.

    PubMed  CAS  Google Scholar 

  • Fernandez, H. Ă…., Henson, P. M., Otani, A., and Hugli, T. E., 1978, Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under simulated in vivo conditions, J. Immunol. 120:109–115.

    PubMed  CAS  Google Scholar 

  • Ffrench-Constant, K., Van De Water, L., Dvorak, H. F., and Hynes, R. O., 1989, Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat, J. Cell. Biol. 109:903–914.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., 1982, Angiogenesis: Initiation and control, Ann. NY Acad. Sci. 401:212–227.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., and Klagsbrun, M., 1987, Angiogenic factors, Science 235:442–448.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., and Shing, T., 1992, Angiogenesis, J. Biol. Chem. 267:10931–10934.

    PubMed  CAS  Google Scholar 

  • Frater-Schroder, M., Muller, G., Birchmeirer, W., and Bohlem, P., 1986, Transforming growth factor-beta inhibits endothelial cell proliferation, Biochem. Biophys. Res. Commun. 137:295–302.

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa, L. S., Footer, C. S., Gipson, I. K., and Colvin, R. B., 1984, Basement membrane components in healing rabbit corneal epithelial wounds: Immunofluorescence and ultrastructural studies, J. Cell Biol. 98:128–138.

    Article  PubMed  CAS  Google Scholar 

  • Fukai, N., Apte, S. S., and Olsen, B. R., 1994, Nonfibrillar collagens, in: Extracellular Matrix Components (E. Ruoslahti and E. Engvall, eds.), pp. 3–28, Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Fukuda, Y., Masuda, Y., Kishi, J. I., Hashimoto, Y., Hayakawa, T., Nogawa, H., and Nakanishi, Y., 1988, The role of interstitial collagens in cleft formation of mouse embryonic submandibular gland during initial branching, Development 103:259–268.

    PubMed  CAS  Google Scholar 

  • Funk, S. E., and Sage, E. H., 1993, Differential effects of SPARC and cationic SPARC peptides on DNA synthesis by endothelial cells and fibroblasts, J. Cell. Physiol. 154:53–63.

    Article  PubMed  CAS  Google Scholar 

  • Furie, B., and Furie, B. C., 1988, The molecular basis of blood coagulation, Cell 53:505–518.

    Article  PubMed  CAS  Google Scholar 

  • Furie, M. B., and Rifkin, D. B., 1980, Proteolytically derived fragments of human plasma fibronectin and their localization within intact molecule, J. Biol. Chem. 365:3134–3140.

    Google Scholar 

  • Gabbiani, G., Hirschel, B. J., Ryan, G. B., Statkov, P. R., and Majno, G., 1972, Granulation tissue as a contractile organ. A study of structure and function, J. Exp. Med. 135:719–734.

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani, G., Lelous, M., Bailey, A. J., and Delauney, A., 1976, Collagen and myofibroblasts of granulation tissue. A chemical, ultrastructural and immunologic study, Virchows Arch. B Cell Pathol. 21:133–145.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Chapponnier, C., and Huttner, I., 1978, Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing, J. Cell Biol. 76:561–568.

    Article  PubMed  CAS  Google Scholar 

  • Gailit, J., Pierschbacher, M., and Clark, R. A. F., 1993, Expression of functional α4 integrin by human dermal fibroblasts, J. Invest. Dermatol., in press.

    Google Scholar 

  • Gailit, J., Welch, M. P., and Clark, R. A. F., 1994, TGF-β1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds, J. Invest. Dermatol. 103:221–227.

    Article  PubMed  CAS  Google Scholar 

  • Gailit, J., Bueller, H., and Clark, R., 1995, Platelet-derived growth factor and inflammatory cytokines have differential effects on the expression of integrins α1β1 and α5β1 by human dermal fibroblasts, J. Invest. Dermatol., in press.

    Google Scholar 

  • Garcia-Pardo, A., Pearlstein, E., and Frangione, B., 1985, Primary structure of human plasma fibronectin. Characterization of a 31,000 dalton fragment from the COOH-terminal region containing a free sulf-hydryl group and a fibrin binding site, J. Biol. Chem. 260:10320–10325.

    PubMed  CAS  Google Scholar 

  • Ghebrehiwet, B., Silverberg, M., and Kaplan, A. P., 1981, Activation of classic pathway of complement by Hageman factor fragment, J. Exp. Med. 153:665–676.

    Article  PubMed  CAS  Google Scholar 

  • Giancotti, F. G., and Ruoslahti, E., 1990, Elevated levels of the α5β1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells, Cell 60:849–859.

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg, M. H., Loftus, J. C., and Plow, E. F., 1988, Cytoadhesins, integrins, and platelets, Thromb. Haemost. 59:1–6.

    PubMed  CAS  Google Scholar 

  • Ginsberg, M. H., Du, X., and Plow, E. F., 1992, Inside-out integrin signalling, Curr. Opin. Cell Biol. 4:766–771.

    Article  PubMed  CAS  Google Scholar 

  • Gipson, I. K., Spurr-Michaud, S. J., and Tisdale, A. S., 1988, Hemidesmosomes and anchoring fibril collagen apperar synchronously during development and wound healing, Dev. Biol. 126:253–262.

    Article  PubMed  CAS  Google Scholar 

  • Gitay-Goren, H., Soker, S., Vlodavsky, I., and Neufeld, G., 1992, The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules, J. Biol. Chem. 267:6093–6098.

    PubMed  CAS  Google Scholar 

  • Glaser, B. M., D’Amore, P. A., Seppa, H., Seppa, S., and Schiffmann, E., 1980, Adult tissues contain chemoattractants for vascular endothelial cells, Nature 288:483–484.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, L. A., Zhou, D. F. H., Picker, L. J., Minty, C. N., Bargatze, R. F., Ding, J. F., and Butcher, E. C., 1989, A human lymphocyte homing receptor, the Hermes antigen, is related to cartilage proteoglycan core and link proteins, Cell 56:1063–1072.

    Article  PubMed  CAS  Google Scholar 

  • Granstein, R. D., Murphy, G. F., Margolis, R. J., Byrne, M. H., and Amento, E. P., 1987, Gamma interferon inhibits collagen synthesis in vivo in the mouse, J. Clin. Invest. 79:1254–1258.

    Article  PubMed  CAS  Google Scholar 

  • Grant, G. A., Eisen, A. Z., Manner, B. L., Roswit, W. T., and Goldberg, G. I., 1987, The activation of human skin fibroblast procollagenase. Sequence identification of the major conversion products, J. Biol. Chem. 262:5886–5889.

    PubMed  CAS  Google Scholar 

  • Greenhalgh, D. G., Sprugel, K. H., Murray, M. J., and Ross, R., 1990, PDGF and FGF stimulate wound healing in the genetically diabetic mouse, Am. J. Pathol. 136:1235–1246.

    PubMed  CAS  Google Scholar 

  • Grimwood, R. E., Baskin, J. B., Nielsen, L. D., Ferris, C. F., and Clark, R. A. F., 1988, Fibronectin extracellular matrix assembly by human epidermal cells implanted into athymic mice, J. Invest. Dermatol. 90:434–440.

    Article  PubMed  CAS  Google Scholar 

  • Grinnell, F., 1994, Fibroblasts, myofibroblasts, and wound contraction, J. Cell. Biol. 124:401–404.

    Article  PubMed  CAS  Google Scholar 

  • Grinnell, F., and Feld, M. K., 1979, Initial adhesion of human fibroblasts in serum-free medium: Possible role of secreted fibronectin, Cell 17:117–129.

    Article  PubMed  CAS  Google Scholar 

  • Grinnell, F., Feld, M., and Minter, D., 1980, Fibroblast adhesion to fibrinogen and fibrin substrata: Requirement for cold-insoluble globulin (plasma fibronectin), Cell 19:517–525.

    Article  PubMed  CAS  Google Scholar 

  • Grinnell, F., Billingham, R. E., and Burgess, L., 1981, Distribution of fibronectin during wound healing in vivo, J. Invest. Dermatol. 76:181–189.

    Article  PubMed  CAS  Google Scholar 

  • Grondahl-Hansen, J., Lund, L. R., Ralfkiaer, E., Ottevanger, V., and Dano, K., 1988, Urokinase-and tissuetype plasminogen activators in keratinocytes during wound reepithelilaization in vivo, J. Invest. Dermatol. 90:790–795.

    Article  PubMed  CAS  Google Scholar 

  • Grotendorst, G. R., Soma, Y., Takehara, K., et al., 1989, EGF and TGF-alpha are potent chemoattractants for endothelial cells and EGF-like peptides are present at sites of tissue regeneration, J. Cell Physiol. 139:617–623.

    Article  PubMed  CAS  Google Scholar 

  • Gruber, B. L., Marchese, M. J., Suzuki, K., Schwartz, L. B., Okada, Y., Nagase, H., and Ramamurthy, N. S., 1989, Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation, J. Clin. Invest. 84:1657–1662.

    Article  PubMed  CAS  Google Scholar 

  • Gruskin-Lerner, L. S., and Trinkaus-Randall, V., 1991, Localization of integrin and syndecan in vivo in a corneal epithelial abrasion and keratectomy, Curr. Eye Res. 10:75–85.

    Article  Google Scholar 

  • Guimond, S., Maccarana, M., Olwin, B. B., Lindahl, U., and Rapraeger, A. C., 1993, Activating and inhibitory heparin sequences for FGF-2 (basic FGF): Distinct requirements for FGF-1, FGF-2 and FGF-4, J. Biol. Chem. 268:23906–23914.

    PubMed  CAS  Google Scholar 

  • Hajjar, K., Jacovina, A., and Chacko, J., 1994, An endothelial cell receptor for plasminogen and tissue plasminogen activator: Identity with annexin II, J. Biol. Chem. 269:21191–21197.

    PubMed  CAS  Google Scholar 

  • Hardwick, C., Hoare, K., Owens, R., Holn, H. P., Hook, M., Moore, D., Cripps, V., Austen, L., Nance, D. M., and Turley, E. A., 1992, Molecular cloning of a novel hyaluron receptor that mediates tumor cell motility, J. Cell Biol. 117:1343.

    Google Scholar 

  • Harris, A. K., Wild, P., and Stopak, S., 1980, Silicone rubber substrata: A new wrinkle in the study of cell locomotion, Science 208:177–179.

    Article  PubMed  CAS  Google Scholar 

  • Hasty, K. A., Hibbs, M. S., Seyer, J. M., Mainardi, C. L., and Kang, A. H., 1986, Secreted forms of human neutrophil collagenase, J. Biol Chem. 261:5645–5650.

    PubMed  CAS  Google Scholar 

  • Hay, E. D., 1991, Collagen and other matrix glycoproteins in embryogenesis, in: Cell Biology of the Extracellular Matrix (E. D. Hay, ed.), pp. 419–462, Plenum Press, New York.

    Chapter  Google Scholar 

  • Hebda, P. A., 1988, Stimulatory effects of transforming growth factor-beta and epidermal growth factor on epidermal cell outgrowth from porcine skin expiant cultures, J. Invest. Dermatol. 91:440–445.

    Article  PubMed  CAS  Google Scholar 

  • Hebda, P. A., Klingbeil, C. K., Abraham, J. A., and Fiddes, J. C., 1990, Basic fibroblast growth factor stimulation of epidermal wound healing in pigs, J. Invest. Dermatol. 95:626–631.

    Article  PubMed  CAS  Google Scholar 

  • Heimark, R. L., and Schwartz, S. M., 1988, The role of cell-cell interaction in the regulation of endothelial cell growth, in: Molecular and Cellular Biology of Wound Repair (R. A. F. Clark and P. M. Henson, eds.), pp. 359–371, Plenum Press, New York.

    Chapter  Google Scholar 

  • Heimark, R. L., Twardzik, D. R.S. S., 1986, Inhibition of endothelial cell regeneration by type-β transforming growth factor from platelets, Science 233:1078–1080.

    Article  PubMed  CAS  Google Scholar 

  • Heino, J., Ignotz, R. A., Hemler, M. E., Crouse, C., and Massague, J., 1989, Regulation of cell adhesion receptors by transforming growth factor-β. Concomitant regulation of integrins that share a common β1 subunit, J. Biol. Chem. 264:380–388.

    PubMed  CAS  Google Scholar 

  • Hennings, H., Michael, D., Cheng, D., Steinert, P., Holbrook, K., and Yuspa, S. H., 1980, Calcium regulation of growth and differentiation of mouse epidermal cells in culture, Cell 19:245–254.

    Article  PubMed  CAS  Google Scholar 

  • Herbst, T. J., McCarthy, J. B., Tsilibary, E. C., and Furcht, L. T., 1988, Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration, J. Cell Biol. 106:1365–1373.

    Article  PubMed  CAS  Google Scholar 

  • Hering, T. M., Marchant, R. E., and Anderson, J. M., 1983, Type V collagen during granulation tissue development, Exp. Mol. Pathol. 39:219–229.

    Article  PubMed  CAS  Google Scholar 

  • Hibbs, M. S., Hoidal, J. R., and Kang, A. H., 1987, Expression of a metallo-proteinase that degrades native type V collagen and denatured collagens by cultured human alveolar macorophages, J. Clin. Invest. 80:1644–1650.

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama, S., Abraham, J. A., Miller, J., Fiddes, F. C., and Klagsbrun, M., 1991, A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF, Science 251:936–939.

    Article  PubMed  CAS  Google Scholar 

  • Hocking, D. C., Sottile, J., and McKeown-Longo, P. J., 1994, Fibronectin’s III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin, J. Biol. Chem. 269:19183–19187.

    PubMed  CAS  Google Scholar 

  • Holund, B., Clemmensen, I., Junke, R. P., and Lyon, H., 1982, Fibronectin in experimental granulation tissue, Acta Pathol. Microbiol. Immunol. Scand. 90:159–165.

    CAS  Google Scholar 

  • Hopwood, J. J., and Dorfman, A., 1977, Glycosaminoglycan synthesis by cultured human skin fibroblasts after transformation with simian virus 40, J. Biol. Chem. 252:4777–4785.

    PubMed  CAS  Google Scholar 

  • Hsieh, P., and Chen, L. B., 1983, Behavior of cells seeded on isolated fibronectin matrices, J. Cell Biol. 96:1208–1217.

    Article  PubMed  CAS  Google Scholar 

  • Huhtala, P., Humphries, M. J., McCarthy, J. B., Tremble, P. M., Werb, Z., and Damsky, C. H., 1995, α4β1 and α5β1 play differential roles in metalloproteinase induction, J. Cell Biol. 129:867–879.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, T. K., 1980, Wound Healing and Wound Infection: Theory and Surgical Practice, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Hynes, R. O., 1992, Integrins: Versatility, modulation, and signaling in cell adhesion, Cell 69:11–25.

    Article  PubMed  CAS  Google Scholar 

  • Ignatius, M. J., Large, T. H., Houde, M., Tawil, J. W., Barton, A., Esch, F., Carbonetto, S., and Reichardt, L. F., 1990, Molecular cloning of the rate integrin α1-subunit: A receptor for laminin and collagen, J. Cell Biol. 111:709–720.

    Article  PubMed  CAS  Google Scholar 

  • Ignotz, R. A., and Massague, J., 1986, Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into extracellular matrix, J. Biol. Chem. 261:4337–4340.

    PubMed  CAS  Google Scholar 

  • Iruela-Arispe, M., and Sage, H., 1993, Endothelial cells exhibiting angiogenesis in vitro proliferate in response to TGF-β1, J. Cell Biochem. 52:414–430.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, A., Friedman, S., Zhan, X., Engleka, K., Forough, R., and Maciag, T., 1992, Heat shock induces the release of FGF1 from NIH 3T3 cells, Proc. Natl. Acad. Sci. USA 89:10691–10695.

    Article  PubMed  CAS  Google Scholar 

  • Juliano, R. L., and Haskill, S., 1992, Signal transduction from the extracellular matrix, J. Cell Biol. 120:577–585.

    Article  Google Scholar 

  • Kalebic, T., Garbisa, S., Glaser, B., and Liotta, L. A., 1983, Basement membrane collagen: Degradation by migrating endothelial cells, Science 221:281–283.

    Article  PubMed  CAS  Google Scholar 

  • Kaminski, M., and McDonagh, J., 1983, Studies on the mechanism of thrombin interaction with fibrin, J. Biol. Chem. 258:10530–10535.

    PubMed  CAS  Google Scholar 

  • Katz, M. H.F.A. A., Kirsner, R. S., Eaglstein, W. H., and Falanga, V., 1991, Human wound fluid from acute wounds stimulates fibroblast and endothelial cell growth, J. Am. Acad. Dermatol. 25:1054–1058.

    Article  PubMed  CAS  Google Scholar 

  • Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., and Connolly, D. T., 1989, Vascular permeability factor, an endothelial cell mitogen related to PDGF, Science 246:1309–1313.

    Article  PubMed  CAS  Google Scholar 

  • Keene, D. R., Engvall, E., and Glanvill, R. W., 1988, Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network, J. Cell Biol. 107:1995–2006.

    Article  PubMed  CAS  Google Scholar 

  • Kinsella, M. G., and Wight, T. N., 1986, Modulation of sulfated proteoglycan synthesis by bovine aortic endothelial cells during migration, J. Cell Biol. 102:679–687.

    Article  PubMed  CAS  Google Scholar 

  • Kischer, C. W., and Shetlar, M. R., 1974, Collagen and mucopolysaccharides in the hypertrophic scar, Connect. Tissue Res. 2:205–213.

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., 1992, Oxygen metabolites from phagocytes, in: Inflammation: Basic Principles and Clinical Correlates (J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 541–601, Raven Press, New York.

    Google Scholar 

  • Klein, C. E., Dressel, D., Steinmayer, T., Mauch, C., Eckes, B., Krieg, T., Bankert, R. B., and Werber, L., 1991, Integrin α2β1 is up-regulated in fibroblasts and highly aggressive melanoma cells in three dimensional collagen lattices and mediates the reorganization of collagen I fibrils, J. Cell Biol. 115:1427–1436.

    Article  PubMed  CAS  Google Scholar 

  • Knighton, D. R., Hunt, T. K., Scheuenstuhl, H., Halliday, B. J., Werb, Z., and Banda, M. J., 1983, Oxygen tension regulates the expression of angiogenesis factor by macrophages, Science 221:1283–1285.

    Article  PubMed  CAS  Google Scholar 

  • Knox, P., Crooks, S., and Rimmer, C. S., 1986, Role of fibronectin in the migration of fibroblasts into plasma clots, J. Cell Biol. 102:2318–2323.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. E., Polverini, P. J., Kunkel, S. L., Harlow, L. A., DiPietro, L. A., Einer, V. M., Einer, S. G., and Strieter, R. M., 1992, Interleukin-8 as a macrophage-derived mediator of angiogenesis, Science 258:1798–1801.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, T., Leone, C., Marchildon, G. A., Marcum, J. A., and Rosenberg, R. D., 1992, Isolation and characterization of heparan sulfate proteoglycans produced by cloned rat microvascular endothelial cells, J. Biol. Chem. 267:4859–4869.

    PubMed  CAS  Google Scholar 

  • Kraemer, P. M., and Tobey, R. A., 1972, Cell-cycle-dependent desquamation of heparan sulfate from the cell surface, J. Cell Biol. 55:713–717.

    Article  PubMed  CAS  Google Scholar 

  • Krawczyk, W. S., 1971, A pattern of epidermal cell migration during wound healing, J. Cell Biol. 49:247–263.

    Article  PubMed  CAS  Google Scholar 

  • Krawczyk, W. S., and Wilgram, G. F., 1973, Hemidesmosome and desmosome morphogenesis during epidermal wound healing, J. Ultrastruct. Res. 45:93–101.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, Y., Kleinman, H. K., Martin, G. R., and Lawley, T. J., 1988, Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures, J. Cell Biol. 107:1589–1598.

    Article  PubMed  CAS  Google Scholar 

  • Kurkinen, M., Vaheri, A., Roberts, P. J., and Stenman, S., 1980, Sequential appearance of fibronectin and collagen in experimental granulation tissue, Lab. Invest. 43:47–51.

    PubMed  CAS  Google Scholar 

  • Laiho, M., Saksela, O., and Keski-Oja, J., 1986, Transforming growth factor β alters plasminogen activator activity in human skin fibroblasts, Exp. Cell Res. 164:399–407.

    Article  PubMed  CAS  Google Scholar 

  • Lane, T. F., Iruela-Arispe, M. L., Johnson, R. S., and Sage, E. H., 1994, SPARC is a source of copper-binding peptides that stimulate angiogenesis, J. Cell Biol. 125:929–943.

    Article  PubMed  CAS  Google Scholar 

  • Lanir, N., Ciano, P. S., Van de Water, L., McDonagh, J., Dvorak, A. M., and Dvorak, H. F., 1988, Macrophage migration in fibrin gel matrices II. Effects of clotting factor XIII, fibronectin, and gly-cosaminoglycan content on cell migration, J. Immunol. 140:2340–2349.

    PubMed  CAS  Google Scholar 

  • Larjava, H., Salo, T., Haapasalmi, K., Kramer, R. H., and Heino, J., 1993, Expression of integrins and basement membrane components by wound keratinocytes, J. Clin. Invest. 92:1425–1435.

    Article  PubMed  CAS  Google Scholar 

  • Lark, M. W., Laterra, J., and Culp, L. A., 1985, Close and focal contact adhesions of fibroblasts to a fibronectin-containing matrix, Fed. Proc. 44:394–403.

    PubMed  CAS  Google Scholar 

  • Lawrence, W. T., Sporn, M. B., Gorschbath, C., North, J. A., and Grotendorst, G., 1986, The reversal of an adriamycin induced healing impairment with chemoattractants and growth factors, Ann. Surg. 203:142–147.

    Article  PubMed  CAS  Google Scholar 

  • Leavesley, D. I., Schwartz, M. A., Rosenfeld, M., and Cheresh, D. A., 1993, Integrin β1-and β3-mediated endothelial cell migration is triggered through distinct signaling mechanisms, J. Cell Biol. 121:163–170.

    Article  PubMed  CAS  Google Scholar 

  • Leibovich, S. J., and Ross, R., 1975, The role of the macrophage in wound repair: A study with hydrocortisone and antimacrophage serum, Am. J. Pathol. 78:71–100.

    PubMed  CAS  Google Scholar 

  • Lembach, K. J., 1976, Enhanced synthesis and extracellular accumulation of hyaluronic acid during stimulation of quiescent human fibroblasts by mouse epidermal growth factor, J. Cell. Physiol. 89:277–288.

    Article  PubMed  CAS  Google Scholar 

  • Levenson, S. M., Geever, E. F., Crowley, L. V., Oates, J. R B., Berard, C. W., and Rosen, H., 1965, The healing of rat skin wounds, Ann. Surg. 161:293–308.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C. Q., and Bissell, M. J., 1993, Multi-faceted regulation of cell differentiation by extracellular matrix, FASEB J. 7:737–743.

    PubMed  CAS  Google Scholar 

  • Linsenmayer, T. F., 1991, Collagen, in: Cell Biology of Extracellular Matrix, 2nd ed. (E. D. Hay, ed.), pp. 7–44, Plenum Press, New York.

    Chapter  Google Scholar 

  • Liu, C. Y., Nossel, H. L., and Kaplan, K. L., 1979, The binding of thrombin by fibrin, J. Biol. Chem. 254:10421–10426.

    PubMed  CAS  Google Scholar 

  • Loedam, J. A., Meijers, J. C. M., Sixma, J. J., and Bouma, B. N., 1988, Inactivation of human factor VIII by activated protein C: Cofactor activity of protein S and protective effect of von Willebrand factor, J. Clin. Invest. 82:1236–1243.

    Article  Google Scholar 

  • Loef, E. B., Proper, J. A., Goustin, A. S., Shipley, G. D., DiCorleto, P. E., and Moses, H. L., 1986, Induction of c-sis RNA and activity similar to platelet-derived growth factor by transforming growth factor-β: A proposed model for indirect mitogenesis involving autocrine activity, Proc. Natl. Acad. Sci. USA 83:2453–2457.

    Article  Google Scholar 

  • Longaker, M. T., Chiu, E., Adzick, N. S., Stern, M., Harrison, M., and Stern, R., 1991, Studies in fetal wound healing V. Prolonged presence of hyaluraonic acid in fetal wound fluid, Ann. Surg. 213:290–296.

    Article  Google Scholar 

  • Loskutoff, D. J., and Edgington, T. S., 1977, Synthesis of a fibrinolytic activator and inhibitor by endothelial cells, Proc. Natl. Acad. Sci. USA 74:3903–3907.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, S. E., Colvin, R. B., and Antoniades, H. N., 1989, Growth factors in wound healing. Single and synergistic effects on partial thickness porcine skin wounds, J. Clin. Invest. 84:640–646.

    Article  PubMed  CAS  Google Scholar 

  • Mackie, E. J., Halfter, W., and Liverani, D., 1988, Induction of tenascin in healing wounds, J. Cell Biol. 107:2757–2767.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J. A., and Stenn, K. S., 1982, Aortic endothelial cell migration. I. Matrix requirements and composition, Am. J. Pathol. 106:180–186.

    PubMed  CAS  Google Scholar 

  • Madri, J. A., Pratt, B. M., and Tucker, A. M., 1988, Phenotypic modulation of endothelial cells by transforming growth factor-β depends upon the composition and organization of the extracellular matrix, J. Cell Biol. 156:1375–1385.

    Article  Google Scholar 

  • Madri, J. A., Reidy, M. A., Kocher, O., and Bell, L., 1989, Endothelial cell behavior after denudation injury is modulated by transforming growth factor-β1 and fibronectin, Lab. Invest. 60:755–765.

    PubMed  CAS  Google Scholar 

  • Madtes, D. K., Raines, E. W., Sakariassen, K. S., Assoian, R. K., Sporn, M. B., Bell, G. I., and Ross, R., 1988, Induction of transforming growth factor-α in activated human alveolar macrophages, Cell 53:285–293.

    Article  PubMed  CAS  Google Scholar 

  • Magnatti, P., Tsuboi, R., Robbins, E., and Rifkin, D. B., 1989, In vitro angiogenesis on the human amniotic membrane: Requirement for basic fibroblast growth factor-induced proteinases, J. Cell Biol. 108:671–682.

    Article  Google Scholar 

  • Majno, G., Gabbiani, G., Hirschel, B. J., Ryan, G. B., and Statkov, P. R., 1971, Contraction of granulation tissue in vitro: Similarity to smooth muscle, Science 173:548–550.

    Article  PubMed  CAS  Google Scholar 

  • Mansbridge, J. N., and Knapp, A. M., 1987, Changes in keratinocyte maturation during wound healing, J. Invest. Dermatol. 89:253–263.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, J., and Grotendorst, G. R., 1989, Two peptides related to platelet-derived growth factor are present in human wound fluid, Proc. Natl. Acad. Sci. USA 86:4416–4420.

    Article  PubMed  CAS  Google Scholar 

  • Mauch, C., Hatamochi, A., Scharffetter, K., and Krieg, T., 1988, Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel, Exp. Cell Res. 178:493–530.

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey, T. A., Falconed, D. J., and Dud, B., 1992, Transforming growth factor-β1 is a heparin-binding protein: Identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-β1, J. Cell. Physiol. 152:430–440.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, K., and Henson, P. M., 1979, Induction of lysosomal enzyme secretion by macrophages in response to the purified complement fragments C5a and C5a des Arg, J. Immunol. 123:2511–2517.

    PubMed  CAS  Google Scholar 

  • McDonald, J. A., and Kelley, D. G., 1980, Degradation of fibronectin by human leukocyte elastase, J. Biol. Chem. 255:8848–8858.

    PubMed  CAS  Google Scholar 

  • McDonald, J. A., Kelley, D. G., and Broekelmann, T. J., 1982, Role of fibronectin in collagen deposition: Fab1 antibodies to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix, J. Cell Biol. 92:485–492.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J. A., Quade, B. J., Broekelmann, T. J., LaChane, R., Forsman, K., Hasegawa, E., and Akiyama, S., 1987, Fibronectin’s cell-adhesive domain and an amino-terminal matrix assembly domain participate in the assembly into fibroblast pericellular matrix, J. Biol. Chem. 262:2957–2967.

    PubMed  CAS  Google Scholar 

  • McPherson, J. M., Sawamura, S., Condell, R. A., Rhee, W., and Wallace, D. G., 1988, The effects of heparin on the physicochemical properties of reconstituted collagen, Collagen Rel. Res. 8:65–82.

    Article  CAS  Google Scholar 

  • Merenmies, J., and Rauvala, G., 1990, Molecular cloning of the 18-kDa growth-associated protein of developing brain, J. Biol. Chem. 265:16721–16724.

    PubMed  CAS  Google Scholar 

  • Messadi, D. V., and Bertolami, C. N., 1993, CD44 and hyaluronan expression in human cutaneous scar fibroblasts, Am. J. Pathol. 142:1041–1049.

    PubMed  CAS  Google Scholar 

  • Moncada, S., Gryglewski, R., Bunting, S., and Vane, J. R., 1976, An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation, Nature 263:663–665.

    Article  PubMed  CAS  Google Scholar 

  • Morla, A., and Ruoslahti, E., 1992, A fibronectin self-assembly site involved in fibronectin matrix assembly: Reconstruction in a synthetic peptide, J. Cell Biol. 118:421–429.

    Article  PubMed  CAS  Google Scholar 

  • Moscatelli, D., and Rubin, H., 1975, Increased hyaluronic acid production on stimulation of DNA synthesis in chick embryo fibroblasts, Nature 254:65–66.

    Article  PubMed  CAS  Google Scholar 

  • Mosesson, M. W., and Umfleet, R., 1970, The cold insoluble globulin of human plasma. I. Purification, primary characterization, and relationship to fibrinogen and other cold insoluble fraction components, J. Biol. Chem. 245:5726–5736.

    Google Scholar 

  • Mosher, D. F., and Johnson, R. B., 1983, Specificity of fibronectin-fibrin cross-linking, Ann. NY Acad. Sci. 408:583–594.

    Article  PubMed  CAS  Google Scholar 

  • Mosher, D. F., Sottile, J., Wu, C., and McDonald, J. A., 1992, Assembly of extracellular matrix, Curr. Opin. Cell Biol. 4:810–818.

    Article  PubMed  CAS  Google Scholar 

  • Muller-Eberhard, H. J., 1992, Complement: Chemistry and pathways, in: Inflammation: Basic Principles and Clinical Correlates (J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 33–61, Raven Press, New York.

    Google Scholar 

  • Muller-Esterl, N., 1989, Kininogens, kinins and kinships, Thromb. Haemost. 62:2–6.

    Google Scholar 

  • Mustoe, T. A., Pierce, G. F., Morishima, C., and Deuel, T. F., 1991, Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model, J. Clin. Invest. 87:694–703.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, C., and Sporn, M., 1991, Cytokines in context, J. Cell Biol. 113:981–986.

    Article  PubMed  CAS  Google Scholar 

  • Newman, S. L., Henson, J. E., and Henson, P. M., 1982, Phagocytosis of senescent neutrophils by human monocyte derived macrophages and rabbit inflammatory macrophages, J. Exp. Med. 156:430–442.

    Article  PubMed  CAS  Google Scholar 

  • Nickoloff, B. J., Mitra, R. S., Riser, B. L., Dixit, V. M., and Varani, J., 1988, A modulation of keratinocyte motility. Correlation with production of extracelluar matrix molecules in response to growth promoting and anti-proliferative factors, Am. J. Pathol. 132:543–551.

    PubMed  CAS  Google Scholar 

  • O’Keefe, E. J. Payne R. E., Jr., Russell, N., and Woodley, D. T., 1985, Spreading and enhanced motility of human keratinocytes on fibronectin, J. Invest. Dermatol. 85:125–130.

    Article  PubMed  Google Scholar 

  • O’Keefe, E. J., Chiu, M. L., and Payne, R. E., 1988, Stimulation of growth of keratinocytes by basic fibroblast growth factor, J. Invest. Dermatol. 90:767–769.

    Article  PubMed  Google Scholar 

  • Odland, G., and Ross, R., 1968, Human wound repair. I. Epidermal regeneration, J. Cell Biol. 39:135–157.

    Article  PubMed  CAS  Google Scholar 

  • Okada, Y., Konomi, H., Yada, T., Kimata, K., and Nagase, H., 1989, Degradation of type IX collagen by matrix metalloproteinase 3 (stromelysin) from human rheumatoid synovial cells, FEBS Lett. 244:473–476.

    Article  PubMed  CAS  Google Scholar 

  • Oono, T., Specks, U., Eckes, B., Majewski, S., Hunzelmann, N., Timpl, R., and Krieg, T., 1993, Expression of type VI collagen mRNA during wound healing, J. Invest. Dermatol. 100:329–334.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer, C. L., Pessin, J. E., Massague, J., Gitomer, W., and Czech, M. P., 1983, Insulin action rapidly modulates the apparent affinity of the insulin-like growth factor II receptor, J. Biol. Chem. 258:4824–4830.

    PubMed  CAS  Google Scholar 

  • Overall, C. M., Wrana, J. I., and Sodek, J., 1989, Independent regulation of collagenase, 72 kD progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-β, J. Biol. Chem. 264:1860–1869.

    PubMed  CAS  Google Scholar 

  • Pardes, J. B., Takagi, H., Martin, T. A., Ochoa, M. S., and Falanga, V., 1995, Decreased levels of alpha 1(I) procollagen mRNA in dermal fibroblasts grown of fibrin gels and in response to fibrinopeptide B, J. Cell. Physiol. 162:9–14.

    Article  PubMed  CAS  Google Scholar 

  • Perm, J.-P., Bonnet, F., Mailet, P., and Jolies, P., 1988, Characterization and N-terminal sequence of human platelet proteoglycan, Biochem. J. 255:1007–1013.

    Google Scholar 

  • Petersen, M. J., Woodley, D. T., Stricklin, G. P., and O’Keefe, E. J., 1990, Enhanced synthesis of collagenase by human keratinocytes cultured on type I or type IV collagen, J. Invest. Dermatol. 94:341–346.

    Article  PubMed  CAS  Google Scholar 

  • Pfaff, M., Aumailley, M., Specks, U., Knolle, J., Zerwes, H. G., and Timpl, R., 1993, Integrin and Arg-Gly-Asp dependence of cell adhesion to the native and unfolded triple helix of collagen type VI, Exp. Cell Res. 206(1):167–176.

    Article  PubMed  CAS  Google Scholar 

  • Pierce, G. F., Mustoe, T. A., Lingelbach, J., Masakowski, V. R., Griffin, G. L., Senior, R. M., and Deuel, T. F., 1989, Platelet-derived growth factor and transforming growth factor-β enhance tissue repair activities by unique mechanisms, J. Cell Biol. 109:429–440.

    Article  PubMed  CAS  Google Scholar 

  • Pierce, G. F., Mustoe, T. A., Altrock, B., Deuel, T. F., and Thomas, A., 1991, Role of platelet-derived growth factor in wound healing, J. Cell. Biochem. 45:319–326.

    Article  PubMed  CAS  Google Scholar 

  • Pommier, C. G., Inada, S., Fried, L. F., et al., 1983, Plama fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes, J. Exp. Med. 157:1844–1854.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite, A. E., and Kang, A. H., 1976, Collagen and collagen peptide-induced chemotaxis of human blood monocytes, J. Exp. Med. 143:1299–1307.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite, A. E., and Seyer, J. M., 1991, Fibroblast chemotaxis induction by human recombinant interleukin-4: Identification by synthetic peptide analysis of two chemotactic domains residing in amino acid sequences 70–88 and 89–122, J. Clin. Invest. 87:2147–2152.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite, A. E., Seyer, J. M., and Kang, A. H., 1978, Chemotactic attraction of human fibroblast to type I, II, and III collagens and collagen-derived peptides, Proc. Natl. Acad. Sci. USA 75:871–875.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite, A. E., Snyderman, R., and Kang, A. H., 1979, Generation of a fibroblast chemotactic factor in serum by activation of complement, J. Clin. Invest. 64:1379–1385.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite, A. E., Keski-Oja, J., Balian, G., and Kang, A., 1981, Induction of fibroblast chemotaxis by fibronectin. Location of the chemotactic region to a 140,000 molecular weight nongelatin binding fragment, J. Exp. Med. 153:494–499.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite, A. E., Keski-Oja, J., Moses, H. L., and Kang, A. H., 1987, Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor-β, J. Exp. Med. 165:251–256.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite, A. E., Holness, M. A., Katai, H., and Raghow, R., 1992, Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4, J. Clin. Invest. 90:1479–1485.

    Article  PubMed  CAS  Google Scholar 

  • Prehm, P., 1983, Synthesis of hyaluronate in differentiated teratocarcinoma cells: Mechanism of chain growth, Biochem. J. 211:191–198.

    PubMed  CAS  Google Scholar 

  • Preissner, K. T., and Jenne, D., 1991, Vitronectins. A new molecular connection in haemostasis, Thromb. Haemost. 66:189–194.

    PubMed  CAS  Google Scholar 

  • Raines, E. W., Dower, S. K., and Ross, R., 1989, Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDFG-AA, Science 243:393–396.

    Article  PubMed  CAS  Google Scholar 

  • Rappolee, D. A., Mark, D., Banda, M. J., and Werb, Z., 1988, Wound macrophages express TGF-α and other growth factors in vivo: Analysis by mRNA phenotyping, Science 241:708–712.

    Article  PubMed  CAS  Google Scholar 

  • Reich-Slotky, R., Bonneh-Barkay, D., Shaoul, E., Bluma, B., Svahn, C. M., and Ron, D., 1994, Differential effect of cell-associated heparan sulfates on the binding of keratinocyte growth factor (KGF) and acidic fibroblast growth factor to the KGH receptor, J. Biol. Chem. 269:32279–32285.

    PubMed  CAS  Google Scholar 

  • Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, M. S., Heine, U. F., Liotta, L., Falanga, V., Kehrl, J. H., and Fauci, A. S., 1986, Transforming growth factor beta: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation, Proc. Natl. Acad. Sci. USA 83:4167–4171.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R., Gallagher, J., Spooncer, E., Allen, R. D., Bloomfield, F., and Dexter, R. M., 1988, Heparan sulphate bound growth factors: A mechanism for stromal cell mediated haemopoiesis, Nature 332:376–378.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R. R., and Raines, E. W., 1990, Platelet-derived growth factor and cell proliferation, in: Growth Factors: From Genes to Clinical Application (V. R. Sara et al., eds.), pp. 193–199, Raven Press, New York.

    Google Scholar 

  • Ruggeri, Z. M., 1993, von Willebrand factor and fibrinogen, Curr. Opin. Cell Biol. 5:898–906.

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti, E., 1991, Integrins, J. Clin. Invest. 87:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Ruoss, S. J., Hartmann, T., and Caughey, G. H., 1991, Mast cell tryptase is a mitogen for cultured fibroblasts, J. Clin. Invest. 88:493–499.

    Article  PubMed  CAS  Google Scholar 

  • Saarialho-Kere, U. K., Chang, E. S., Welgus, H. G., and Parks, W. C., 1992, Distinct localization of collagenase and tissue inhibitor of metalloproteinases expression in wound healing associated with ulcerative pyogenic granuloma, J. Clin. Invest. 90:1952–1957.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, L., Keene, D. R., Morris, N. P., and Burgeson, R. E., 1986, Type VII collagen is a major structural component of anchoring fibrils, J. Cell Biol. 103:1577–1586.

    Article  PubMed  CAS  Google Scholar 

  • Sakata, Y., and Aoki, N., 1980, Cross-linking of α2-plasma inhibitor to fibrin by fibrin-stabilizing factor, J. Clin. Invest. 65:290–297.

    Article  PubMed  CAS  Google Scholar 

  • Salonen, E.-M., Vaheri, A., Pollanen, J., Stephens, R., Andreasen, P., Mayer, M., Dano, K., Gailit, J., and Ruoslahti, E., 1989, Interaction of plasminogen activator inhibitor (PAI-1) with vitronectin, J. Biol. Chem. 264:6339–6343.

    PubMed  CAS  Google Scholar 

  • Samuel, S. K., Hurta, R. A. R., Spearman, M. A., Wright, J. A., Turley, E. A., and Greenberg, A. H., 1993, TGF-β1 stimulation of cell locomotion utilizes the hyaluronan receptor RHAMM and hyaluronan, J. Cell Biol. 123:749–758.

    Article  PubMed  CAS  Google Scholar 

  • Saus, J., Quinones, S., Otani, Y., Nagase, H., Harris, Jr., E. D., and Kurkinen, M., 1988, The complete primary structure of human matrix metallo-proteinase-3. Identity with stromelysin, J. Biol. Chem. 263:6742–6745.

    PubMed  CAS  Google Scholar 

  • Savani, R. C., Wang, C., Yang, B., Zang, S., Kinsella, M. G., Wight, T. N., Stern, R., Nance, D. M., and Turley, E. A., 1994a, Migration of bovine aortic and muscle cells after wound injury: A role for hyaluronan and the hyaluronan receptor RHAMM, J. Clin. Invest. 95:1158–1168.

    Article  Google Scholar 

  • Savani, R. C., Wang, C., Stern, R., Khalil, N., Greenberg, A. H., and Turley, E. A., 1994b, The expression and role of hyaluronan (HA) and the HA receptor RHAMM in bleomycin-induced pulmonary inflammation, J. Exp. Med. In Press

    Google Scholar 

  • Sawada, H., Konomi, H., and Hirosawa, K., 1990, Characterization of the collagen in hexagonal lattice of Descemet’s membrane: Its relation to type VIII collagen, J. Cell. Biol., 110:219–227.

    Article  PubMed  CAS  Google Scholar 

  • Scharffetter, K., Kulozik, M., Stolz, W., Lankat-Buttgereit, B., Hatamochi, A., Sohnchen, R., and Krieg, T., 1989, Localization of collagen α1(I) gene expression during wound healing by in situ hybridization, J. Invest. Dermatol. 93:405–412.

    Article  PubMed  CAS  Google Scholar 

  • Schiro, J. A., Chan, B. M. C., Roswit, W. R., Kassner, P. D., Pentland, A. P., Hemler, M. E., Eisen, A. Z., and Kupper, T. S., 1991, Integrin α2β1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells, Cell 67:403–410.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, G., Rotatori, D. S., and Clark, W., 1991, EGF and TGF-α in wound healing and repair, J. Cell. Biochem. 45:346–352.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J. E., 1993, Proteoglycan-fibrillar collagen interactions in tissues: Dermatan sulfate proteoglycan as a tissue organizer, in: Dermatan Sulphate Proteoglycans: Chemistry, Biology, Chemical Pathology (J. E. Scott, ed.), pp. 165–181, Portland Press, London, England.

    Google Scholar 

  • Screaton, G. R., Bell, M. V., Jackson, D. G., Cornelis, F. B., Gerth, U., and Bell, J. I., 1992, Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons, Proc. Natl. Acad. Sci. USA 89:12160–12164.

    Article  PubMed  CAS  Google Scholar 

  • Senior, R. M., Griffin, G. L., and Mecham, R. P., 1980, Chemotactic activity of elastin-derived peptides, J. Clin. Invest. 66:859–862.

    Article  PubMed  CAS  Google Scholar 

  • Senior, R. M., Huang, J. S., Griffin, G. L., and Deuel, T. F., 1985, Dissociation of the chemotactic and mitpgenic activities of platelet-derived growth factor by human neutrophil elastase, J. Cell Biol. 100:351–356.

    Article  PubMed  CAS  Google Scholar 

  • Senior, R. M., Griffin, G. L., Perez, H. D., and Webster, R. O., 1988, Human C5a and C5a des arg exhibit chemotactic activity for fibroblasts, J. Immunol. 141:3570–3574.

    PubMed  CAS  Google Scholar 

  • Seppa, H. E. J., Grotendorst, G. R., Seppa, S. I., Schiffmann, E., and Martin, G. R., 1982, Platelet-derived growth factor is chemotactic for fibroblasts, J. Cell Biol. 92:584–588.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, R. J., Doherty, D. E., Ritter, A. G., Benedict, S. H., and Clark, R. A. F., 1990, Adherence-dependent increase in human monocyte PDGF(B) mRNA is associated with increases in c-fos, c-jun, and EGF2 mRNA, J. Cell Biol. 111:2139–2148.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, R. J., Benedict, S. H., Clark, R. A. F., and King, Jr., T. E., 1991, Pathogenesis of pulmonary fibrosis in interstitial lung disease: Alveolar macrophage PDGF(B) gene activation and up-regulation by interferon gamma, Am. Rev. Resp. Dis. 143:167–173.

    Article  PubMed  CAS  Google Scholar 

  • Shetlar, M. R., Shetlar, C. L., Chien, S.-F., Linares, H. A., Dobrokovsky, M., and Larson, D. L., 1972, The hypertrophic scar. Hexosamine containing components of burn scars, Proc. Soc. Exp. Biol. Med. 139:544–547.

    Article  PubMed  CAS  Google Scholar 

  • Shimokado, K., Raines, E. W., Madtes, D. K., Barrett, T. B., Benditt, E. P., and Ross, R., 1985, A significant part of macrophage-derived growth factor consists of two forms of PDGF, Cell 43:277–286.

    Article  PubMed  CAS  Google Scholar 

  • Shipley, G. D., Pittelkow, M. R., Wille, J. J., Scott, R. E., and Moses, H. L., 1986, Reversible inhibition of normal human prokeratinocyte proliferation by type β transforming growth factor-growth inhibitor in serum-free medium, Cancer Res. 46:2068–2071.

    PubMed  CAS  Google Scholar 

  • Sholley, M. M., Gimbrone, M. A. J., and Cotran, R. S., 1978, The effects of leukocyte depletion on corneal neovascularization, Lab. Invest. 38:32–40.

    Article  PubMed  CAS  Google Scholar 

  • Siebenlist, K. R., DiOrio, J. P., Budzynski, A. Z., and Mosseson, M. W., 1990, The polymerization and thrombin-binding properties of des-(Bβ1-42)-fibrin, J. Biol. Chem. 265:18650–18655.

    PubMed  CAS  Google Scholar 

  • Singer, I.I., Kawka, D. W., Kazazis, D. M., and Clark, R. A. F., 1984, In vivo co-distribution of fibronectin and actin fibers in granulation tissue: Immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface, J. Cell Biol. 98:2091–2106.

    Article  PubMed  CAS  Google Scholar 

  • Singer, I. I., Scott, S., Kawka, D. W., Kazazis, D. M., Gailit, J., and Ruoslahti, E., 1988, Cell surface distribution of fibronectin and vitronectin receptors depends on substrate composition and extracellular matrix accumulation, J. Cell Biol. 106:2171–2182.

    Article  PubMed  CAS  Google Scholar 

  • Somers, C. E., and Mosher, D. F., 1993, Protein kinase C modulation of fibronectin matrix assembly, J. Biol. Chem. 268:22277–22280.

    PubMed  CAS  Google Scholar 

  • Sottile, J., and Wiley, S., 1994, Assembly of amino-terminal fibronectin dimers into the extracellular matrix, J. Biol. Chem. 269:17192–17198.

    PubMed  CAS  Google Scholar 

  • Spivak-Kroizman, T., Lemmon, M. A., Dikic, I., Ladbury, J. E., Pinchasi, D., Huang, F., Jaye, M., Crumley, G., Schlessinger, J., and Lax, I., 1994, Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation and cell proliferation, Cell 79:1015–1024.

    Article  PubMed  CAS  Google Scholar 

  • Sporn, M. B., and Roberts, A. B., 1986, Peptide growth factors and inflammation, tissue repair, and cancer, J. Clin. Invest. 78:329–332.

    Article  PubMed  CAS  Google Scholar 

  • Sporn, M. B., and Roberts, A. M., 1992, Transforming growth factor-β: Recent progress and new challenges, J. Cell Biol. 119:1017–1021.

    Article  PubMed  CAS  Google Scholar 

  • Sporn, M. B., Roberts, A. B., Shull, J. H., Smith, J. M., Ward, J. M., and Sodek, J., 1983, Polypeptide transforming growth factor isolated from bovine sources and used for wound healing in vitro, Science 219:1329–1331.

    Article  PubMed  CAS  Google Scholar 

  • Sprugel, K. H., McPherson, J. M., Clowes, A. W., and Ross., R., 1987, Effects of growth factors in vivo, Am. J. Pathol. 129:601–613.

    PubMed  CAS  Google Scholar 

  • Staatz, W. D., Rajpara, S. M., Wayner, E. A., Carter, W. G., and Santoro, S. A., 1989, The membrane glycoprotein Ia-IIa (VLA-2) complex mediates the Mg++-dependent adhesion of platelets to collagen, J. Cell Biol. 108:1917–1924.

    Article  PubMed  CAS  Google Scholar 

  • Stamenkovic, I., and Aruffo, A., 1994, Hyaluronic acid receptors, in: Methods in Enzymology (E. Ruoslahti and E. Engvall, ed.), pp. 195–218, Academic Press, San Diego, CA.

    Google Scholar 

  • Stamenkovic, I., Amiot, M., Pesando, J. M., and Seed, B., 1989, A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family, Cell 56:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  • Stenn, K. S., Madri, J. A., and Roll, R. J., 1979, Migrating epidermis produces AB2 collagen and requires continual collagen synthesis for movement, Nature 277:229–232.

    Article  PubMed  CAS  Google Scholar 

  • Stern, D. M., Nawroth, P. P., Marcum, J., Handley, D., Kisiel, D., Rosenberg, R., and Stern, K., 1985, Interaction of antithrombin III with bovine aortic segments, J. Clin. Invest. 75:272–279.

    Article  PubMed  CAS  Google Scholar 

  • Stetler-Stevenson, W. G., Krutzsch, H. C., Wacher, M. P., Margulies, I. M. K., and Liotta, L. A., 1989, The activation of human type IV collagenase proenzyme. Sequence identification of the major conversion product following organomercurial activation, J. Biol. Chem. 264:1353–1356.

    PubMed  CAS  Google Scholar 

  • Stimler, N. P., Bach, M. K., Bloor, C. M., and Hugli, T. E., 1982, Release of leukotrienes from guinea pig lung stimulated by C5a des arg anaphylatoxin, J. Immunol. 128:2247–2257.

    PubMed  CAS  Google Scholar 

  • Thomas, L., Byers, H. R., Vink, J., and Stamenkovic, I., 1992, CD44H regulates tumor cell migration on hyaluronate-coated substrate, J. Cell Biol. 118:971–977.

    Article  PubMed  CAS  Google Scholar 

  • Thorsen, S., Glas-Greenwalt, P., and Astrup, T., 1972, Difference in the binding to fibrin of urokinase and tissue plasminogen activator, Thromb. Pathol. Haemost. 28:65–74.

    CAS  Google Scholar 

  • Toda, K.-I., Tuan, T.-L., Brown, P. J., and Grinnell, F., 1987, Fibronectin receptors of human keratinocytes and their expression during cell culture, J. Cell Biol. 105:3097–3104.

    Article  PubMed  CAS  Google Scholar 

  • Tomida, M., Koyama, H., and Ono, T., 1974, Hyaluronic acid synthetase in cultured mammalian cells producing hyaluronic acid. Oscillatory change during the growth phase and suppression by 5-bro-modeoxyuridine, Biochim. Biophys. Acta 338:352–363.

    Article  CAS  Google Scholar 

  • Tonnesen, M. G., Worthen, G. S., and Johnston, R. B. J., 1988, Neutrophil emigration, activation, and tissue damage, in: Molecular and Cellular Biology of Wound Repair (R. A. F. Clark and P. M. Henson, eds.), pp. 149–183, Plenum Press, New York.

    Chapter  Google Scholar 

  • Tonnesen, M. G., Anderson, D. C., Springer, T. A., Knedler, A., Avdi, N., and Henson, P. M., 1989, Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95 glycoprotein family, J. Clin. Invest. 83:637–646.

    Article  PubMed  CAS  Google Scholar 

  • Toole, B. P., 1972, Hyaluronate turnover during chondrogenesis in the developing chick limb and axial skeleton, Dev. Biol. 29:321–329.

    Article  PubMed  CAS  Google Scholar 

  • Toole, B. P., 1981, Glycosaminoglycans in morphogenesis, in: Cell Biology of Extracellular Matrix (E. D. Hay, ed.), pp. 259–294, Plenum Press, New York.

    Chapter  Google Scholar 

  • Toole, B. P., 1991, Proteoglycans and hyaluronan in morphogenesis and differentiation, in: Cell Biology of the Extracellular Matrix (E. D. Hay, ed.), pp. 305–341, Plenum Press, New York.

    Chapter  Google Scholar 

  • Toole, B. P., and Gross, J., 1971, The extracellular matrix of the regenerating newt limb: Synthesis and removal of hyaluronate prior to differentiation, Dev. Biol. 25:57–77.

    Article  PubMed  CAS  Google Scholar 

  • Trinkaus, J. P., 1984, Cells into Organs. The Forces That Shape the Embryo, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Tuckwell, D. S., Ayad, S., Grant, M. E., Takigawa, M., and Humphries, M. J., 1994, Conformation dependence of integrin-type II collagen binding. Inability of collagen peptides to support α1β1 binding, and mediation of adhesion to denatured collagen by a novel α5β1-fibronectin bridge, J. Cell Sci. 107(Pt4):993–1005.

    PubMed  CAS  Google Scholar 

  • Turley, E. A., 1992, Hyaluronan and cell locomotion, Cancer Metastasis Rev. 11:21–30.

    Article  PubMed  CAS  Google Scholar 

  • Underhill, C., 1992, CD44: The hyaluronan receptor, J. Cell Sci. 103:293–298.

    PubMed  CAS  Google Scholar 

  • Unemore, E. N., and Werb, Z., 1986, Reorganization of polymerized actin: A possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels, J. Cell Biol. 103:1021–1031.

    Article  Google Scholar 

  • Vartio, T., Seppa, H., and Vaheri, A., 1981, Susceptibility of soluble and matrix fibronectins to degraduation by tissue proteinases, mast cell chymase and cathepsin G, J. Biol. Chem. 256:471–477.

    PubMed  CAS  Google Scholar 

  • Viljanto, J., Penttinen, R., and Raekallio, J., 1981, Fibronectin in early phases of wound healing in children, Acta Chir. Scand. 147:7–13.

    PubMed  CAS  Google Scholar 

  • Vlodavsky, I., Fuks, Z., Ishai-Michaeli, R., Bashkin, P., Levi, E., Korner, G., Bar-Shavit, R., and Klagsbrun, M., 1991, Extrcellular matrix-resident basic fibroblast growth factor: Implication for the control of angiogenesis, J. Cell. Biochem. 45:167–176.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, O. F., Nicolosa, G., and Bachmann, F., 1989, Plasminogen activator inhibitor 1: Development of a radioimmunoassay and observations on its plasma concentration during venous occlusion and after platelet aggregation, Blood 70:1645–1653.

    Google Scholar 

  • Wahl, S. M., Hunt, D. A., Wakefield, L. M., McCartney-Francis, N., Wahl, L. M., Roberts, A. B., and Sporn, M. B., 1987, Transforming growth factor type β induces monocyte chemotaxis and growth factor production, Proc. Natl. Acad. Sci. USA 84:5788–5792.

    Article  PubMed  CAS  Google Scholar 

  • Wall, R. T., Harker, L. A., and Striker, G. E., 1978, Human endothelial cell migration. Stimulated by a released platelet factor, Lab. Invest. 39:523–529.

    PubMed  CAS  Google Scholar 

  • Wayner, E. A., and Carter, W. G., 1989, Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique a and common β subunits, J. Cell Biol. 105:1873–1884.

    Article  Google Scholar 

  • Weisman, D. M., Polverini, P. J., Kamp, D. W., and Leibovich, S. J., 1988, Transforming growth factor-beta (TGF-β) is chemotactic for human monocytes and induces their expression of angiogenic activity, Biochem. Biophys. Res. Commun. 157:793–800.

    Article  Google Scholar 

  • Weksler, B. B., 1992, Platelets, in: Inflammation: Basic Principle and Clinical Correlates (J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 727–746, Raven Press, New York.

    Google Scholar 

  • Welch, M. P., Odland, G. F., and Clark, R. A. F., 1990, Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction, J. Cell Biol. 110:133–145.

    Article  PubMed  CAS  Google Scholar 

  • Werb, Z., and Clark, E. J., 1989, Phorbol diesters regulate expression of the membrane neutral metalloen-dopeptidase (EC 3.4.24.11) in rabbit synovial fibroblasts and mammary epithelial cells, J. Biol. Chem. 264:9111–9113.

    PubMed  CAS  Google Scholar 

  • Werb, Z., Tremble, P. M., Behrendtsen, O., Crowley, E., and Damsky, C. H., 1989, Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression, J. Cell Biol. 109:877–889.

    Article  PubMed  CAS  Google Scholar 

  • Werb, Z., Tremble, P., and Damsky, C. H., 1990, Regulation of extracellular matrix degradation by cell-extracellular matrix interactions, Cell. Differ. Dev. 32:299–306.

    Article  PubMed  CAS  Google Scholar 

  • Werner, S., Peters, K. G., Longaker, M. T., Fuller-Pace, F., Banda, M. J., and Williams, L. T., 1992, Large induction of keratinocyte growth factor in the dermis during wound healing, Proc. Natl. Acad. Sci. USA 89:6896–6900.

    Article  PubMed  CAS  Google Scholar 

  • Werner, S., Breeden, M., Hubner, G., Greenhalgh, D. G., and Longaker, M. T., 1994, Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse, J. Invest. Dermatol. 103:469–475.

    Article  PubMed  CAS  Google Scholar 

  • Wight, T. N., Heinegard, D. K., and Hascall, V. C., 1991, Proteoglycans: Structure and function, in: Cell Biology of Extracellular Matrix (E. D. Hay, ed.), pp. 45–78, Plenum Press, New York.

    Chapter  Google Scholar 

  • Wikner, N. E., Persichitte, K. A., Baskin, J. B., Nielsen, L. D., and Clark, R. A. F., 1988, Transforming growth factor-β stimulates the expression of fibronectin by human keratinocytes, J. Invest. Dermatol. 91:207–212.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm, S. M., Collier, I. E., Kronberger, A., Eisen, A. Z., Marnier, B. L., Grant, G. A., Bauer, E. A., and Goldberg, G. I., 1987, Human skin fibroblast stromelysin: Structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells, Proc. Natl. Acad. Sci. USA 84:6725–6729.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, P. C., and Lackie, J. M., 1983, The influence of contact guidance on chemotaxis of human neutrophil leukocytes, Exp. Cell Res. 145:255–264.

    Article  PubMed  CAS  Google Scholar 

  • Williams, G. T., 1991, Programmed cell death: Apoptosis and oncogenesis, Cell 65:1097–1098.

    Article  PubMed  CAS  Google Scholar 

  • Williams, T. J., 1988, Factors that affect vessel reactivity and leukocyte emigration, in: Molecular and Cellular Biology of Wound Repair (R. A. F. Clark and P. M. Henson, eds.), pp. 115–183, Plenum Press, New York.

    Chapter  Google Scholar 

  • Wilner, G. D., Danitz, M. P., Mudd, M. S., Hsieh, K.-H., and Fenton II, J. W., 1981, Selective immobilization of alpha-thrombin by surface-bound fibrin, J. Lab. Clin. Med. 97:403–411.

    PubMed  CAS  Google Scholar 

  • Winter, G. D., 1962, Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig, Nature 193:293–294.

    Article  PubMed  CAS  Google Scholar 

  • Winter, G. D., 1972, Epidermal regeneration studied in the domestic pig, in: Epidermal Wound Healing (H. I. Maibach and D. T. Rovee, eds.), pp. 71–112, Yearbook Medical Publishing, Chicago.

    Google Scholar 

  • Wolpe, S. D., and Cerami, A., 1989, Macrophage inflammatory proteins 1 and 2: Members of a novel superfamily of cytokines, FASEB J. 3:2565–2573.

    PubMed  CAS  Google Scholar 

  • Wood, G. C., 1960, The formation of fibrils from collagen solutions. Effect of chondroitin sulfate and other naturally occurring polyanions on the rate of formation, Biochem. J. 75:605–612.

    PubMed  CAS  Google Scholar 

  • Woodley, D. T., Kalebec, T., Banes, A. J., Link, W., Prunieras, M., and Liotta, L., 1986, Adult human keratinocytes migrating over nonviable dermal collagen produce collagenolytic enzymes that degrade type I and type IV collagen, J. Invest. Dermatol. 86:418–423.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., Yamauchi, M., Wynn, K. C., Mechanic, G., and Briggaman, R. A., 1991, Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction, J. Invest. Dermatol. 97:580–585.

    Article  PubMed  CAS  Google Scholar 

  • Woods, A., and Couchman, J. R., 1994, Syndecan-4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion components, Mol. Biol. Cell 5:183–192.

    PubMed  CAS  Google Scholar 

  • Wu, C., Bauer, J. S., Juliano, R. L., and McDonald, J. A., 1993, The α5β1 integrin fibronectin receptor, but not the α5 cytoplasmic domain, functions in an early and essential step in fibronectin matrix assembly, J. Biol. Chem. 268:21883–21888.

    PubMed  CAS  Google Scholar 

  • Xu, J., and Clark, R. A. F., 1995, Extracellular matrix alters PDGF regulation of fibroblast integrins, J. Cell Biol., in press.

    Google Scholar 

  • Yamagata, M., Saga, S., Kato, M., Bernfield, M., and Kimata, K., 1993, Selective distributions of proteoglycans and their ligands in pericellular matrix of cultured fibroblasts. Implications for their roles in cell-substratum adhesion, J. Cell Sci. 106:55–65.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, T., and Ruoslahti, E., 1988, Expression of human proteoglycan in Chinese hamster ovary cells inhibits cell proliferation, Nature 336:244–246.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, T., Mann, D. M., and Ruoslahti, E., 1990, Negative regulation of transforming growth factor-β by the proteoglycan decorin, Nature 346:281–284.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, T., and Cochrane, C. G., 1981, Guinea pig Hageman factor as a vascular permeability enhancement factor, Am. J. Pathol. 105:164–175.

    PubMed  CAS  Google Scholar 

  • Yamauchi, M., London, R. E., Guenat, C., Hashimoto, F., and Mechanic, G. L., 1987, Structure and formation of a stable histidine-based trifunctional cross-link in skin collagen, J. Biol. Chem. 262:11428–11434.

    PubMed  CAS  Google Scholar 

  • Yang, B., Yang, B., Savani, R. C., and Turley, E. A., 1994, Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 an link protein, EMBO J. 13:286–296.

    PubMed  Google Scholar 

  • Yang, E. Y., and Moses, H. L., 1990, Transforming growth factor-β1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane, J. Cell Biol. 111:731–741.

    Article  PubMed  CAS  Google Scholar 

  • Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M., 1991, Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell 64:841–848.

    Article  PubMed  CAS  Google Scholar 

  • Yeo, T.-K., Brown, L., and Dvorak, H. F., 1991, Alterations in proteoglycan synthesis common to healing wounds and tumors, Am. J. Pathol. 138:1437–1450.

    PubMed  CAS  Google Scholar 

  • Yurchenco, P. D., and Schittny, J. C., 1990, Molecular architecture of basement membranes, FASEB J 4:1577–1590.

    PubMed  CAS  Google Scholar 

  • Zhang, Z., Morla, A. O., Vuori, K., Bauer, J. S., Juliano, R. L., and Ruoslahti, E., 1993, The αvβ1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin, J. Cell Biol. 122:235–242.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clark, R.A.F. (1988). Wound Repair. In: Clark, R.A.F. (eds) The Molecular and Cellular Biology of Wound Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0185-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0185-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0187-3

  • Online ISBN: 978-1-4899-0185-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics