Skip to main content

Architecture, Connectivity, and Transmitter Receptors of Human Extrastriate Visual Cortex

Comparison with Nonhuman Primates

  • Chapter
Extrastriate Cortex in Primates

Part of the book series: Cerebral Cortex ((CECO,volume 12))

Abstract

The cytoarchitectonic and myelogenetic maps of the mammalian visual cortex (Brodmann, 1903, 1905, 1906, 1908a, 1908b, 1909; Flechsig, 1920; Economo and Koskinas, 1925) represented for decades widely accepted organizational concepts. Lately, they have been losing some of their importance, mainly for two reasons. First, the schematic figures published by these authors are often used for purposes of cortical localization, often by surface landmarks, without recourse to histological identification of areas and without taking into account ambiguities of definitions and interindividual variations. Second, purely architectonic maps tend to be replaced by more functionally relevant parcellations (for review see Felleman and van Essen, 1991; Kaas and Krubitzer, 1991; Kaas, 1993; Zeki, 1993). We aim at reestablishing the importance of the architectonic approach to the human cortex by reviewing critically classic and modern architectonic studies and by relating them to hodological and activation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright, T. D., 1984, Direction and orientation selectivity of neurons in visual area MT of the macaque, J. Neurophysiol. 52: 1106–1130.

    CAS  PubMed  Google Scholar 

  • Allison, T., Begleiter, A., McCarthy, G., Roessler, E., Nobre, A. C., and Spencer, 1). D., 1993, Electrophysiological studies of color processing in human visual cortex, Electroenceph. Clin. Neurophysiol. 88: 343–355.

    CAS  PubMed  Google Scholar 

  • Allison, T., Ginter, H., McCarthy, G., Nobre, A. C., Puce, A., Luby, M., and Spencer, D. D., 1994, Face recognition in human extrastriate cortex, J. Neurophysiol. 71: 821–825.

    CAS  PubMed  Google Scholar 

  • Allman, J. M., and Kaas, J. H., 1971, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus), Brain Res. 31: 85–105.

    CAS  PubMed  Google Scholar 

  • Allman, J. M., and Kaas, J. H., 1975, The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgalus), Brain Res. 100: 473–487.

    CAS  PubMed  Google Scholar 

  • Allman, J. M., Kaas, J. H., and Lane, R. H., 1973, The middle temporal visual area (MT) in the bushbaby (Galago senegalensis), Brain Res. 57: 197–202.

    CAS  PubMed  Google Scholar 

  • Bailey, P., and von Bonin, G., 1951, The Isocortex of Man, University of Illinois Press, Urbana, IL. Balzer, J. S., Ungerleider, I. G., and Desimone, R., 1991, Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques, J. Neurosci. 11: 168–190.

    Google Scholar 

  • Baker, J. F., Petersen, S. E., Newsome, W. T., and Allman, J. M., 1981, Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral and middle temporal areas, J. Neurophysiol. 45: 397–416.

    CAS  PubMed  Google Scholar 

  • Baleydier, C., and Morel, A., 1992, Segregated thalamocortical pathways to inferior parietal and inferotemporal cortex in macaque monkey, Visual Neurosci. 8 (5): 391–405.

    CAS  Google Scholar 

  • Barbur, J., Watson, J., Frackowiak, R., and Zeki, S., 1993, Conscious visual perception without V I, Brain 116: 1293–1302.

    PubMed  Google Scholar 

  • Barton, J. J. S., Sharpe, J. A., and Raymond, J. E., 1995, Retinotopic and directional defects in motion discrimination in humans with cerebral lesions, Ann. Neurol. 37: 665–675.

    CAS  PubMed  Google Scholar 

  • Beckers, G., and Zeki, S., 1995, The consequences of inactivating areas VI and V5 on visual motion perception, Brain 118: 49–60.

    PubMed  Google Scholar 

  • Benevento, L. A., and Davis, B., 1977, Topographical projections of the prestriate cortex to the pulvinar nuclei in the macaque monkey: An autoradiographic study, Exp. Brain Res. 30 (23): 405–424.

    CAS  PubMed  Google Scholar 

  • Benevento, I. A., and Fallon, J. H., 1975, The ascending projections of the superior colliculus in the rhesus monkey (Macaca rrtulatta), J. Comp. Neurol. 160: 339–362.

    CAS  PubMed  Google Scholar 

  • Benevento, L. A., and Yoshida, K., 1981, The afferent and efferent organization of the lateral geniculo-prestriate pathways in the macaque monkey,/ Comp. Neurol. 203 (3): 455–474.

    CAS  Google Scholar 

  • Betz, W., 1874, Anatomischer Nachweis zweier Gehirncentra, Zenlralbl. Med. Wiss. 19:193–195, 210–213, 231–234.

    Google Scholar 

  • Binder, J. R., and Mohr, J. P., 1992, The topography of callosal reading pathways. A case—control analysis, Brain 115: 1807–1826.

    PubMed  Google Scholar 

  • Blümcke, I., and Celio, M. R., 1992, Parvalbumin and calbindin D-28k immunoreactivities coexist within cytochrome oxidase-rich compartments of squirrel monkey area 18, Exp. Brain Res. 92: 39–45.

    PubMed  Google Scholar 

  • Bolton, J. S., 1900, The exact histological localisation of the visual area of the human cerebral cortex, Phil. Trans. R. Soc. Lond. 193: 165–222.

    Google Scholar 

  • Bonin, G. von, and Bailey, P., 1951, The Isocortex of Man, University of Illinois Press, Urbana, IL. Born, R. T., and Motel!, R. B. H., 1992, Segregation (I’ global and local motion processing in primate middle temporal visual area, Nature 357: 497–499.

    Google Scholar 

  • Boussaoud, 1)., Ungerleider, L. G., and Desimone, R., 1990, Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque, J. Comp. Neurol. 296: 462–495.

    Google Scholar 

  • Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1992, Subcortical connections of visual areas MST and FST in macaques, Visual Neurosci. 9 (3–4): 291–302.

    CAS  Google Scholar 

  • Braak, H., 1977, The pigment architecture of the human occipital lobe, Anal. Embr yol. 150:229–250. Braak, H., 1980, Architectonics of the Human Telencephalic Cortex, Springer, Berlin.

    Google Scholar 

  • Brodmann, K., 1903, Beiträge zur histologischen Lokalisation der Grosshirnrinde. Zweite Mitteilung: Der Calcarinatypus, J. Psychol. Neurol. 2: 133–159.

    Google Scholar 

  • Brodmann, K., 1905, Beiträge zur histologischen Lokalisation der Grosshirnrinde. Dritte Mitteilung: Die Rindenfelder der niederen Affen, f. Psychol. Neurol. 4:177–226.•

    Google Scholar 

  • Brodmann, K., 1906, Beiträge zur histologischen Lokalisation der Grosshirnrinde. Fünfte Mitteilung: Über den allgemeinen Bauplan des Cortex pallii bei den Mammaliern und zwei homologe Rindenfelder im besonderen. Zugleich ein Beitrag zur Furchenlehre, J. Psychol. Neurol. 6: 275–400.

    Google Scholar 

  • Brodmann, K., 1908a, Beiträge zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung. Die Cortexgliederung des Menschen, J. Psychol. Neurol. 10: 231–246.

    Google Scholar 

  • Brodmann, K., 1908b, Beiträge zur histologischen Lokalisation der Grosshirnrinde. VII. Mitteilung: Die cytoarchitektonische Cortexgliederung der Halbaffen Lemuriden, J. Psycho!. Neurol. 10: 287–334.

    Google Scholar 

  • Brodman, K., 1909, Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenhaus, Barth, Leipzig.

    Google Scholar 

  • Bullier, J., and Kennedy, H., 1983, Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey, Exp. Brain Res. 53: 168–172.

    CAS  PubMed  Google Scholar 

  • Burkhalter, A., and Bernardo, K. L., 1989, Organization of cortico-cortical connections in human visual cortex, Proc. Natl. Acad. Sci. USA 86: 1071–1075.

    CAS  PubMed  Google Scholar 

  • Burkhalter, A., Bernardo, K. L., and Charles, V., 1993, Development of local circuits in human visual cortex, J. Neurosci. 13: 1916–1931.

    CAS  PubMed  Google Scholar 

  • Burnet, P. W. J., Eastwood, S. L., Lacey, K., and Harrison, P. J., 1995, The distribution of 5–11FI,s and 5-H’l’_A receptor mRNA in human brain, Brain Res. 676: 157–168.

    CAS  PubMed  Google Scholar 

  • Campbell, A. W., 1905, Histological Studies on the Localisation of Cerebral Function, Cambridge University Press, Cambridge.

    Google Scholar 

  • Camps, M., Cortés, R., Gueye, B., Probst, A., and Palacios, J. M., 1989, Dopamine receptors in human brain: Autoradiographic distribution of D., sites Neuroscience 28: 275–290.

    CAS  PubMed  Google Scholar 

  • Carroll, E. W., and Wong-Riley, M. T. T., 1984, Quantitative light and electronmicroscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey, J. Comp. Neurol. 222: 1–17.

    CAS  PubMed  Google Scholar 

  • Casagrande, V., and Kaas, J. H., 1994, The afferent, intrinsic, and efferent connections of primary visual cortex in primates, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. Rockland, eds.), Plenum Press, New York, pp. 201–259.

    Google Scholar 

  • Cheng, K., Fujita, FI., Kanno, 1., Miura, S., and Tanaka, K., 1995, Human cortical regions activated by wide-field visual motion: An HO’B’O PET study, J. Neurophysiol. 74: 413–427.

    CAS  Google Scholar 

  • Clark, W. E., and Russell, W. R., 1939, Observations on the efferent connections of the centre median nucleus, J. Anal. 73: 255–262.

    Google Scholar 

  • Clarke, S., 1993, Callosal connections and functional subdivision of the human occipital cortex, in: Functional Organization of the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. E. Roland, eds.), Pergamon Press, Oxford, pp. 137–150.

    Google Scholar 

  • Clarke, S., 1994a, Association and intrinsic connections of human extrastriate visual cortex, Proc. R. Soc. Lond. B Biol.Sci. 257: 87–92.

    CAS  Google Scholar 

  • Clarke, S., 19946, Modular organization of human extrastriate visual cortex: Evidence from cytochrome oxidase pattern in normal and macular degeneration cases, Fur. /. Neurosci. 6: 725–736.

    Google Scholar 

  • Clarke, S., and Miklossy, J., 1990, Occipital cortex in man: Organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas,/ Comp. Neurol. 298: 188–214.

    CAS  Google Scholar 

  • Clarke, S., Assal, G., Bogousslaysky, J., Regli, F., Townsend, I). W., Leenders, K. L., and Blecic, S., 1994, Pure amnesia after unilateral lift polar thalamic infarct: Topographic and sequential neuropsychological and metabolic (PET) correlations, I. Neural. Neurosurg. Psychiatry 57: 27–34.

    CAS  Google Scholar 

  • Clarke, S., Van Essen, D., Hadjikhani, N., Drury, H., and Coogan, T., I995a, Understanding human areas 18 and 37: Contribution of two-dimensional maps of visual callosal afferents, Hum. Brain Mapping Suppl. 1: 33.

    Google Scholar 

  • Clarke, S., Ribaupierre, F., de, Bajo, V. M., Rouiller, E. M., and Kraftsik, R., 1995b, The auditory pathway in cat corpus callosum, Exp. Brain Res. 104: 534–540.

    CAS  Google Scholar 

  • Colby, C. L., and Duhamel, J. R., 1991, Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey, Neuropsychologie 29: 517–537.

    CAS  Google Scholar 

  • Colby, C. 1.., Gattass, R., Olson, C. R., and Gross, C. G., 1988, Topographical organization of cortical afférents to extrastriate visual area PO in the macaque: A dual tracer study, J. Comp. Neural. 269: 392–413.

    CAS  Google Scholar 

  • Corbetta, M., Miezen, F. M., Dobmeyer, S., Shulman, G. L, and Petersen, S. E., 1990, Attentional modulation of neuronal processing of shape, color and velocity in humans, Science 248: 1556–1559.

    CAS  PubMed  Google Scholar 

  • Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. I.., and Petersen, S. E., 1991, Selective and divided attention during visual discrimination of shape, color and speed: Functional anatomy by positron emission tomography, J. Neurosci. 11: 2383–2402.

    CAS  PubMed  Google Scholar 

  • Cortés, R., Probst, A., “Fobler, H. J., and Palacios, J. M., 1986, Muscarinic cholinergie receptor subtype in the human brain. H. Quantitative autoradiographie studies, Brain Res. 362: 239–253.

    Google Scholar 

  • Cortés, R., Gueye, B., Pazos, A., Probst, A., and Palacios, J. M., 1989, Dopamine receptors in human brain: Autoradiographic distribution of D, sites, Neuroscience 28: 263–273.

    PubMed  Google Scholar 

  • Cragg, B. G., 1969, The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method, Virion Res. 9: 733–747.

    CAS  Google Scholar 

  • Creutzfeldt, O. D., 1995, Cortex Cerebri. Performance, Structural and Functional Organization of the Cortex, Oxford University Press, Oxford.

    Google Scholar 

  • Cusick, C. G., Seltzer, B., Cola, M., and Griggs, E., 1995, Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: Evidence for subdivisions of superior temporal polysensory cortex, J. Comp. Neurol. 360: 513–535.

    CAS  PubMed  Google Scholar 

  • Damasio, A., Yamada, T., Damasio, H., Corbett, J., and McKee, J., 1980, Central achromatopsia: Behavioral, anatomical and physiological aspects, Neurology 30: 1064–1071.

    CAS  PubMed  Google Scholar 

  • Dejerine, J., 1892, Contribution à l’étude anatomo-pathologique et clinique des différentes variétés de cécité verbale, C. R. Hebd. Séances Mém. Soc. Biol. 4: 61–90.

    Google Scholar 

  • Dejerine, J., and Dejerine-Klumpke, A., 1895, Anatomie des centres nerveux, Rueff, Paris.

    Google Scholar 

  • Dejerine, J., and Vialet, N., 1893, Contribution à l’étude de la localisation de la cécité verbale pure, C. R. Hebd. Séances Mém. Soc. Biol. 5: 790–793.

    Google Scholar 

  • De Jong, B. M., Shipp, S., Skidmore, B., Frackowiak, R. S. J., and Zeki, S., 1994, The cerebral activity related to the visual perception of forward motion in depth, Brain 117: 1039–1054.

    PubMed  Google Scholar 

  • De Lacoste, M. C., Kirkpatrick, J. B., and Ross, E. D., 1985, Topography of the human corpus callosum, J. Neuropathol. Exp. Neural. 44: 578–591.

    Google Scholar 

  • Desimone, R., and Schein, S. J., 1987, Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form, J. Neurophysiol. 57: 835–868.

    CAS  PubMed  Google Scholar 

  • Desimone, R., and Ungerleider, L. G., 1986, Multiple visual areas in the caudal superior temporal sulcus of the macaque,/ Comp. Neurol. 248: 164–189.

    CAS  Google Scholar 

  • Desimone, R., and Ungerleider, L. G., 1989, Neural mechanisms of visual processing in monkeys, in: Handbook of Neuropsychology, Volume 2 ( F. Boller, and J. Grafman, eds.), Elsevier, Amsterdam, pp. 267–299.

    Google Scholar 

  • DeYoe, E. A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.

    CAS  PubMed  Google Scholar 

  • DeYoe, E. A., and Van Essen, D. C., 1988, Concurrent processing streams in monkey visual cortex, Trends Neurosci. 5: 219–226.

    Google Scholar 

  • DeYoe, E. A., Hockfield, S., Garren, H., and Van Essen, D. C., 1990, Antibody labeling of functional subdivisions in visual cortex: CAT-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey, Visual Neurosci. 5: 67–81.

    CAS  Google Scholar 

  • DeYoe, E. A., Felleman, D. J., Van Essen, D. C., and McClendon, E., 1994, Multiple processing streams in occipitotemporal visual cortex, Nature 371: 151–154.

    CAS  PubMed  Google Scholar 

  • Diet!, M. M., Probst, A., and Palacios, J. M., 1987, On the distribution of cholecystokinin receptor binding in the human brain: An autoradiographie study, Synapse 1: 169–183.

    Google Scholar 

  • Distler, C., Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1993, Cortical connections of inferior temporal area TEO in macaque monkey, J. Camp. Neural. 334: 125–150.

    CAS  Google Scholar 

  • Distler, C., Bachevalier, J., Kennedy, C., Mishkin, M., and Ungerleider, L. G., 1996, Functional development of the corticocortical pathway for motion analysis in the macaque monkey: A ‘4C-2-deoxyglucose study, Cerebral Cortex 6: 184–195.

    CAS  PubMed  Google Scholar 

  • Di Virgilio, G., and Clarke, S., 1996, Human anterior commissure contains axons originating in the inferior part of the temporal lobe, Experientia 52: A76.

    Google Scholar 

  • Doty, R. W., 1983, Nongeniculate afferents to striate cortex in macaques,/ Comp. Neural. 218: 159173.

    Google Scholar 

  • Dupont, P., Orban, G. A., De Bruyn, B., Verbruggen, A., and Mortelmans, L., 1994, Many areas in the human brain respond to visual motion, J. Neurophysiol. 72: 1420–1424.

    CAS  PubMed  Google Scholar 

  • Elliot Smith, G., 1907, A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci, J. Anat. 41: 237–254.

    Google Scholar 

  • Felleman, D. J., and Kaas, J. H., 1984, Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys,]. Neurophysiol. 52: 488–513.

    CAS  Google Scholar 

  • Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1: 1–47.

    CAS  PubMed  Google Scholar 

  • Filimonoff, I. N., 1932, Über die Variabilität der Grosshirnrindenstruktur. Mitteilung II. Regio occipitalis beim erwachsenen Menschen, J. Psychol. Neural. 44: 1–96.

    Google Scholar 

  • Filimonoff, I. N., 1933, Über die Variabilität der Grosshirnrindenstruktur. Mitteilung Ill. Regio occipitalis bei den höheren und niederen Affen, J. Psychol. Neural. 45: 69–137.

    Google Scholar 

  • Fiorani, M., Jr., Gattas, R., Rosa, M. G. P., and Sousa, A. P. B., 1989, Visual area MT in the Cebu monkey: Location, visuotopic organization and variability, J. Comp. Neural. 287: 98–118.

    Google Scholar 

  • Flechsig, P., 1898, Neue Untersuchungen über die Markbildung in den menschlichen Grosshirnlappen, Neuro. Centralblalt 21: 977–996.

    Google Scholar 

  • Flechsig, P., 1920, Anatomie des menschlichten Gehirns und Rückenmarks auf myelogenetischer Grundlage, Thieme, Leipzig.

    Google Scholar 

  • Fries, W., 1981, The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey, Proc. R. Soc. Land. B 213: 73–80.

    CAS  Google Scholar 

  • Friston, K. J., Ungerleider, L. G., Jezzard, P., and Turner, R., 1995, Characterizing modulatory interactions between areas VI and V2 in human cortex: A new treatment of functional MRI data, Human Brain Mapping 2: 211–224.

    Google Scholar 

  • Galletti, C., Battaglini, P. P., and Fattori, P., 1991, Functional properties of neurons in the anterior bank of the parieto-occipital sulcus of the macaque monkey, Eur. J. Neurosci. 3: 452–461.

    PubMed  Google Scholar 

  • Galletti, C., Battaglini, P. P., and Fattori, P., 1993, Parietal neurons encoding spatial locations in craniotopic coordinates, Exp. Brain Res. 96: 221–229.

    CAS  PubMed  Google Scholar 

  • Gattass, R., and Gross, C. G., 1981, Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque, J. Neurophysiol. 46: 621–638.

    CAS  PubMed  Google Scholar 

  • Gattass, R., Gross, C. G., and Sandell, J. H., 1981, Visual topography of’ V2 in the macaque,/ Comp. Neurol. 201: 519–539.

    CAS  Google Scholar 

  • Lattas, R., Sousa, A. P., and Gross, C. G., 1988, Visuotopic organization and extent of V3 and V4 of the macaque, J. Neurosci. 8: 1831–1845.

    Google Scholar 

  • Gebhard, R., Zilles, K., Schleicher, A., Everitt, B. J., Robbins, ‘1’. W., and Divac, 1., 1993, Distribution of seven major neurotransmitter receptors in the striate cortex of the New World monkey Callithrix jacchus, Neuroscience 56: 877–885.

    CAS  Google Scholar 

  • Gibson, J. J., 1950, The Perception of the Visual World, Houghton Mifflin, Boston.

    Google Scholar 

  • Girard, P., Salin, P. A., and Bullier, J., 1992, Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1, J. Neurophysiol. 67: 1437–1446.

    CAS  PubMed  Google Scholar 

  • Glickstein, M., and Whitteridge, D., 1976, Degeneration of layer 11 pyramidal cells in area 18 following destruction of callosal input, Brain Res. 104: 148–151.

    CAS  PubMed  Google Scholar 

  • Grasser, O. J., and Landis, T., 1991, Visual agnosias and other disturbances of visual perception and cognition, in: Vision and Visual Dysfunction, Volume 12 (J. Cronly-Dillon, ed.), Macmillan Press, London.

    Google Scholar 

  • Gulyas, B., and Roland, P. E., 1991, Cortical fields participating in form and colour discrimination in the human brain, NeuroReport 2: 585–588.

    CAS  PubMed  Google Scholar 

  • Gulyas, B., and Roland, P. E., 1994a, Binocular disparity discrimination in human cerebral cortex: Functional anatomy by positron emission tomography, Proc. Natl. Acad. Sci. USA 91: 1239–1243.

    CAS  PubMed  Google Scholar 

  • Gulyas, B., and Roland, P. E., 1994b, Processing and analysis of form, colour and binocular disparity in the human brain: Functional anatomy by positron emission tomography, Eur. J. Neurosci. 6: 1811–1828.

    CAS  Google Scholar 

  • Halgren, E., Baudena, P., Hcit, G., Clarke, M., and Marinkovic, K., 1994, Spatiotemporal stages in face and word processing. 1. Depth-recorded potentials in the human occipital and parietal lobes, J. Physiol. 88: 1–50.

    CAS  Google Scholar 

  • Hammarberg, C., 1898, Studien über Klinik und Pathologie der Idiotie nebst Untersuchungen über die normale Anatomie der Hirnrinde, Nova Acta Regiae Soc. Sci. Ups. III/17: 1–126.

    Google Scholar 

  • Hardy, S. G., and Lynch, J. C., 1992, The spatial distribution of pulvinar neurons that project to two subregions of the inferior parietal lobule in the macaque, Cerebral Cortex 2 (3): 217–230.

    CAS  PubMed  Google Scholar 

  • Hassler, R., 1959, Anatomy of the thalamus, in: Einjúhrung in the stereotactischen Operationen mit einem Atlas des menschlichen Gehirns ( G. Schaltenbrand, and P. Bailey, eds.), G. Thieme, Stuttgart.

    Google Scholar 

  • Helmer, L., Ebner, F. F., and Nauta, W. J. H., 1967, A note on the termination of commissural fibers in the neocortex, Brain Res. 5: 171–177.

    Google Scholar 

  • Heinze, G., 1954, Zytoarchitektonische Untergliederung der Area occipitalis, J. Hirnforsch. 1: 173198.

    Google Scholar 

  • Hendry, S. H. C., Jones, E. G., and Beinfeld, M. C., 1983, Cholecystokinin-like immunoreactive neurons in rat and monkey cerebral cortex make symmetrical synapses and have intimate associations with blood vessels, Proc. Natl. Acad. Sci. USA 80: 2400–2404.

    CAS  PubMed  Google Scholar 

  • Hendry, S. H. C., Hockfield, S., Jones, E. G., and McKay, R., 1984, Monoclonal antibody that identifies subsets of neurones in the central visual system of monkey and cat, Nature 307: 267–269.

    CAS  PubMed  Google Scholar 

  • Hendry, S. H. C., Jones, E. G., Hockfield, S., and McKay, R. D. G., 1988, Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus, J. Neurosci. 8: 518–542.

    CAS  PubMed  Google Scholar 

  • Hendry, S. H. C., Fuchs, J. L., de Blas, A. L., and Jones, E. G., 1990, Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex, J. Neurosci. 10: 2438–2450.

    CAS  PubMed  Google Scholar 

  • Hendry, S. H. C., Huntsman, M., Vinuela, A., Mähler, H., de Blas, A., and Jones, E., 1994, GABAA receptor subunit immunoreactivity in primate visual cortex: Distribution in macaques and humans and regulation by visual input in adulthood, J. Neurosci. 14: 2383–2401.

    CAS  PubMed  Google Scholar 

  • Hernandez-Gonzalez, A., Cavada, C., and Reinoso-Suarez, F., 1994, The lateral geniculate nucleus projects to the inferior temporal cortex in the macaque monkey, NeuroReport 5 (18): 2693–2696.

    CAS  PubMed  Google Scholar 

  • Heywood, C. A., and Cowey, A., 1987, On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys, J. Neurosci. 7: 2601–2617.

    CAS  PubMed  Google Scholar 

  • Heywood, C. A., Gadotti, A., and Cowey, A., 1992, Cortical area V4 and its role in the perception of color, J. Neurosci. 12: 4056–4065.

    CAS  PubMed  Google Scholar 

  • Heywood, C. A., Gaffan, D., and Cowey, A., 1995, Cerebral achromatopsia in monkeys, Fur. J. Neurosci. 7: 1064–1073.

    CAS  Google Scholar 

  • Hitchcock, P. F., and Hickey, T. L., 1980, Ocular dominance columns: Evidence for their presence in humans, Brain Res. 182: 176–179.

    CAS  PubMed  Google Scholar 

  • Hockfield, S., Tootell, R. B. H., and Zaremba, S., 1990, Molecular differences among neurons reveal an organization of human visual cortex, Proc. Natl. Acad. Sci. USA 87: 3027–3031.

    CAS  PubMed  Google Scholar 

  • Hof, P. R., and Morrison, J. H., 1995, Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis, J. Comp. Neurol. 352: 161–186.

    CAS  PubMed  Google Scholar 

  • Horton, J. C., 1984, Cytochrome oxidase patches: A new cytoarchitonic feature of monkey cortex, Phil. Trans. R. Soc. Land. Biol. 304: 199–253.

    CAS  Google Scholar 

  • Horton, J. C., and Hedley-Whyte, E. T., 1984, Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex, Phil. Trans. R. Soc. Liind. Biol. 304: 255–272.

    CAS  Google Scholar 

  • Hotson, J., Braun, D., Herzberg, W., and Boman, D., 1994, Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination, Vision Res. 34: 2115–2123.

    CAS  PubMed  Google Scholar 

  • Hubel, D. H., and Livingstone, M. S., 1987, Segregation of form, color and stereopsis in primate area 18, J. Neurosci. 7: 3378–3415.

    CAS  PubMed  Google Scholar 

  • Huntley, G. W., Rogers, S. W., Moran, T., Janssen, W., Archin, N., Vickers, J. C., Cawley, K., Heinemann, S. F., and Morrison, J. H., 1993, Selective distribution of kainate receptor subunit immunoreactivity in monkey neocortex revealed by a monoclonal antibody that recognizes glutamate receptor subunits GIuR5/6/7, j. Neurosci. 13: 2965–2981.

    CAS  Google Scholar 

  • Huntsman, M. M., Isackson, P. J., and Jones, E. G., 1994, Lamina-specific expression and activity-dependent regulation of seven GABAA receptor subunit mRNAs in monkey visual cortex, J. Neurosci. 14: 2236–2259.

    CAS  PubMed  Google Scholar 

  • Jansen, K. L. R., Faull, R. L. M., and Dragunow, M., 1989, Excitatory amino acid receptors in the human cerebral cortex: A quantitative autoradiographic study comparing the distributions of [iH]TCP, [9–1]glycine, L-[3H]glutamate, [3H]AMPA and [3H]kainic acid binding sites, Neuroscience 32: 587–607.

    CAS  PubMed  Google Scholar 

  • Jen, L. S., and Zeki, S., 1984, High cytochrome oxidase content of the V5 complex of macaque monkey visual cortex, j. Physiol. (Lund.) 348: 23 P.

    Google Scholar 

  • Kaas, J. H., 1986, The structural basis for information processing in the primate visual system, in: Visual Neuroscience ( J. D. Pettigrew, W. R. Levick, and K. J. Sanderson, eds.), Cambridge University Press, Cambridge, pp. 315–340.

    Google Scholar 

  • Kaas, J. H., 1988, Changing concepts of visual cortex organization in primates, in: Neuropsycholomry of Visual Perception, Erlbaum, Hillsdale, NJ, pp. 1–32.

    Google Scholar 

  • Kaas, J. H., 1989, Why does the brain have so many visual areas? j. Cognitive Neurosci. 1: 121–135.

    Google Scholar 

  • Kaas, J. H., 1993, The organization of visual cortex in primates: Problems, conclusions, and the use of comparative studies in understanding the human brain, in: Functional Organisation of the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. E. Roland, eds.), Pergamon Press, New York, pp. 1–12.

    Google Scholar 

  • Kaas, J. H., and Garraghty, P. E., 1991, Hierarchical, parallel, and serial arrangements of sensory cortical areas: Connection patterns and functional aspects, Curr. Biol. 1: 248–251.

    CAS  Google Scholar 

  • Kaas, J. H., and Krubitzer, L. A., 1991, The organization of extrastriate visual cortex, in: Neuroanalom of the Visual Pathways and their Development ( B. Dreher and S. R. Robinson, eds.), Macmillan, Houndsmills, UK, pp. 302–323.

    Google Scholar 

  • Kaas, J. H., and Lin, C. S., 1977, Cortical projections of area 18 in owl monkeys, Vision Res. 16: 739741

    Google Scholar 

  • Kaas, J. H., and Morel, A., 1993, Connections of visual areas of the upper temporal lobe of owl monkeys: The MT crescent and dorsal and ventral subdivisions of EST, J. Neurosci. 13: 534–546.

    CAS  PubMed  Google Scholar 

  • Kaas, J. H., and Preuss, T. M., 1993, Archontan affinities as reflected in the visual system, in: Mammal Phylogeny, Placenlals (F. S. Szalay, et al., ed.), Springer, New York, pp. 115–128.

    Google Scholar 

  • Keating, E. G., 1980, Residual spatial vision in the monkey after removal of striate and preoccipital cortex, Brain Res. 187: 271–290.

    CAS  PubMed  Google Scholar 

  • Kennedy, H., and Bullier, J., 1985, A double-labeling investigation of the afferent connectivity to cortical areas V 1 and V2 of the Macaque monkey, J. Neurosci. 5 (10): 2815–2830.

    Google Scholar 

  • Kennedy, H., and Dehay, C., 1988, Functional implications of the anatomical organization of the callosal connections of visual areas VI and V2 in the macaque monkey, Behay. Brain Res. 29: 225–236.

    CAS  Google Scholar 

  • Kennedy, H., Dehay, C., and Bullier,., 1986, Organization of the callosal connections of visual areas VI and V2 in the macaque monkey, J. Comp. Neurol. 247: 398–415.

    CAS  PubMed  Google Scholar 

  • Kennedy, H., Meissirel, C., and Dehay, C., 1991, Callosal pathways and their compliancy to general rules governing the organization of corticocortical connectivity, in: Neuroanatomy of the Visual Pathways and Their Development ( B. Dreher and S. R. Robinson, eds.), Macmillan, Houndstnills, UK, pp. 324–359.

    Google Scholar 

  • Kleist, K., 1934, Gehirnpathologie, Barth, Leipzig.

    Google Scholar 

  • Knierim, J. J., and Van Essen, D. C., 1992 Visual cortex: Cartography, connectivity and concurrent processing, Curr. Opia. Neurobiol. 2: 150–155.

    CAS  Google Scholar 

  • Kondo, H., Hashikawa, ‘F., Tanaka, K., and Jones, E., 1994, Neurochemical gradient along the monkey occipito-temporal cortical pathway, NeuroReport 5: 613–616.

    CAS  Google Scholar 

  • Kostovic, 1., and Rakic, P., 1984, Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining, J. Neurosci. 4: 25–42.

    Google Scholar 

  • Kritzer, M. F., Innis, R. B., and Goldman-Rakic, P. S., 1987, Regional distribution of cholecystokinin receptors in primate cerebral cortex determined by in vitro receptor autoradiography, J. Comp. Neurol. 263: 418–435.

    CAS  PubMed  Google Scholar 

  • Krubitzer, 1. A., and Kaas, J. H., 1989, Cortical integration of parallel pathways in the visual system of primates, Brain Res. 478: 161 — I65.

    Google Scholar 

  • Krubitzer, L. A., and Kaas, J. H., 1990a, Cortical connections of MT in four species of primates: Areal, modular and retinoptic patterns, Visual Neurosci. 5: 165–204.

    CAS  Google Scholar 

  • Krubitzer, L. A., and Kaas, J. H., 19906, Convergence of processing channels in extrastriate cortex of monkeys, Visual Neurosci. 5:609–6I3.

    Google Scholar 

  • Le Bihan, D., Turner, R., Zefliro, T. A., Cuénod, C. A., Jezzard, P., and Bonnerot, V., 1993, Activation of human primary visual cortex during visual recall: A magnetic resonance imaging study, Proc. Natl. Acad. Sci. USA 90: 11802–11805.

    PubMed  Google Scholar 

  • Leuba, G., and Garey, L. J., 1989, Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man, Exp. Brain Res. 77: 31–38.

    CAS  PubMed  Google Scholar 

  • Levitt, P., Rakic, P., and Goldman-Rakic, P., 1984, Region-specific distribution of catecholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis, J. Comp. Neurol. 227: 23–36.

    CAS  PubMed  Google Scholar 

  • Lewis, M. E., Mishkin, M., Bragin, E., Brown, R. M., Pert, C. B., and Pert, A., 1981, Opiate receptor gradients in monkey cerebral cortex: Correspondance with sensory processing hierarchies, Science 211: 1166–1169.

    CAS  PubMed  Google Scholar 

  • Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., and Rakic, P., 1989, Quantitative auto-radiographic mapping of serotonin 5-HT, and 5-HT_ receptors and uptake sites in the neo-cortex of the rhesus monkey, J. Comp. Neurol. 280: 27–42.

    CAS  PubMed  Google Scholar 

  • Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., and Rakic, P., 1991, Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [;H]raclopride, [’H]spiperone and [3H]SCH23390, Neuroscience 40: 657–671.

    CAS  PubMed  Google Scholar 

  • Lin, C. S., Weller, R. E., and Kaas, J. H., 1982, Cortical connections of striate cortex in the owl monkey, J. Comp. Neurol. 211: 165–176.

    CAS  PubMed  Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1983, Specificity of cortico-cortical connections in monkey visual system, Nature 304: 531–534.

    CAS  PubMed  Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.

    CAS  PubMed  Google Scholar 

  • Livingstone, M. S., and Hubel, I). H., 1987, Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey, J. Neurosci. 7: 3371–3377.

    CAS  PubMed  Google Scholar 

  • Livingstone, M. S., and Hubel, 1). H., 1988, Segregation of form, color, movement, and depth: Anatomy, physiology and perception, Science 240: 740–749.

    CAS  PubMed  Google Scholar 

  • Ludwig, E., and Klinger, J., 1938, Noyaux et faisceaux du cerveau humain, Georges “l’homas, Nancy, France.

    Google Scholar 

  • Lueck, C. J., Zeki, S., Friston, K. J., Dicker, M. P., Cope, P., Cunningham, V. J., Lammertsma, A. A., Kennard, C., and Frackowiak, R. S. J., 1989, The colour centre in the cerebral cortex of man, Nature 340: 386–389.

    CAS  PubMed  Google Scholar 

  • Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H., and Fuchs, A. F., 1975, The origin of efferent pathways from the primary visual cortex (area 17) of the macaque monkey as shown by retrograde transport of horseradish peoxidase, J. Comp. Neurol. 164: 287–304.

    CAS  PubMed  Google Scholar 

  • Lungwitz, W., 1937, Zur myeloarchitektonischen Untergliederung der menschlichen Area praeoccipitalis (Area 19 Brodmann), J. Psychol. Neurol. 47: 607–638.

    Google Scholar 

  • Lysakowski, A., Standage, G. P., and Benevento, L. A., 1988, An investigation of collateral projections of the dorsal lateral geniculate nucleus and other subcortical structures to the cortical areas V1 and V4 in the macaque monkey: A double label retrograde tracer study, Exp. Brain Res. 69 (3): 651–661.

    CAS  PubMed  Google Scholar 

  • Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., Ledden, P. J., Brady, T. J., Rosen, B. R., and Tootell, R. B. H., 1995, Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex, Proc. Natl. Acad. Sci. USA 92: 8135–8139.

    CAS  PubMed  Google Scholar 

  • Marcar, V. I.., Xiao, D.-K., Raiguel, S. E., Maes, H., and Orban, G. A., 1995, Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey, J. Neurophysiol. 74: 1258–1270.

    CAS  PubMed  Google Scholar 

  • Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. I.., and Ungerleider, L. G., 1995, Discrete cortical regions associated with knowledge of color and knowledge of action, Science 270: 102–105.

    CAS  PubMed  Google Scholar 

  • Maunsell, J. H. R., 1995, The brain’s visual world: Representation of visual targets in cerebral cortex, Science 270: 764–769.

    CAS  PubMed  Google Scholar 

  • Maunsell, J. H. R., and Newsome, W. T., 1987, Visual processing in monkey extrastriate cortex, Annu. Rev. Neurosci. 10: 363–401.

    CAS  PubMed  Google Scholar 

  • Maunsell, J. H. R., and Van Essen, D. C., 1983a, The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey, J. Neurosci. 3: 2563–2586.

    CAS  PubMed  Google Scholar 

  • Maunsell, J. H. R., and Van Essen, D. C., 1983b, Functional properties of neurons in middle temporal visual area of the macaque monkey I: Selectivity for stimulus direction, speed, and orientation, J. Neurophysiol. 49: 1127–1147.

    CAS  PubMed  Google Scholar 

  • Maunsell, J. H. R., and Van Essen, D. C., 1987, Topographic organization of the middle temporal visual area in the macaque monkey. 1: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries,/ Comp. Neural. 266: 535–555.

    CAS  Google Scholar 

  • McIntosh, A., Grady, C., Ungerleider, L., Haxby, J., Rapoport, S., and Horwitz, B., 1994, Network analysis of cortical visual pathways mapped with PET, J. Neurosci. 14: 655–666.

    CAS  PubMed  Google Scholar 

  • Meadows, J. C., 1974, Disturbed perception of colours associated with localized cerebral lesions, Brain 97: 615–632.

    CAS  PubMed  Google Scholar 

  • Merigan, W. H., 1993, Human V4 ? Curr. Biol. 3: 226–229.

    CAS  PubMed  Google Scholar 

  • Mesulam, M. M., 1979, Tracing neural connections of human brain with selective silver impregnation. Observations on geniculocalcarine, spinothalamic and entorhinal pathways, Arch. Neural. 36: 814–818.

    CAS  Google Scholar 

  • Meynert, T., 1872, Vom Gehirn der Säugethiere, in: Handbuch der Lehre von den Geweben des Menschen, Volume 2 ( S. Stricker, ed.), Engelmann, I.eipzig, pp. 694–808.

    Google Scholar 

  • Miklossy, J., 1993, The geniculocalcarine pathway in man, and some putative visual areas involved in visuo-spatial attention, in: Functional Organization of the Human Visual Cortex ( B. Gulyäs, D., Ottoson, and P. Roland, eds.), Pergamon Press, Oxford, pp. 123–136.

    Google Scholar 

  • Mishkin, M., Ungerleider, L. G., and Mack°, K. A., 1983, Object vision and spatial vision: Two cortical pathways, Trends Neurosci. 6: 414–417.

    Google Scholar 

  • Morel, A., and Bullier, J., 1990, Anatomical segregation of two cortical visual pathways in the macaque monkey, Visual Neurosci. 4: 555–578.

    CAS  Google Scholar 

  • Nakamura, H., Gattass, R., Desimone, R., and Ungerleider, L.., 1993, The modular organization of projections from areas V1 and V2 to areas V4 and ‘EEO in macaques,/ Neurosci. 13: 3681–3691.

    CAS  Google Scholar 

  • Neuenschwander, S., Gattass, R., Sousa, A. P. B., and Pinon, M. C. G. P., 1994, Identification and organization of areas PO and POd in Celhus monkey, J. Comp. Neurol. 340: 65–86.

    CAS  PubMed  Google Scholar 

  • Newsome, W. T., and Allman, J. M., 1980, Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis, J. Comp. Neural. 194: 209–233.

    CAS  Google Scholar 

  • Newsome, W. T., Maunsell, J. H. R., and Van Essen, 1). C., 1986, Ventral posterior visual area of the macaque: Visual topography and areal boundaries, J. Comp. Neural. 252: 139–153.

    CAS  Google Scholar 

  • Newsome, W. T., Britten, K. H., Salzman, C. D., and Movshon, J. A., 1991, Neuronal mechanisms of motion perception, Cold Spring Harbor Symp. Quant. Biol. 55: 697–705.

    Google Scholar 

  • Urban, G. A., Dupont, P., De Bruyn, B., Vogels, R., Vandenberghe, R., and Mortelmans, L., 1995, A motion area in human visual cortex, Proc. Natl. Acad. Sci. USA 92: 993–997.

    Google Scholar 

  • Parkinson, I)., Coscia, E. C., and Daw, N. W., 1989, Identification and localization of 5-hydroxytryptamine receptor sites in macaque visual cortex, Visual Neurosci. 2: 515–525.

    Google Scholar 

  • Pasik, P., and Pasik, T., 1982, Visual functions in monkeys after total removal of visual cerebral cortex, Contrib. Sensory P/tysiol. 7: 147–200.

    Google Scholar 

  • Payne, B., and Siwek, D. F., 1991, The visual map in the corpus callosum of the cat, Cerebral Cortex 1: 173–188.

    CAS  PubMed  Google Scholar 

  • Pazos, A., Probst, A., and Palacios, J. M., 1987a, Serotonin receptors in the human brain. III. Autoradiographic mapping of serotonin-1 receptors, Neuroscience 21: 97–122.

    CAS  PubMed  Google Scholar 

  • Pazos, A., Probst, A., and Palacios, J. M., I 987b, Serotonin receptors in the human brain. IV. Autoradiographic mapping of serotonin-2 receptors, Neuroscience 21: 123–139.

    Google Scholar 

  • Perenin, M.-T., and Vighetto, A., 1988, Optic ataxia: A specific disruption in visuonmtor mechanisms. I. Different aspects of the deficit in reaching for objects, Brain 111: 643–674.

    PubMed  Google Scholar 

  • Perkel, D. J., Bullier, J., and Kennedy, H., 1986, Topography of the afferent connectivity of area 17 in the macaque monkey: A double-labelling study, J. Comp. Neural. 253: 374–402.

    CAS  Google Scholar 

  • Peterhans, E., and von der Heydt, R., 1989, Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps, J. Neurosi. 9: 1749–1763.

    CAS  Google Scholar 

  • Probst, Th., Plendl, H., Paulus, W., Wist, E., and Scherg, M., 1993, Identification of the visual motion area (area V5) in the human brain by dipole source analysis, Exp. Brain Res. 93: 345–351.

    CAS  PubMed  Google Scholar 

  • Rakic, P., Goldman-Rakic, P. S., and Gallager, D., 1988, Quantitative autoradiography of major neurotransmitter receptors in the monkey striate and extrastriate cortex, J. Neurosci. 8: 3670–3690.

    CAS  PubMed  Google Scholar 

  • Richards, J. G., Schoch, P., Haring, P., Takacs, B., and Mohler, H., 1987, Resolving GABAA/ benzodiazepine receptors: Cellular and subcellular localization in the CNS with monoclonal antibodies, /. Neurosci. 7: 1866–1886.

    CAS  Google Scholar 

  • Rizzo, M., Nawrot, M., Blake, R., and Damasio, A., 1992, A human visual disorder resembling area V4 dysfunction in the monkey, Neurology 42: 1175–1180.

    CAS  PubMed  Google Scholar 

  • Rockland, K., 1992a, Laminar distribution of neurons projecting from area V l to V2 in macaque and squirrel monkeys, Cerebral Cortex 2: 38–47.

    CAS  PubMed  Google Scholar 

  • Rockland, K., 1992b, Configuration, in serial reconstruction of individual axons projecting from area V2 to V4 in the macaque monkey, Cerebral Cortex 2: 353–374.

    CAS  PubMed  Google Scholar 

  • Rockland, K., 1994, The organization of feedback connections from area V2 (18) to V1 (17), in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters, and K. Rockland, eds.), Plenum Press, New York, pp. 261–299.

    Google Scholar 

  • Rockland, K., 1995, Morphology of individual axons projecting from area V2 to MT in the macaque, J. Comp. Neural. 355: 15–26.

    CAS  Google Scholar 

  • Rockland, K. S., and Pandya, D. N., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179: 3–20.

    CAS  PubMed  Google Scholar 

  • Rockland, K. S., and Pandya, D. N., 1981, Cortical connections of the occipital lobe in the rhesus monkey: Interconnections between areas 17, 18, 19 and the superior temporal sulcus, Brain Res. 212: 249–270.

    CAS  PubMed  Google Scholar 

  • Rockland, K. S., and Van Hoesen, G. W., 1994, Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey, Cerebral Cortex 4: 300–313.

    CAS  PubMed  Google Scholar 

  • Rockland, K., Saleem, K., and Tanaka, K., 1994, Divergent feedback connections from areas V4 and TEO in the macaque, Visual Neurosci. 11: 579–600.

    CAS  Google Scholar 

  • Rodman, H. R., Gross, C. G., and Albright, T. D., 1989, Afferent basis of visual response properties in area MT of the macaque. L Effects of striate cortex removal, J. Neurosci. 9: 2033–2050.

    CAS  PubMed  Google Scholar 

  • Roland, P. E., and Gulyas, B., 1994, Visual imagery and visual representation, TINS 17 (7): 281–287.

    CAS  PubMed  Google Scholar 

  • Roland, P. E., and Gulyas, B., 1995, Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: Functional anatomy by positron emission tomography, Cerebral Cortex 5 (1): 79–93.

    CAS  PubMed  Google Scholar 

  • Roland, P. E., and Zilles, K., 1994, Brain atlases—A new research tool, TINS 17: 458–467.

    CAS  PubMed  Google Scholar 

  • Rosa, M. G. P., Soares, J. G. M., Fiorani, Jr., M., and Gattass, R., 1993, Cortical afferents of visual area MT in the Cebus monkey, possible homologies between New and Old World monkeys, Visual Neurosci. 10: 827–855.

    CAS  Google Scholar 

  • Rosier, A. M., Urban, G. A., and Vandesande, F., 1990, Regional distribution of binding sites for neuropeptide Y in cat and monkey visual cortex determined by in vitro receptor autoradiography, J. Comp. Neurol. 293: 486–498.

    CAS  PubMed  Google Scholar 

  • Rosier, A. M., Vandesande, F., and Orban, G. A., 1991a, Laminar and regional distribution of galanin binding sites in cat and monkey visual cortex determined by in vitro receptor auto-radiography, J. Comp. Neurol. 305: 264–272.

    CAS  PubMed  Google Scholar 

  • Rosier, A. M., Leroux, P., Vaudry, H., Orban, G. A., and Vandesande, F., 1991b, Distribution of somatostatin receptors in the cat and monkey visual cortex demonstrated by in vitro receptor autoradiography, J. Comp. Neurol. 310: 189–199.

    CAS  PubMed  Google Scholar 

  • Rosier, A., Arckens, L., Orban, G., and Vandesande, F., 1993, Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]-MK-801 binding, J. Comp. Neurot. 335: 369–380.

    CAS  Google Scholar 

  • Sakai, K., Watanabe, E., Onodera, Y., Uchida, 1., Kato, H., Yamamoto, E, Koizumi, H., and Mivashita, Y., 1995, Functional mapping of the human color centre with echo-planar magnetic resonance imaging, Proc. R. Soc. Lund. B Biol. Sci. 261: 89–98.

    CAS  Google Scholar 

  • Sanides, F., and Vitzthum, H., 1965a, Zur Architektonik der menschlichen Sehrinde and den Prinzipien ihrer Entwicklung, Dtsch. Z. Nervenheilk. 187: 680–707.

    Google Scholar 

  • Sanides, F., and Vitzthum, H., 1965b, Die Grenzerscheinungen am Rande der menschlichen Sehrinde, Dtsch. Z. Nervenheilk. 187: 708–719.

    Google Scholar 

  • Sarkissov, S. A., Filimonof, I. N., Kononowa, E. P., Preobraschenskaja, I. S., and Kukuew, L. A., 1955, Atlas of the Cytoarchilectonics of the Human Cerebral Cortex, Medgiz, Moscow.

    Google Scholar 

  • Schein, S. J., and Desimone, R., 1990, Spectral properties of V4 neurons in the macaque,/ Neurosci. 10: 3369–3389.

    CAS  Google Scholar 

  • Schein, S. J., Marrocco, R. T., and de Monasterio, F. M., 1982, Is there a high concentration of color-selective cells in V4 of monkey visual cortex? J. Neurophysiol. 47: 193–213.

    CAS  PubMed  Google Scholar 

  • Schiller, P. Fl., and Lee, K., 1991, The role of the primate extrastriate area V4 in vision, Science 251: 1251–1253.

    CAS  Google Scholar 

  • Sereno, M. 1., and Allman, J. M., 1991, Cortical visual areas in mammals, in: The Neural Basis of Visual Function ( A. G. Leventhal, ed.), Macmillan, London, pp. 160–172.

    Google Scholar 

  • Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, “F. J., Rosen, B. R., and ”lbotell, R. B. H., 1995, Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging, Science 268: 889–893.

    Google Scholar 

  • Shipp, S., and Zeki, S., 1985, Segregation of pathways leading from V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.

    CAS  PubMed  Google Scholar 

  • Shipp, S., and Zeki, S., 1989a, The organization of connections between areas VI and V5 in the macaque monkey visual cortex, Fur. J. Neurosci. 1: 309–332.

    CAS  Google Scholar 

  • Shipp, S., and Zeki, S., 1989b, The organization of connections between areas V5 and V2 in macaque monkey visual cortex, Fur. J. Neurosci. 1: 333–354.

    CAS  Google Scholar 

  • Shipp, S., and Zeki, S., 1995, Segregation and convergence of specialised pathways in macaque visual cortex,/ Anat. 187: 547–562.

    Google Scholar 

  • Shipp, S., de Jong B. M., Zihl, J., Frackowiak, R. S. J., and Zeki, S., 1994, The brain activity related to residual motion vision in a patient with bilateral lesions of V5, Brain 117: 1023–1038.

    PubMed  Google Scholar 

  • Shomura, K. ‘l’., Ando, T., and Kato, K., 1975, Structural organization of “callosal” OBy in human corpus callosum agenesis, Brain Res. 93: 241–252.

    Google Scholar 

  • Simma, K., 1954, Die thalamocorticale Projektion beim Menschen, Monatcsehr. Psychiat. Neural. 127: 301–316.

    CAS  Google Scholar 

  • Smiley, J. F., Levey, A. 1., Ciliax, B. J., and Goldman-Rakic, P. S., 1994, D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: Predominant and extrasynaptic localization in dendritic spines, Proc. Natl. Acad. Sci. USA 91: 5720–5724.

    CAS  PubMed  Google Scholar 

  • Spatz, W. B., 1975, An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset Callithrzx, Brain Res. 92: 450–455.

    CAS  Google Scholar 

  • Spatz, W. B., 1977, Topographically organized reciprocal connections between area 17 and MT visual area of superior temporal sulcus, in the marmoset Callithrix jacchus, Exp. Brain. Res. 27: 559–572.

    CAS  Google Scholar 

  • Spatz, W. B., and Kunz, B., 1984, Area 17 of anthropoid primates does participate in visual callosal connections, Neurosci. Lett. 48: 49–53.

    CAS  PubMed  Google Scholar 

  • Standage, G. P., and Benevento, L. A., 1983, The organization of connections between the pulvinar and visual area MT in the macaque monkey, Brain Res. 262: 288–294.

    CAS  PubMed  Google Scholar 

  • Steele, G. E., Weller, R. E., and Cusick, C. G., 1991, Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys, J. Camp. Neurol. 306: 495–520.

    CAS  Google Scholar 

  • Takeuchi, Y., and Sano, Y., 1983, Immunohistochemical demonstration of serotonin nerve fibers in the neocortex of the monkey (Macaca fuscata), Anal. Embryol. 166: 155–168.

    CAS  Google Scholar 

  • Tanaka, M., 1.indsley, E., Lausmann, S., and Creutzfeld, O. D., 1990, Afferent connections of the prelunate visual association cortex (areas V4 and DP), Anat. Embryol. 181 (1): 19–30.

    CAS  PubMed  Google Scholar 

  • Tigges, J., Tigges, M., Anschel, S., Cross, N. A., Letbetter, W. D., and McBride, R. L., 1981, Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19 and MT in the squirrel monkey (Saimiri), J. Comp. Neurol. 202: 539–560.

    CAS  PubMed  Google Scholar 

  • Tootell, R. B. 11., and Born, R. 1’., 1990, Patches and direction columns in primate area MT, Invest. Ophthalmol. Vis. Sci. 31: 238.

    Google Scholar 

  • Tootell, R. B. H., and Hamilton, S. 1.., 1989, Functional anatomy of the second visual area (V2) in the macaque, J. Neurosci. 9: 2620–2644.

    CAS  Google Scholar 

  • Tootell, R. B. H., and Taylor, J. B., 1995, Anatomical evidence for M1 and additional cortical visual areas in humans, Cerebral Cortex 5: 39–55.

    CAS  PubMed  Google Scholar 

  • Tootell, R. B. H., Silverman, M. S., DeValois, R. L, and Jacobs, G. H., 1983, Functional organization of the second visual cortical area of primates, Scùncce 220: 737–739.

    CAS  Google Scholar 

  • Tootell, R. B. H., Hamilton, S. 1.., and Silverman, M. S., 1985, “Rrpography of cytochrome oxidase activity in owl monkey cortex, J. Neurosci. 5: 2786–2800.

    Google Scholar 

  • Powell, R. B. H., Hamilton, S. L., Silverman, M. S., and Switkes, E., 1988a, Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions and baseline conditions, J. Neurosci. 8: 1500–1530.

    Google Scholar 

  • Tootell, R. B. H., Hamilton, S. L., and Switkes, E., 1988b, Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams, J. Neurosci. 8: 1594–1609.

    CAS  PubMed  Google Scholar 

  • Tootell, R. B. H., Born, R. T., and Ash-Bernal, R., 1993, Columnar organization in visual cortex in non-human primates and man, in: Functional Organisation of the Human Visual Cortex ( B. Gulyas, D. Ottosson, and P. E. Roland, eds.), Pergamon, New York, pp. 59–74.

    Google Scholar 

  • Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R., Brady, T. J., Rosen, B. R., and Belliveau, J. W., 1995a, Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging, J. Neurosci. 15: 3215–3230.

    CAS  PubMed  Google Scholar 

  • Tootell, R. B. FI., Reppas, J. B., Dale, A. M., Look, R. B., Sereno, M. I., Malach, R., Brady, T.J., and Rosen, B. R., 19951), Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging, Nature 375: 139–141.

    Google Scholar 

  • Trevarthen, C., 1990, Brain Circuits and Function, Cambridge University Press, Cambridge.

    Google Scholar 

  • Tusa, R. J., and Ungerleider, I. G., 1985, The inferior longitudinal fasciculus: A reexamination in humans and monkeys, Ann. Neurol. 18: 583–591.

    CAS  PubMed  Google Scholar 

  • Ungerleider, L. G., and Desimone, R., 1986a, Projections to the superior temporal sulcus from the central and peripheral field representations of V I and V2, /. Comp. Neurol. 248: 147–163.

    CAS  Google Scholar 

  • Ungerleider, I. G., and Desimone, R., 1986b, Cortical connections of visual area MT in the macaque, J. Comp. Neural. 248: 190–222.

    CAS  Google Scholar 

  • Ungerleider, L. G., and Haxby, J. V., 1994, “What” and “where” in the human brain, Curr. Opin. Neurobiol. 4:157–165.

    Google Scholar 

  • Ungerleider, L. G., and Mishkin, M., 1979, The striate projection zone in the superior temporal sulcus of Macaca mulatta: Location and topographic organization,/ Comp. Neural. 188: 347–366.

    CAS  Google Scholar 

  • Ungerleider, I. G., and Mishkin, M., 1982, Two cortical visual systems, in: Analysis of Visual Behavior ( D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, eds.), MIT Press, Cambridge, MA, pp. 549–586.

    Google Scholar 

  • Ungerleider, L. G., Desimone, R., Galkin, T. W., and Mishkin, M., 1984, Subcortical projections of area MT in the macaque, J. Comp. Neural. 223 (3): 368–386.

    CAS  Google Scholar 

  • Vaina, L., 1989, Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans, Biol. Cybernet. 61: 347–359.

    CAS  Google Scholar 

  • Van Buren, J. M., and Borke, R. C., 1972, Variations and Connections of the Human Thalamus. I. The Nuclei and Cerebral Connections of the Human Thalamus, Springer-Verlag, Berlin.

    Google Scholar 

  • Van Essen, D. C., 1985, Functional organization of primate visual cortex, in: Cerebral Cortex, Volume 3, Visual Cortex ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 259–329.

    Google Scholar 

  • Van Essen, I). C., and Maunsell, J. H. R., 1983, hierarchical organization and functional streams in the visual cortex, Trends Neurosci. 6: 370–375.

    Google Scholar 

  • Van Essen, D. C., and Zeki, S. M., 1978, The topographic organization of rhesus monkey prestriate cortex, J. Physiol. (Lond.) 277: 193–226.

    CAS  Google Scholar 

  • Van Essen, D. C., Maunsell, J. H. R., and Bixby, J. L., 1981, The middle temporal visual area in the macaque monkey: Myeloarchitecture, connections, functional properties and topographic organization, j. Comp. Neurol. 199: 293–326.

    Google Scholar 

  • Van Essen, D. C., Newsome, W. T., and Bixby, J. L., 1982, The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey,/ Neurosci. 2: 265–283.

    Google Scholar 

  • Van Essen, D. C., Newsome, W. T., Maunsell, J. H. R., and Bixby, J. L., 1986, The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections, J. Comp. Neurol. 224: 451–480.

    Google Scholar 

  • Vannucchi, M. G., and Goldman-Rakic, P. S., 1991, Age-dependent decrease in the affinity of muscarinic M I receptors in neocortex of rhesus monkeys, Proc. Natl. Acad.Sci. USA 88:11475— 1 1479.

    Google Scholar 

  • Van Valkenburg, C. TL, 1908, Zur Anatomie der Projections-und Balkenstrahlung des Hinterhauptlappens sowie des Cingulum, Monatsschr. Psychiat. Neurol. 24: 320–339.

    Google Scholar 

  • Van Valkenburg, C. T., 1913, Experimental and pathologico-anatomical researches on the corpus callosum, Brain 36: 119–165.

    Google Scholar 

  • Vogt, O., 1903, Zur anatomischen Gliederung des Cortex cerebri, J. Psychol. Neural. 2: 160–180.

    Google Scholar 

  • Vogt, M., 1929, Über fokale Besonderheiten der Area occipitales, J. Psychol. Neural. 39: 506–510.

    Google Scholar 

  • Vogt, C., and Vogt, O., 1919, Allgemeinere Ergebnisse unserer Hirnforschung. Vierte Mitteilung. Die physiologische Bedeutung der architektonischen Rindenfelderung auf Grund neuer Rindenreizungen, j. Psychol. Neurol. 25: 399–462.

    Google Scholar 

  • Vogt Weisenhorn, D. M., Illing, R-B., and Spatz, W. B., 1995, Morphology and connections of neurons in area 17 projecting to the extrastriate areas MT and 19DM and to the superior colliculus in the monkey Callithrix jacchus, J. Comp. Neural. 362: 233–255.

    Google Scholar 

  • Von der Heydt, R., and Peterhans, E., 1989, Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity, J. Neurosci. 9: 1731–1748.

    PubMed  Google Scholar 

  • von Economo, C., and Koskinas, G. N., 1925, Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen, Springer, Vienna.

    Google Scholar 

  • Walker, A. E., 1938, The Primate Thalamus, Chicago University Press, Chicago.

    Google Scholar 

  • Walsh, V., Carden, D., Butler, S. R., and Kulikowski, J. J., 1993, The effects of V4 lesions on the visual abilities of macaques: Hue discrimination and colour constancy, Behay. Brain Res. 53: 5162.

    Google Scholar 

  • Watson, J. I). G., Myers, R., Frackowiak, R. S. J., Hajnal, J. V., Woods, R. P., Mazziota, J. C., Shipp, S., and Zeki, S., 1993, Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging, Cerebral Cortex 3: 79–94.

    CAS  PubMed  Google Scholar 

  • Webster, M., Bachevalier, J., and Ungerleider, L., 1993, Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys,/ Comp. Neurol. 335 (1): 73–91.

    CAS  Google Scholar 

  • Weller, R. E., 1988, Two cortical visual systems in Old World and New World primates, in: Progress in Brain Research, Volume 75 ( T. P. Hicks and G. Benedek, eds.), Elsevier, Amsterdam, pp. 293–306.

    Google Scholar 

  • Weller, R. E., and Kaas, J. H., 1983, Retinotopic patterns of connections of area 17 with visual areas V-II and MT in macaque monkeys,/ Comp. Neurol. 220: 253–279.

    CAS  Google Scholar 

  • Weller, R. E., Wall, J. T., and Kaas, J. H., 1984, Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys, J. Comp. Neural. 228: 81–104.

    CAS  Google Scholar 

  • Wild, H. M., Butler, D., Carden, D., and Kullikowski, J. J., 1985, Primate cortical area V4 important for colour constancy but not wavelength discrimination, Nature 313: 133–135.

    Google Scholar 

  • Wong-Riley, M. T. T., 1993, Cytochrome oxidase studies on the human visual system, in: Functional Organisation of the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. E. Roland, eds.), Pergamon, New York, pp. 165–180.

    Google Scholar 

  • Wong-Riley, M. ‘F. T., 1994, Primate visual cortex. Dynamic metabolic organization and plasticity revealed by cytochrome oxidase, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates (A. Peters, and K. S. Rockland, eds.), Plenum Press, New York, pp. 141–200.

    Google Scholar 

  • Wong-Riley, M., and Carroll, E., 1984, Cytochrome oxidase-rich zones in primate visual cortex, Invest. Ophthalmol. Vis. Sci. 25: 16–109.

    Google Scholar 

  • Wong-Riley, M., Hevner, R., Cutlan, R., Earnest, M., Egan, R., Frost, J., and Nguyen, 1’., 1993, Cytochrome oxidase in the human visual cortex; distribution in the developing and the adult brain, Visual Neurosci. 10: 41–58.

    CAS  Google Scholar 

  • Yoshida, K., and Benevento, L. A., 1981, The projection from the dorsal lateral geniculate nucleus of the thalamus to extrastriate visual association cortex in the macaque monkey, Neurosci. Lett. 22 (2): 103–108.

    CAS  PubMed  Google Scholar 

  • Young, M. P., 1992, Objective analysis of the topological organization of the primate cortical visual system, Nature 358: 152–155.

    CAS  PubMed  Google Scholar 

  • Young, W. S., and Kuhar, M. J., 1979, Autoradiographic localisation of benzodiazepine receptors in the brains of humans and animals, Nature 280: 393–395.

    Google Scholar 

  • Young, A. B., and Penney, J. B., 1991, Bezodiazepine, GABA, and glutamate receptors in cerebral cortex, hippocampus, basal ganglia, and cerebellum, in: Receptors in the Human Nervous System ( F. A. O. Mendelsohn and G. Paxinos, eds.), Academic Press, San Diego, pp. 9–47.

    Google Scholar 

  • Yukie, M., and Iwai, E., 1981, Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys,/ Comp. Neural. 201: 81–97.

    CAS  Google Scholar 

  • Zeki, S. M., 1969, Representation of central visual fields in prestriate cortex of monkey, Brain Res. 14: 271–291.

    CAS  PubMed  Google Scholar 

  • Zeki, S. M., 1970, Interhemispheric connections of prestriate cortex in monkey, Brain Res. 19: 63–75.

    CAS  PubMed  Google Scholar 

  • Zeki, S. M., 197la, Convergent input from the striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey, Brain Res. 28: 338–340.

    Google Scholar 

  • Zeki, S. M., 1971b, Cortical projections from two prestriate areas in the monkey, Brain Res. 34: 19–35.

    CAS  PubMed  Google Scholar 

  • Zeki, S. M., 1973, Colour coding in rhesus monkey prestriate cortex, Brain Res. 53: 422–427.

    CAS  PubMed  Google Scholar 

  • Zeki, S. M., 1974, Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey, J. Physiol. (Lond.) 236: 549–573.

    CAS  Google Scholar 

  • Zeki, S. M., 1975, The projection to the superior temporal sulcus from areas 17 and 18 in the rhesus monkey, Proc. R. Soc. Lond. B Biol. Sci. 193: 199–207.

    Google Scholar 

  • Zeki, S. M., 1977a, Colour coding in the superior temporal sulcus of rhesus monkey visual cortex, Proc. R. Soc. Lond. B Biol. Sci. 197: 195–223.

    CAS  PubMed  Google Scholar 

  • Zeki, S. M., 1977b, Simultaneous anatomical demonstration of the vertical and horizontal meiridans in areas V2 and V3 of rhesus monkey visual cortex, Proc. R. Soc. Lond. B Biol. Sci. 195: 517–523.

    CAS  PubMed  Google Scholar 

  • Zeki, S. M., 1978a, Functional specialization in the visual cortex of the rhesus monkey, Nature 274: 423–428.

    CAS  PubMed  Google Scholar 

  • Zeki, S. M., 19786, The third visual complex of rhesus monkey prestriate cortex,. Physiol. (Lond.) 277: 245–277.

    Google Scholar 

  • Zeki, S. M., 1978e, Uniformity and diversity of structure and function in rhesus monkey prestriate cortex, J. Physiol. (Loud.) 277: 273–290.

    CAS  Google Scholar 

  • Zeki, S. M., 1980a, The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex, Proc. R. Soc. Lond. B Biol. Sci. 207: 239–248.

    CAS  PubMed  Google Scholar 

  • Zeki, S. M., 1980b, A direct projection from area VI to area V3a of rhesus monkey visual cortex, Proc. R. Soc. Lond. B Biol. Sci. 207: 499–506.

    CAS  PubMed  Google Scholar 

  • Zeki, S., 1980c, The representation of colours in the cerebral cortex, Nature 284: 412–418.

    CAS  PubMed  Google Scholar 

  • Zeki, S., I983a, Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours, Neuroscience 9: 741–765.

    Google Scholar 

  • Zeki, S., 1983b, The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex, Proc. R. Soc. Lond. B Biol. Sci. 217: 449–470.

    CAS  PubMed  Google Scholar 

  • Zeki, S., 1985, Colour pathways and hierarchies in the cerebral cortex, in: Central and Peripheral Mechanisms of Colour Vision ( D. Ottoson, and S. Zeki, eds.), Macmillan, London, pp. 19–44.

    Google Scholar 

  • Zeki, S., 1986, The anatomy and physiology of area V6 of macaque monkey visual cortex,/ Physiol. (Lond.) 381: 62 P.

    Google Scholar 

  • Zeki, S., 1990a, Colour vision and functional specialisation in the visual cortex, Disc. Neurosci. 6: 7–64.

    Google Scholar 

  • Zeki, S., 19906, A century of cerebral achromatopsia, Brain 113: 1721–1777.

    Google Scholar 

  • Zeki, S. M., 1990c, Parallelism and functional specialization in human visual cortex, Cold Spring Harbor Symp. Quant. Biol. 55: 651–661.

    CAS  PubMed  Google Scholar 

  • Zeki, S., 1991, Cerebral akinetopsia (visual motion blindness): A review, Brain 114: 811–824.

    PubMed  Google Scholar 

  • Zeki, S., 1993, A Vision of the Brain, Blackwell, Oxford.

    Google Scholar 

  • Zeki, S. M., and Sandeman, D. R., 1976, Combined anatomical and electrophysiological studies on the boundary between the second and third visual areas of rhesus monkey visual cortex, Proc. R. Soc. Lond. B Biol. Sci. 194: 555–562.

    CAS  PubMed  Google Scholar 

  • Zeki, S., and Shipp, S., 1988, The functional logic of cortical connections, Nature 335: 31 I - 317.

    Google Scholar 

  • Zeki, S., and Shipp, S., 1989, Modular connections between areas V2 and V4 of macaque monkey visual cortex, Eur. J. Neurosci. 1: 494–506.

    CAS  PubMed  Google Scholar 

  • Zeki, S., Watson, J. D. G., Lueck, C. J., Friston, K. J., Kennard, C., and Frackowiak, R. S. J., 1991, A direct demonstration of functional specialization in human visual cortex, J. Neurosci. 11: 641–649.

    CAS  PubMed  Google Scholar 

  • Zeki, S. M., Watson, J. D., Frackowiak, R. S. J., 1993, Going beyond the information given: The relation of illusory visual motion to brain activity, Proc. R. Soc. Lond. B Biol. Sci. 252: 215–222.

    CAS  Google Scholar 

  • Zihl, J., von Cramon, D., and Mai, N., 1983, Selective disturbance of movement vision after bilateral brain damage, Brain 106: 313–340.

    PubMed  Google Scholar 

  • Zilles, K., 1991, Codistribution of receptors in the human cerebral cortex, in: Receptors in the Human Nervous System ( F. A. O. Mendelsohn, and G. Paxinos, eds.), Academic Press, San Diego, pp. 165–206.

    Google Scholar 

  • Zilles, K., 1992, Receptors in the central nervous system. Neurotransmitter receptors in the forebrain: Regional and laminar distribution, in: Histochemistry of Receptors, (W. Graumann and J. Drukker, eds.), Fischer-Verlag, Stuttgart, pp. 229–240.

    Google Scholar 

  • Zilles, K., and Schleicher, A., 1993, Cyto-and myeloarchitecture of human visual cortex and the periodical GABAA receptor distribution, in: Functional Organization of the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. Roland, eds.), Pergamon Press, Oxford, pp. 111–121.

    Google Scholar 

  • Lilies, K., and Schleicher, A., 1995, Correlative imaging of transmitter receptor distributions in human cortex, in: Autoradiography and Correlative Imaging ( W. E. Stumpf and H. F. Solomon, eds), Academic Press, San Diego, pp. 277–307.

    Google Scholar 

  • Zilles, K., Werners, R., Büsching, U., and Schleicher, A., 1986, Ontogenesis of the laminar structure in areas 17 and 18 of the human visual cortex. A quantitative study, Anal. Emhryol. 174: 339–353.

    CAS  Google Scholar 

  • Zilles, K., zur Nieden, K., Schleicher, A., and Traber, J., 1990, A new method for quenching correction leads to revisions of data in receptor autoradiography, Histochemistry 94: 569–578.

    CAS  PubMed  Google Scholar 

  • Lilies, K., Qü, M., Schröder, H., and Schleicher, A., 1991, Neurotransmitter receptors and cortical architecture, J. Hirnforsch. 32: 343–356.

    Google Scholar 

  • Zilles, K., Qü, M., and Schleicher, A., 1993, Regional distribution and heterogeneity of a-adreuoceptors in the rat and human central nervous system, J. Hirnforsch. 34: 123–132.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zilles, K., Clarke, S. (1997). Architecture, Connectivity, and Transmitter Receptors of Human Extrastriate Visual Cortex. In: Rockland, K.S., Kaas, J.H., Peters, A. (eds) Extrastriate Cortex in Primates. Cerebral Cortex, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9625-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9625-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9627-8

  • Online ISBN: 978-1-4757-9625-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics