Skip to main content

Piecing together the Puzzle of Basal Forebrain Anatomy

  • Chapter
The Basal Forebrain

Abstract

The basal forebrain contains a seemingly heterogeneous collection of structures including nucleus accumbens, olfactory tubercle, septum, diagonal band nuclei, bed nucleus of stria terminalis, substantia innominata, olfactory cortex, hippocampus formation and amygdaloid body. It is also traversed by a number of large fiber tracts, e.g. fornix, stria terminalis, diagonal band of Broca, medial forebrain bundle, inferior thalamic peduncle, and ventral amygdalofugal pathway, to which the various basal forebrain structures contribute axons in order to establish connections between themselves and with other parts of the brain. Hypothalamus, the main diencephalic component of the basal forebrain, is one such region closely related to many of the telencephalic basal forebrain structures and fiber tracts. These intimate relations to the hypothalamus provided much of the anatomical rationale to bring the above-mentioned basal forebrain structures together as integral parts of the “limbic system”. This has contributed to the popular view of forebrain organization in which the neocortex is related to the basal ganglia or the “extrapyramidal motor system” through the well-known cortico-striato-pallidal pathways, while so-called limbic structures, e.g. septum, nucleus accumbens, amygdaloid body and allocortical areas like hippocampus and olfactory cortex are characterized foremost by their relation to the hypothalamus, a major regulator of autonomic and endocrine functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggleton, J.P., 1985, A description of intra-amygdaloid connections in old world monkeys, Exp. Brain Res., 515–526.

    Google Scholar 

  • Alexander, G.E., DeLong, M.R., and Strick, P.L., 1986, Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Ann. Rev. Neurosci., 9: 357–381.

    Article  PubMed  CAS  Google Scholar 

  • Albert, D.J., Petrovic, D.M., Walsh, M.L., and Jonik, R.H., 1989, Medial accumbens lesions attenuate testosterone-dependent aggression in male rats, Physiol. Behav., 46: 625–631.

    Article  PubMed  CAS  Google Scholar 

  • Alheid, G.F., Haselton, C.L., and Heimer, L., 1989a, Accumbens projections to dorsal and ventral pallidum and to the extended amygdala in the monkey using PHA-L, Soc. Neurosci. Abstr., 15: 904.

    Google Scholar 

  • Alheid, G.F. and Heimer, L., 1988, New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders; the striatopallidal, amygdaloid, and corticopetal components of substantia innominata, Neurosci., 27: 1–39.

    Article  CAS  Google Scholar 

  • Alheid, G.F., Heimer, L., and Switzer, R.C., 1990, The basal ganglia, in: “The Human Nervous System,” G. Paxinos, ed., Academic Press, San Diego, pp. 483–582.

    Google Scholar 

  • Alheid, G.F., Van Hoesen, G., and Heimer, L., 1989b, Functional neuroanatomy, in: “Comprehensive Textbook of Psychiatry,” H.I. Kaplan and J. Sadock, ed., Williams &Wilkins, Baltimore, pp. 26–45.

    Google Scholar 

  • Amaral, D.G., Avendano, C., and Benoit, R., 1989, Distribution of somatostatin-like immunoreactivity in the monkey amygdala, J. Comp. Neurol., 284: 294–313.

    Article  PubMed  CAS  Google Scholar 

  • Amaral, D.G. and Kurtz, J., 1985, An analysis of the origins of the cholinergic and non-cholinergic septal projections to the hippocampal formation in the rat, J. Comp. Neurol., 240: 37–59.

    Article  PubMed  CAS  Google Scholar 

  • Bartus, R.T., Dean III R.L., Beer, B., Lippa A.S., 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417.

    Article  PubMed  CAS  Google Scholar 

  • Beccari, M., 1910, II lobo parolfattoro nei mammiferi, Arch. Ital. Anat. Embrvol., 9: 173–220.

    Google Scholar 

  • Beccari, M., 1911, La sostanza perforata anteriore e i suoi rapporti col rinencefalo nel cerbello dell’uomo. Arch. Ital. Anat. Embrvol., 10: 261–328.

    Google Scholar 

  • Beckstead, R.M., Domesick, V.B., and Nauta, W.J.H., 1979, Efferent connections of the substantia nigra and ventral tegmental area in the rat, Brain Res., 175: 191–217.

    Article  PubMed  CAS  Google Scholar 

  • Biesold, D., Inanami, O., Sato, A., and Sato, Y., 1989, Stimulation of the nucleus basalis of Meynert increases cerebral cortical blood flow in rats, Neurosci. Lett., 98: 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Bigl, v., Woolf, N.J., and Butcher, L.L., 1982, Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res. Bull., 8: 727–749.

    Article  PubMed  CAS  Google Scholar 

  • Blackstad, T., 1967, Cortical gray matter; a correlation of light and electron microscopic data, in: “The Neuron,” H. Hyden, ed., Elsevier, Amsterdam, pp. 49–118.

    Google Scholar 

  • Brodal, A., 1969. Neurological Anatomy. Oxford University Press, London.

    Google Scholar 

  • Butcher, L.L. and Woolf, N.J., 1986, Central cholinergic systems; synopsis of anatomy and overview of physiology and pathology, in: “The Biological Substrates of Alzheimer’s Disease,” A.B. Scheibel and A.F. Wechsler, eds., Academic Press, New York, pp. 73–86.

    Google Scholar 

  • Caffé, A.R., Van Ryen, P.C., Van der Woude, T.P., and Van Leeuwen, F.W., 1989, Vasopressin and oxytocin systems in the brain and upper spinal cord of macaca fascicularis, J. Comp. Neurol., 287: 302–325.

    Article  PubMed  Google Scholar 

  • Carlsen, J. and Heimer, L., 1988, The basolateral amygdaloid complex as a cortical-like structure. Brain Res., 441: 377–380.

    Article  PubMed  CAS  Google Scholar 

  • Carlsen, J., Zäborszky, L., and Heimer, L., 1985, Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex; a combined retrograde fluorescent and immunohistochemical study, J. Comp. Neurol., 234: 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H.T., 1989, Noradrenergic innervation of the substantia innominata; a light and electron microscopic analysis of dopamine ß-hydroxylase immunoreactive elements in the rat, Exp. Neurol., 104: 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H.T. and Kuo, H., 1989, Calcitonin gene-related peptides (CGRP) in the rat substantia innominata and globus pallidus; a light and electron microscopic immunocytochemical study, Brain Res., 495: 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Chronister, R.B., Sikes, R.W., Trow, T.W., and DeFrance, J.F., 1981, The Organization of Nucleus Accumbens, in: “The Neurobiology of the Nucleus Accumbens,” R.B. Chronister and J.F. De France, eds., Haer Institute for Electrophysiological Research, Maine, pp. 97–146.

    Google Scholar 

  • Cools, A.R., Lohman, A.H.M., and Van der Bereken, eds., 1977, Psychobiology of the Striatum, Elsevier, Amsterdam.

    Google Scholar 

  • Crosby, E.C. and Humphrey, T., 1941, Studies of the vertebrate telencephalon, II, the nuclear pattern of the anterior olfactory nucleus, tuber- culum olfactorium, and the amygdaloid complex in adult man, J. Comp. Neurol., 71: 121–213.

    Article  Google Scholar 

  • Danscher, G., 1982, Exogenous selenium in the brain; a histochemical technique for light and electron microscopical localization of catalytic selenium bonds, Histochem., 76: 281–293.

    Article  CAS  Google Scholar 

  • Davis, P. and Maloney, A.J., 1976, Selective loss of cholinergic neurons in Alzheimer’s disease. Lancet . 2: 1403.

    Article  Google Scholar 

  • Delacour, J., Houcine, O., and Costa, J.C., 1990, Evidence for a cholinergic mechanism of “learned” changes in the responses of barrel field neurons of the awake and undrugged rat, Neurosci., 34: 1–8.

    Article  CAS  Google Scholar 

  • de Olmos, J.S., 1972, The amygdaloid projection field in the rat as studied with the cupric-silver method, in “The Neurobiology of the Amygdala,” B.E. Elefteriou, ed., Plenum, New York, pp. 145–204.

    Google Scholar 

  • de Olmos, J.S., 1990, The amygdala, in: “The Human Nervous System,” G. Paxinos, ed., Academic Press, New York, pp. 583–710.

    Google Scholar 

  • de Olmos, J.S., Alheid, G.F., and Beltramino, C.A., 1985, Amygdala, in: “The Rat Nervous System,” G. Paxinos, ed., Academic Press, New York, pp. 223–334.

    Google Scholar 

  • Dejerine, J.J., 1901, Anatomie des centres nerveux (2 Vols.), Rueff, Paris.

    Google Scholar 

  • Divac, I., 1975, Magnocellular nuclei of the basal forebrain project to neocortex, brainstem and olfactory bulb; review of some functional correlates, Brain Res., 93: 385–398.

    Article  PubMed  CAS  Google Scholar 

  • Divac, I. and Oberg, R.G.E., eds., 1979a, The Neostriatum, Pergamon Press, Oxford.

    Google Scholar 

  • Divac, I. and Oberg R.G.E., 1979b, Current conceptions of neostriatal functions history and an evaluation, in: “The Neostriatum (I),” I. Divac and R.G.E. Oberg, eds., Pergamon Press, Oxford, pp. 215–230,.

    Google Scholar 

  • Ericson, H., Blomqvist, A., and Köhler, C., 1989, Origin of neuronal inputs to the tuberomamiHary nucleus of the rat brain, in: “Neurons of the Tuberomamillary Nucleus,” Ericson H. Doctoral dissertation, Uppsala University, Sweden. (Acta Universitatis Uppsaliensis 208.)

    Google Scholar 

  • Evered, D. and O’Conner, M., 1984, Functions of the Basal Ganglia, Pitman, London (Ciba Symposium 107).

    Google Scholar 

  • Everitt, B.J., Cador, M., andRobbins, T.W., 1989, Interactions between the amygdala and ventral striatum in stimulus-reward associations; studies using a second-order schedule of sexual reinforcement. Neurosci., 30: 63–75.

    Article  CAS  Google Scholar 

  • Everitt, B.J., Sirkiä, T.E., Roberts, A.C., Jones, G.H., andRobbins, T.W. 1988, Distribution and some projections of cholinergic neurons in the brain of the common marmoset, Callithrix Jacchus, J. Comp. Neurol., 271: 533–558.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, J.H., 1983, The islands of Calleja complex of rat basal forebrain, II, Connections of medium and large sized cells, Brain Res. Bull., 10: 775–793.

    Article  PubMed  CAS  Google Scholar 

  • Farley, I.J. and Hornykiewicz, O., 1977, Noradrenaline distribution in subcortical areas of the human brain. Brain Res., 126: 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Fibiger, H.C. and Phillips, A.G., 1986, Reward, motivation, cognition; psychobiology of mesotelencephalic dopamine systems, in: “Handbook of Physiology”, Section 1, The Nervous System, Vol. 4, V.B. Mountcastle, F. Plum, S.R. Geiger, eds., American Physiological Society, Bethesda, pp. 647–674.

    Google Scholar 

  • Fisher, R.S., Buchwald, N.A., Hull, C.D., and Levine, M.S., 1988, GABA- ergic basal forebrain neurons project to the neocortex; the localization of glutamic acid decarboxylase and choline acetyltransferase in feline corticopetal neurons, J. Comp. Neurol., 272: 489–502.

    Article  PubMed  CAS  Google Scholar 

  • Freund-Mercier, M.J., Dietl, M.M., Stoeckel, M.E., Palacios, J.M., and Richard, P.H., 1988, Quantitative autoradiographic mapping of neurohypophysial hormone binding sites in the rat forebrain and pituitary gland, II, Comparative study on the Long-Evans and Brattleboro strains, Neurosci., 26: 273–281.

    Article  CAS  Google Scholar 

  • Garcia-Rill, E., Skinner, R.D., Gilmore, S.A., and Owings, R., 1983, Connections of the mesencephalic locomotor region (MLR), II, Afferents and efferents, Brain Res. Bull., 10: 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Geeraedts, L.M.G., Nieuwenhuys, R., and Veening, J.G., 1990, Medial forebrain bundle of the rat, III, Cytoarchitecture of the rostral (telen- cephalic) part of the medial forebrain bundle bed nucleus, J. Comp. Neurol., 294: 507–536.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., 1984, The neostriatal mosaic: compartmentalization of corti- costriatal input and striatonigral output system. Nature. 311: 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., 1985, The neostriatal mosaic, I, Compartmental organization of projections from the striatum to the substantia nigra in the rat, J. Comp. Neurol., 236: 454–476.

    Article  PubMed  CAS  Google Scholar 

  • Gloor, P., 1955, Electrophysiological studies on the connections of the amygdaloid nucleus in the cat, I, The neuronal organization of the amygdaloid projection system, EEG Clin. Neurophvsiol., 7: 223–242.

    Article  CAS  Google Scholar 

  • Gray, T.S., 1987, Autonomic neuropeptide connections of the amygdala, in: “Hans Selye Symposium: Neuropeptides and Stress,” Y. Tache, J.E. Mor- ley, and M.R. Brown, eds., Springer-Verlag, New York, pp. 92–105.

    Google Scholar 

  • Gray, T.S. and Magnuson, D.J., 1987, Neuropeptide neuronal efferents from the bed nucleus of the stria terminalis and central amygdaloid nucleus to the dorsal vagal complex in the rat, J. Comp. Neurol., 262: 365–374.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A.M., 1990, Neurotransmitters and neuromodulators in the basal ganglia, Trends Neurosci., 13: 244–254.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A.M., Ragsdale, C.W. Jr., Moon Edley, S., 1979, Compartments in the striatum of the cat observed by retrograde cell-labeling, Brain Res., 34: 189–195.

    CAS  Google Scholar 

  • Groenewegen, H.J., 1982, Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal- prefrontal topography, Neurosci., 24: 379–431.

    Article  Google Scholar 

  • Groenewegen, H.J. and Berendse, H.W., 1990, Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat, J. Comp. Neurol., 294: 607–622.

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen, H.J., Berendse, H.W., Meredith, G.E., Haber, S.N., Voorn, P., Wolters, J.G., and Lohman, A.H.M., 1991, Functional anatomy of the ventral limbic-innervated striatum, in: “The Mesolimbic Dopamine System: From Motivation to Action,” P. Willner and J. Scheel-Kruger, eds., John Wiley and Sons Ltd., England, Chichester, pp. 19–59.

    Google Scholar 

  • Groenewegen, H.J., Meredith, G.E., Berendse, H.W., Voorn, P., and Wolters, J.G., 1989, The compartmental organization of the ventral striatum in the rat, in: “Neural Mechanisms in Disorders of Movement,” A.R. Crossman and M.A. Sambrook, eds., Libbey and Co., London, pp. 45–54.

    Google Scholar 

  • Groenewegen, H.J., Russchen, F.T., 1984, Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic and mesencephalic structures; a tracing and immunohistochemical study in the cat, J. Comp. Neurol., 223: 347–367.

    Article  PubMed  CAS  Google Scholar 

  • Grove, E.A., 1988a, Neural associations of the substantia innominata in the rat; afferent connections, J. Comp. Neurol., 277: 315–346.

    Article  PubMed  CAS  Google Scholar 

  • Grove, E.A., 1988b, Efferent connections of the substantia innominata in the rat, J. Comp. Neurol., 277: 347–364.

    Article  PubMed  CAS  Google Scholar 

  • Grove, E.A., Domesick, V.B., and Nauta, W.J., 1986, Light microscopic evidence of striatal input to intrapallidal neurons of cholinergic cell group Ch4 in the rat; a study employing the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L), Brain Res., 367: 379–384.

    Article  PubMed  CAS  Google Scholar 

  • Grove, E.A. and Nauta, W.J.H., 1984, Light microscopic evidence for striatal and amygdaloid input to cholinergic cell group CH4 in the rat. Soc. Neurosci. Abstr., 10: 7.

    Google Scholar 

  • Haber, S.N., 1987, Anatomical relationship between the basal ganglia and the basal nucleus of Meynert in human and monkey forebrain, Proc. Natl. Acad. Sei., 84: 1408–1412.

    Article  CAS  Google Scholar 

  • Haber, S.N. and Eide, R., 1981, Correlation between met-enkephalin and substance P immunoreactivity in the primate globus pallidus, Neurosci., 6: 1291–1297.

    Article  CAS  Google Scholar 

  • Haber, S.N., Groenewegen, H.J., Grove, E.A., and Nauta, W.J.H., 1985, Efferent connections of the ventral pallidum; evidence of a dual stria- topallidofugal pathway, J. Comp. Neurol., 235: 322–335.

    Article  PubMed  CAS  Google Scholar 

  • Haber, S.N., Lind, E., Klein, C., and Groenewegen, H.J., 1990, Topographic organization of the ventral striatal efferent projections in the Rhesus monkey; an anterograde tracing study, J. Comp. Neurol., 293: 282–298.

    Article  PubMed  CAS  Google Scholar 

  • Haber, S.N. and Nauta, W.J.H., 1983, Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry, Neurosci., 9: 245–260.

    Article  CAS  Google Scholar 

  • Haber, S.N. and Watson, S.J., 1985, The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain, Neurosci., 14: 1011–1024.

    Article  CAS  Google Scholar 

  • Haberly, L.B. and Price, J.L., 1978, Associational and commissural fiber systems of the olfactory cortex of the rat, I, Systems arising in the piriform cortex and adjacent areas, J. Comp. Neurol., 178: 711–740.

    Article  PubMed  CAS  Google Scholar 

  • Hall, E., 1972, The amygdala of the cat; a Golgi study, Z. Zellorsch. 134: 439–458.

    Article  CAS  Google Scholar 

  • Hallanger, A.E., Levey, A.I., Henry, J.L., Rye, D.B., and Wainer, B.H., 1987, The origins of cholinergic and other subcortical afferents to the thalamus in the rat, J. Comp. Neurol., 262: 105–124.

    Article  PubMed  CAS  Google Scholar 

  • Hallström, A., Sato, A., Sato, Y., and Lingerstedt, U., 1990, Effect of stimulation of the nucleus basalis of Meynert on blood flow and extracellular lactate in the cerebral cortex with special reference to the effect of noxious stimulation of skin and hypoxia, Neurosci. Lett., 116: 227–232.

    Article  PubMed  Google Scholar 

  • Heimer, L., 1972, The olfactory connections of the diencephalon in the rat. Brain Behav. Evol., 6: 484–523.

    Article  PubMed  CAS  Google Scholar 

  • Heimer, L., 1978, The olfactory cortex and the ventral striatum, in: “Limbic Mechanisms,” K.E. Livingston and O. Hornykiewicz, eds., Plenum, New York, pp. 95–187.

    Google Scholar 

  • Heimer, L., Alheid, G.F., and Zaborszky, L., 1983, Microinjections of retrograde fluorescent tracers in the ventral pallidum of rat label neurons at the medial edge of the subthalamic nucleus. Soc. for Neurosci. Abstr., 9: 1230.

    Google Scholar 

  • Heimer, L., Alheid, G.F., and Zaborszky, L., 1985, The basal ganglia, in: “The Rat Nervous System,” G. Paxinos, ed., Academic Press, Sydney, pp. 37–74.

    Google Scholar 

  • Heimer, L., de Olmos, J.S., Alheid, G.F., and Zaborszky, L., 1991a, “Perestroika” in the basal forebrain; opening the borders between neurology and psychiatry, in: “Role of the Forebrain in Sensation and Behaviour”, G. Holstege, ed., pp. 109–165.

    Chapter  Google Scholar 

  • Heimer, L., Switzer, R.D., and Van Hoesen, G.W., 1982, Ventral striatum and ventral pallidum; components of the motor system? Trends in Neurosci., 5: 83–87.

    Article  Google Scholar 

  • Heimer, L. and Wilson, R.D., 1975, The subcortical projections of allocortex; similarities in the neural associations of the hippocampus, the piriform cortex and the neocortex, in: “Golgi Centennial Symposium Proceedings,” M. Santini, ed., Raven Press, New York, pp. 177–193.

    Google Scholar 

  • Heimer, L., Zaborszky, L., Zahm, D.S., and Alheid, G.F., 1987, The ventral striatopallidothalamic projection. I. The striatopallidal link originating in striatal parts of the olfactory tubercle. J. Comp. Neurol., 255: 571–591.

    Article  PubMed  CAS  Google Scholar 

  • Heimer, L., Zahm, D.S., Churchill, L., Kalivas, P.W., and Wohltmann, C., 1991b, Specificity in the projection patterns of accumbal core and shell in the rat, Neurosci., (in press).

    Google Scholar 

  • Heimer, L., Zahm, D.S., and Schmued, L.C., 1990, The basal forebrain projection to the region of the nuclei gemini in the rat; a combined light and electron microscopic study employing horseradish peroxidase, fluorescent tracers and phaseolus vulgaris-leucoagglutinin, Neurosci., 34(3): 707–731.

    Article  CAS  Google Scholar 

  • Herkenham, M., Moon Edley, S., and Stuart, J., 1984, Cell clusters in the nucleus accumbens of the rat and the mosaic relationship of opiate receptors, acetylcholinesterase and subcortical afferent terminations, Neurosci., 11: 561–593.

    Article  CAS  Google Scholar 

  • Herrick, C.J., 1910, The morphology of the forebrain in amphibia and rep- tilia, J. Comp. Neurol. and Psychol., 20: 413–546.

    Article  Google Scholar 

  • Holstege, G., 1990, Subcortical limbic system projections to caudal brainstem and spinal cord, in: “The Human Nervous System,” G. Paxinos, ed., Academic Press, San Diego, pp. 261–286.

    Google Scholar 

  • Holstege, G., Meiners, L., and Tan, K., 1985, Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat, Expl. Brain Res., 58: 379–391.

    Article  CAS  Google Scholar 

  • Insel, T.R., Miller, L.P., and Gelhard, R.E., 1990, The ontogeny of excitatory amino acid receptors in rat forebrain, I, N-methyl-D-aspartate and quisqualate receptors, Neurosci., 35: 31–43.

    Article  CAS  Google Scholar 

  • Jackson, A. and Crossman, A.R., 1981, Basal ganglia and other afferent projections to the peribrachial region in the rat; a study using retrograde and anterograde transport o£ horseradish peroxidase, Neurosci., 6: 1537–1549.

    Article  CAS  Google Scholar 

  • Johnston, J.B., 1923, Further contributions to the study of the evolution of the forebrain, J. Comp. Neurol., 35: 337–481.

    Article  Google Scholar 

  • Kaada, B., 1960, Cingulate, posterior orbital, anterior insular and temporal pole cortex, in: J. Field, H.W. Magoun, V.E. Hall (eds), “Handbook of Physiology”, Section 1. Neurophysiology, Vol. II. American Physiological Society, Washington, D.C., pp 1345–1372.

    Google Scholar 

  • Kelley, A.E., Domesick, V.B., and Nauta, W.J.H., 1982, The amygdalostriatal projection in the rat; an anatomical study by anterograde and retrograde tracing methods, Neurosci., 7: 615–630.

    Article  CAS  Google Scholar 

  • Koikegami, H., Hirata, Y., and Oguma, J., 1967, Studies on the paralimbic brain structures, I, definition and delimitation of the paralimbic brain structures and some experiments on the nucleus accumbens, Folia Psychiatica et Neurologica Japonica. 21: 151–180.

    CAS  Google Scholar 

  • Krieger, N.R., 1981, Neurochemistry of the olfactory tubercle, in: “Biochemistry of Taste and Olfaction,” Cagan R.H. and Kare M.R. eds., Academic Press, New York, pp. 417–441.

    Google Scholar 

  • Köhler, C., Chan-Palay, V., and Wu, J.Y., 1984, Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain, Anat. Embryol., 169: 41–44.

    Article  PubMed  Google Scholar 

  • Köhler, C., Haglund, L., and Swanson, L.W., 1984, A diffuse aMSH-immuno-reactive projection to the hippocampus and spinal cord from individual neurons in the lateral hypothalamic area and zone incerta, J. Comp. Neurol., 223: 501–514.

    Article  PubMed  Google Scholar 

  • Kohler, C. and Swanson, L.W., 1984, Acetylcholinesterase-containing cells in the lateral hypothalamic area are immunoreactive for alpha-melanocyte stimulating hormone (alpha-MSH) and have cortical projections in the rat, Neurosci. Lett., 49: 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Köhler, C., Swanson, L.W., Haglund, L., and Wu, J.Y., 1985, The cytoarchi- tecture, histochemistry and projections of the tuberomammillary nucleus in the rat, Neurosci., 16: 85–110.

    Article  Google Scholar 

  • Krettek, J.E. and Price, J.L., 1978, Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat, J. Comp. Neurol., 178: 225–254.

    Article  PubMed  CAS  Google Scholar 

  • Lauer, E.W., 1945, The nuclear pattern and fiber connections of certain basal telencephalic centers in the macaque, J. Comp. Neurol., 183: 785–816.

    Google Scholar 

  • LeDoux, J.E., Ruggiero, D.A., and Reis, D.J., 1985, Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat, J. Comp. Neurol., 242: 182–213.

    Article  PubMed  CAS  Google Scholar 

  • Lesur, A., Gaspar, P., Alvarez, Z., and Berger, B., 1989, Chemoanatomic compartments in the human bed nucleus of the stria terminalis, Neurosci., 32: 181–194.

    Article  CAS  Google Scholar 

  • Levey, A.E., Wainer, B.H., Mufson, E.J., and Mesulam, M.M., 1983, Co-localization of acetylcholinesterase and choline acetyltransferase in the rat cerebrum, Neurosci., 9: 9–22.

    Article  CAS  Google Scholar 

  • Lind, R.W., Swanson, L.W., and Ganten, D., 1985, Organization of Angiotensin II immunoreactive cells and fibers in the rat central nervous system; an immunohistochemical study, Neuroendocrin., 40: 2–24.

    Article  CAS  Google Scholar 

  • Luskin, M.B., and Price, J.L., 1983, The topographic organization of asso- ciational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb, J. Comp. Neurol., 216: 264–291.

    Article  PubMed  CAS  Google Scholar 

  • Lynd, E., Klein, C., Groenewegen, H.J., and Haber, S.N., 1988, Organization of the efferent projections from the primate ventromedial striatum, Soc. Neurosci. Abstr., 14: 156.

    Google Scholar 

  • Ma, W., Höhmann, C.F., Coyle, J.T., and Juliano, S.L., 1989, Lesions of the basal forebrain alter stimulus-evoked metabolic activity in mouse somatosensory cortex, J. Comp. Neurol., 288: 414–427.

    Article  PubMed  CAS  Google Scholar 

  • Macchi, G., 1951, The ontogenetic development of the olfactory telencephalon in man, J. Comp. Neurol., 95: 245–305.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, M., Nakai, M., Krieger, A.J., and Sapru, H.N., 1990, Chemical stimulation of the nucleus tractus solitarii decreases cerebral blood flow in anesthetized rats, Brain Res., 520: 255–261.

    Article  PubMed  CAS  Google Scholar 

  • Mai, J.K., Stephens, P.H., Hope, A., and Cuello, A.C., 1986, Substance P in the human brain, Neurosci., 17: 709–739.

    Article  CAS  Google Scholar 

  • Martin, L.J., Koliatsos, V.E., Struble, R.G., Powers, R.E., and Price, D.L., 1988, Chemoarchitectonic patterns of peptides in human basal forebrain; evidence for a system comprising the bed nucleus, substantia innominata, and central amygdala, Soc. Neurosci. Abstr., 14: 671.

    Google Scholar 

  • Matelli, M., Luppino, G., Fitzpatrick, D., and Diamond, I.T., 1988, The pulvinar nucleus of Tupaia; comparative study of its connections with the superior coliculus, the neocortex, and the corpus striatum, in: “Cellular Thalamic Mechanisms”, M. Bentivolio and R. Spreafico (eds.), Elsevier Science Publishers, Amsterdam, pp. 207–220.

    Google Scholar 

  • Matthysse, S., 1973, Antipsychotic drug actions; a clue to the neuropathology of schizophrenia? Federation Proc., 32: 200–205.

    CAS  Google Scholar 

  • McDonald, A.J., 1984, Neuronal organization of the lateral and basolateral amygdaloid nuclei in the rat, J. Comp. Neurol., 222: 589–606.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, A.J., 1991, Cell types and intrinsic connections of the amygdala, in: “The Amygdala,” J.P. Aggleton, ed., Wiley, New York, (in press).

    Google Scholar 

  • McKenzie, J.S., Kemm, R.E., and Wilcock, L.N., eds., 1984, The Basal Ganglia, Plenum Press, New York.

    Google Scholar 

  • Melander, T., Staines, W.A., Hökfelt, T., Rokaeus, A., Eckenstein, F., Salvaterra, P.M., and Wainer, B.H., 1985, Galanin-like immunoreactivity in cholinergic neurons of the septum-basal forebrain complex projecting to the hippocampus of the rat, Brain Res., 360: 130–138.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M.M., and Geula, C., 1988, Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: Observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J. Comp. Neurol., 275: 216–240.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M.M., Mufson, E.J., Levey, A.I., and Wainer, B.H., 1983a, Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in theRhesus monkey, J. Comp. Neurol., 214: 170–197.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M.M., Mufson, E.J., and Wainer, B.H., 1986, Three-dimensional representation and cortical projection topography of the nucleus basalis (Ch4) in the macaque; concurrent demonstration of choline acetyltransferase and retrograde transport with a stabilized tetramethylbenzidine method for HRP, Brain Res., 367: 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M.M., Mufson, E.J., Wainer, B.H., and Levey, A.J., 1983b, Central cholinergic pathways in the rat; an overview based on an alternative nomenclature, Neurosci., 10: 1185–1201.

    Article  CAS  Google Scholar 

  • Millhouse, O.E. and De Olmos, J., 1983, Neuronal configurations in lateral and basolateral amygdala, Neurosci., 10: 1269–1300.

    Article  CAS  Google Scholar 

  • Millhouse, O.E. and Heimer, L., 1984, Cell configurations in the olfactory tubercle of the rat, J. Comp. Neurol., 265: 1–24.

    Article  Google Scholar 

  • Miodonski, R., 1967, Myeloarchitectonics and connections of substantia innominata in the dog brain, Acta. Biologiae Expert. (Warszawa), 27: 61–84.

    CAS  Google Scholar 

  • Mishkin, M., Malamut, B., and Bachevalier, J., 1984, Memories and habits; two neural systems, in: “Neurobiology of Learning and Memory,” G. Lynch, J.L. McGaugh, and N.M. Weinberger, eds., Guildford Press, New York, pp. 65–77.

    Google Scholar 

  • Mizuno, N., Takahashi, O., Satoda, T., and Matsushima, R., 1985, Amygdalo- spinal projections in the macaque monkey, Neurosci. Lett., 53: 327–330.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson, G.J., 1984, Limbic-motor integration with emphasis on initiation of exploratory and goal-directed locomotion, in: “Modulation of Sensorimotor Activity During Alternations in Behavioral States,” Alan Liss, New York, pp. 121–137.

    Google Scholar 

  • Mogenson, G.J., 1987, Limbic motor integration, Progr. Psychobiol., 12: 117–170.

    Google Scholar 

  • Mogenson, G.J., Jones, D.L., and Yim, C.Y., 1980, From motivation to action; functional interface between the limbic system and the motor system, Progr. Neurobiol., 14: 69–97.

    Article  CAS  Google Scholar 

  • Mogenson, G.J., Swanson, L.W., and Wu, M., 1983, Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area; an anatomical and electrophysiological investigation in the rat, J. Neurosci., 3: 189–202.

    PubMed  CAS  Google Scholar 

  • Mori, S., Ueda, S., Yamad, H., Takino, T., and Sano, Y., 1985, Immuno- histochemical demonstration of serotonin nerve fibers in the corpus striatum of the rat, cat, and monkey, Anat. Embryo1. (Berl.), 173: 1–5.

    Article  CAS  Google Scholar 

  • Mugnaini, E. and Oertel, W.H., 1985, Atlas of the distribution of GABAer- gic neurons and terminals in the rat CNS as revealed by GAD immunohisto- chemistry, in: “Handbook of Chemical Neuroanatomy: GABA and Neuropeptides in the CNS,” A. Björklund and T. Hökfelt, eds., Elsevier, Amsterdam, pp. 436–595.

    Google Scholar 

  • Nakano, Y., Oomura, Y., Leonard, L., Nishino, H., Aou, S., Yamamoto, T., and Aoyagi K., 1986, Feeding-related activity of glucose and morphine- sensitive neurons in the monkey amygdala, Brain Res., 399: 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Nauta, W.J.H. and Domesick, V.B., 1978, Crossroads of limbic and striatal circuitry; hypothalmo-nigral connections, in: “Limbic Mechanisms: The Continuing Evolution of the Limbic System Concept,” Livingston K.E. and O. Hornykiewicz, eds., pp. 75–93.

    Google Scholar 

  • Nauta, W.J.H. and Domesick, V.B., 1984, Afferent and efferent relationships of the basal ganglia, in: “Functions of the Basal Ganglia,” D. Evered and M. O’Conner, eds., (Ciba Foundation Symposium 107), Pitman, London, pp. 3–23.

    Google Scholar 

  • Nauta, W.J.H., Smith G.P., Faull, R.L.M., and Domesick, V.B., 1978, Efferent connections and nigral afferents of the nucleus accumbens septi in the rat, Neurosci., 3: 385–401.

    Article  CAS  Google Scholar 

  • Newman, R. and Winans, S.S., 1980, An experimental study of the ventral striatum of the golden hamster, II, Neuronal connections of the olfactory tubercle, J. Comp. Neurol., 191: 193–212.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, E.B. and Scheel-Krüger, J., 1986, Cueing effects of amphetamine and LSD; elicitation by direct microinjection of the drugs into the nucleus accumbens, Eur. J. Pharmacol., 125: 85–92.

    Article  PubMed  CAS  Google Scholar 

  • Nishijo, H. and Ono, T., Nishino, H., 1988, Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance, J. Neurosci., 8: 3570–3583.

    PubMed  CAS  Google Scholar 

  • Parent, A., 1986, Comparative Neurobiology of the Basal Ganglia, John Wiley and Sons, New York.

    Google Scholar 

  • Parent, A., Paré, D., Smith, Y., and Steriade, M., 1988, Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys, J. Comp. Neurol., 277: 281–391.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, R.C.A., Gatter, K.C., Brodal, P., and Powell, T.P.S., 1983, The projection of the basal nucleus of Meynert upon the neocortex in the monkey. Brain Res., 259: 132–136.

    Article  PubMed  CAS  Google Scholar 

  • Penney, J.B. and Young, A.B., 1983, Speculations on the functional anatomy of basal ganglia disorders, Ann. Rev. Neurosci., 6: 73–94.

    Article  PubMed  Google Scholar 

  • Phelps, P.E. and Vaughn, J.E., 1986, Immunocytochemical localization of choline acetyltransferase in rat ventral striatum; a light and electron microscopic study, J. Neurocytol., 15: 595–617.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, A.G. and Carr, G.D., 1987, Cognition and the basal ganglia; a possible substrate for procedural knowledge, Can. J. Neurol. Sei., 14: 381–385.

    CAS  Google Scholar 

  • Phillips, P.A., Abrahams, J.M., Kelly, J., Paxinos, G., Grzonka, Z., Mendelsohn, F.A.O., and Johnston,C.I., 1988, Localization of vasopressin binding sites in rat brain by in vitro autoradiography using a radio- iodinated VI receptor antagonist, Neurosci., 27: 749–761.

    Article  CAS  Google Scholar 

  • Pioro, E.P., Mai, J.K., and Cuello, A.C., 1990, Distribution of substance P-and enkephalin-immunoreactive neurons and fibers, in: “The Human Nervous System,” G. Paxinos, ed., Academic Press, San Diego, pp. 1051- 1094.

    Google Scholar 

  • Price, J.L. and Amaral, D.G., 1981, An autoradiographic study of the projections of the central nucleus of the monkey amygdala, J. Neurosci., 11: 1242–1259.

    Google Scholar 

  • Price, J.L., Russchen, F.T., and Amaral, D.G., 1987, The limbic region, II, The amygdaloid complex, in: “Handbook of Chemical Neuroanatomy,” A. Björklund, T. Hökfelt, and L.W. Swanson, eds., Elsevier, Amsterdam, pp. 279–388.

    Google Scholar 

  • Price, J.L., Slotnick, B.M., and Revial, M.-F., 1991, Olfactory projections to the hypothalamus, J. Comp. Neurol., in press.

    Google Scholar 

  • Ramon y Cajal, S., 1911, Histologie du système nerveux de I’homme et des vertèbrès (Part II), Maloine, Paris.

    Google Scholar 

  • Ribak, C.E. and Kramer III, W.G., 1982, Cholinergic neurons in the basal forebrain of the cat have direct projections to the sensorimotor cortex, Exper. Neurol., 75: 453–465.

    Article  CAS  Google Scholar 

  • Richardson, R.T. and DeLong, M., 1990, Context-dependent responses of primate nucleus basalis neurons in a Go/No-Go task, J. Neurosci., 10: 2528- 2540.

    Google Scholar 

  • Richardson, R.T., Mitchell, S.J., Baker, F.H., and DeLong, M.R., 1988, Responses of nucleus basalis of Meynert neurons in behaving monkeys, in: “Cellular Mechanisms of Conditioning and Behavioral Plasticity,” C.D. Woody, D.L. Alkon, and J.L. McGaugh, eds., Plenum, New York.

    Google Scholar 

  • Rolls, E.T., Sanghera, M.K., and Roper-Hall, A., 1979, The latency of activation of neurones in the lateral hypothalamus and substantia inno- minata during feeding in the monkey, Brain Res., 16: 121–135.

    Google Scholar 

  • Roberts, G.W., Woodhams, P.L., Polak, J.M., and Crow, T.J., 1980, Distribution of neuropeptides in the limbic system of the rat; the amygdaloid complex, Neurosci., 7: 99–131.

    Article  Google Scholar 

  • Russchen, F.T., Bakst, I., Amaral, D.G., and Price, J.L., 1985, The amyg- dalostriatal projections in the monkey; an anterograde tracing study. Brain Res., 329: 241–257.

    Article  PubMed  CAS  Google Scholar 

  • Russell, V.A., Allin, R., Lamm, M.C.L., and Taljaard, J.J.F., 1989, Increased dopamine D2 receptor-mediated inhibition of [lC]Acetylchol ine release in the dorsomedial part of the nucleus accumbens, Neurochem. Res., 14: 877–881.

    Article  PubMed  CAS  Google Scholar 

  • Rye, D.B., Wainer, B.H., Mesulam, M.M., Mufson, E.J., and Saper, C.B., 1984, Cortical projections arising from the basal forebrain; a study of cholinergic and non-cholinergic components employing combined retrograde tracing and immunohistochemical localizations of choline acetyltransferase, Neurosci., 13: 627–643.

    Article  CAS  Google Scholar 

  • Sandler, M., Feuerstein, C., and Scatton, B., eds., 1987, Neurotransmitter Interactions in the Basal Ganglia, Raven, New York.

    Google Scholar 

  • Sandrew, B.B., Edwards, D.L., Poletti, C.E., andFoote, W.E., 1986, Amyg- dalo-spinal projections in the cat, Brain Res., 373: 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Saper, C.B., 1984, Organization of cerebral cortical afferent systems in the rat, II, Magnocellular basal nucleus, J. Comp. Neurol., 222: 313- 342.

    Google Scholar 

  • Saper, C.B., 1985, Organization of cerebral cortical afferent systems in the rat, II, Hypothalamocortical projections, J. Comp. Neurol., 237: 21- 46.

    Google Scholar 

  • Saper, C.B., 1987, Diffuse cortical projection systems; anatomical organization and role in cortical function, in: “Handbook of Physiology: The Nervous System,” V.B. Mountcastle, R. Plum, and S.R. Geiger, eds., American Physiological Society, Maryland, pp. 169–210.

    Google Scholar 

  • Schneider, J.S. and Lidsky, T.J., eds., 1986, Basal Ganglia and Behavior: Sensory Aspects of Motor Functioning, Hans Huber Publishers, New York.

    Google Scholar 

  • Schwaber, J.S., Kapp, B.S., Higgins, G.A., and Rapp, P.R,, 1982, Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus of the vagus, J. Neurosci., 2: 424–1438.

    Google Scholar 

  • Schwaber, J.S., Rogers, W.T., Satoh, K., and Fibiger, H.C., 1987, Distribution and organization of cholinergic neurons in the rat forebrain demonstrated by computer-aided data acquisition and three-dimensional reconstruction, J. Comp. Neurol., 263: 309–325.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W. and Chafin, B.R., 1975, Origin of olfactory projections to lateral hypothalamus and nuclei gemini of the rat. Brain Res., 88: 64–6.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W. and Leonard, C.M., 1971, The olfactory connections of the lateral hypothalamus in the rat, mouse, and hamster, J. Comp. Neurol., 141: 331–344.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W. and Pfaffmann, C., 1967, Olfactory input to the hypothalamus; electrophysiological evidence, Science., 158: 1592–1594.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W. and Pfaffmann, C., 1972, Characteristics of responses of lateral hypothalamic neurons to stimulation of the olfactory system, Brain Res., 48: 251–264.

    Article  PubMed  CAS  Google Scholar 

  • Shu, S.Y., Penny, G.R., and Peterson, G.M., 1988, The “marginal division”; a new subdivision in the neostriatum of the rat, J. Chem. Neuroanat., 1: 147–163.

    PubMed  CAS  Google Scholar 

  • Shu, S.Y., McGinty, J.F., and Peterson, G.M., 1990, High density of zinc-containing and dynorphin B- and substance P-immunoreactive terminals in the marginal division of the rat striatum, Brain Res. Bull., 24: 201- 205.

    Google Scholar 

  • Slotnick, B.M., 1990, Olfactory perception, in: “Comparative Perception, Vol. I, Basic Mechanisms”, Mark A. Berkley and Williams C. Stebbins, eds., John Wiley and Sons, Inc., pp. 155–214.

    Google Scholar 

  • Small, R.K. and Leonard, C.M., 1983, Early recovery of function after olfactory tract section correlated with reinnervation of olfactory tubercle, Brain Res., 283: 25–40.

    PubMed  CAS  Google Scholar 

  • Stevens, J.R., 1973, An anatomy of schizophrenia? Arch. Gen. Psychiat., 29: 177–189.

    Article  PubMed  CAS  Google Scholar 

  • Strenge, H., Braak, E., and Braak, H., 1977, Über den Nucleus Striae Terminal is im Gehirn des Erwachsenen Menschen, Z. Mikrosk. Anat. Forsch. (Leipzig), 91: 105–118.

    CAS  Google Scholar 

  • Swanson, L.W. and Cowan, W.M., 1975, A note on the connections and development of the nucleus accumbens, Brain Res., 92: 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L.W., Mogenson, G.J., Gerfen, C.R., and Robinson, P., 1984.

    Google Scholar 

  • Evidence for a projection from the lateral preoptic area and substantia innominata to the “mesencephalic locomotor region” in the rat. Brain Res., 295: 161–178.

    Google Scholar 

  • Swerdlow, N.R. and Koob, G.F., 1987, Dopamine, schizophrenia, mania and depression; toward a unified hypothesis of cortico-striato-pallido-thalamic function, Behav. Brain Sci., 10: 197–245.

    Article  Google Scholar 

  • Switzer, R.C., Hill, J., and Heimer, L., 1982, The globus pallidus and its rostroventral extension into the olfactory tubercle of the rat; a cyto- and chemoarchitectural study, Neurosci., 7: 1891–1904.

    Article  CAS  Google Scholar 

  • Syzmusiak, R. and McGinty, D., 1989, Effects of basal forebrain stimulation on the walking discharge of neurons in the midbrain reticular formation of cats, Brain Res., 498: 355–359.

    Article  Google Scholar 

  • Ulfig, N., Braak, E., Ohm, T.G., and Pool, C.W., 1990, Vasopressinergic neurons in the magnocellular nuclei of the human basal forebrain, (in press).

    Google Scholar 

  • Vaccarino F.J. and Rankin J. (1989) Nucleus accumbens cholecystokinin (CCK) can either attenuate or potentiate amphetamine-induced locomotor activity; evidence for rostral-caudal differences in accumbens CCK function. Behav. Neurosci., 103: 831–836.

    Article  PubMed  CAS  Google Scholar 

  • Vanderwolf, C.H., 1983, The role of the cerebral cortex and ascending activating systems in the control of behavior, in: “Handbook of Behavioral Neurobiology, Vol. 6”, E. Satinoff and P. Teitelbaum, eds., Plenum Publishing Corp., pp. 67–104.

    Google Scholar 

  • Vincent, S.R., Mcintosh, C.H.S., Buchan, A.M.J., and Brown, J.C., 1985, Central somatostatin systems revealed with monoclonal antibodies, J. Comp. Neurol., 238: 169–186.

    Article  PubMed  CAS  Google Scholar 

  • Von Economo, C. and Koskinas, G.N., 1925, Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen, Springer Verlag, Berlin.

    Google Scholar 

  • Voorn, P., Gerfen, C.R., and Groenewegen, H.J., 1989, Compartmental organization of the ventral striatum of the rat; immunohistochemical distribution of enkephalin, substance P, dopamine and calcium binding protein, J. Comp. Neurol., 289: 189–201.

    Article  PubMed  CAS  Google Scholar 

  • Walker, L.C., Koliatsos, V.E., Kitt, C.A., Richardson, R.T., Rökaeus, and Price, D.L., 1989, Peptidergic neurons in the basal forebrain magnocel- lular complex of the rhesus monkey, J. Comp. Neurol., 280: 272–282.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, D.M., Magnuson, D.J., and Gray, T., 1989, The amygdalo-brainstem pathway; selective innervation of dopaminergic, noradrenergic, and adrenergic cells in the rat, Neurosci. Lett., 97: 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse, P.J., Price, D.L., Clark, A.W., Coyle, J.T., and DeLong, M.R., 1981, Alzheimer disease; evidence for selective loss of cholinergic neurons in the nucleus basalis, Ann. Neurol., 10: 122–126.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D.J., Crossman, A.R., and Slater, P., 1977, The efferent projections of the nucleus accumbens in the rat. Brain Res., 130: 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, F.A.W. and Rolls, E.T., 1985, Reinforcement-related neuronal activity in the basal forebrain and amygdala, Soc. Neurosci. Abstr., 15: 52.

    Google Scholar 

  • Wood, D.M. and Emmett-Oglesby, M.W., 1989, Mediation in the nucleus accumbens of the discriminative stimulus produced by cocaine, Pharmacol. Biochem. Behav., 33: 453–457.

    Article  PubMed  CAS  Google Scholar 

  • Woolf, N.J. and Butcher, L.L., 1982, Cholinergic projections to the basolateral amygdala; a combined Evans Blue and acetylcholinesterase analysis, Brain Res. Bull., 8: 751–763.

    Article  PubMed  CAS  Google Scholar 

  • Woolf, N.J., Eckenstein, F., and Butcher, L.L., 1984, Cholinergic systems in the rat brain, I, Projections to the limbic telencephalon, Brain Res. Bull., 13: 751–784.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, T., Fukamauchi, F., Shibuya, H., and Takahashi, R., 1989, Regional heterogeneity with the nucleus accumbens concerning the effects of dopaminergic agents on the content of cholecystokinin, Neurochem. Inst., 14: 467–469.

    Article  CAS  Google Scholar 

  • Young, W.S. Ill, Alheid, G.F., and Heimer, L., 1984, The ventral pallidal projection to the mediodorsal thalamus; a study with fluorescent retrograde tracers and immunohistofluorescence, J. Neurosci., 4: 1626–1638.

    PubMed  Google Scholar 

  • Zaborszky, L., Alheid, G.F., Beinfeld, M.L., Eiden, L.E., Heimer, L., and Palkovits, M., 1985, Cholecystokinin innervation of the ventral striatum; amorphological and radioimmunological study, Neurosci., 14: 427–453.

    Article  CAS  Google Scholar 

  • Zaborszky, L., Carlsen, J., Brashear, H.R., and Heimer, L., 1986, Cholinergic GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band, J. Comp. Neurol., 243: 488–509.

    Article  PubMed  CAS  Google Scholar 

  • Zahm, D.S., 1989, The ventral striatopallidal parts of the basal ganglia in the rat, II, Compartmentation of ventral pallidal efferents, Neurosci., 30: 33–50.

    Article  CAS  Google Scholar 

  • Zahm, D.S. and Heimer, L., 1987, The ventral striatopallido thalamic projection, III, Striatal cells of the olfactory tubercle establish direct synaptic contact with ventral pallidal cells projecting to mediodorsal thalamus. Brain Res., 404: 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Zahm, D.S. and Heimer, L., 1988, Ventral striatopallidal parts of the basal ganglia in the rat, I, Neurochemical compartmentation as reflected by the distributions of neurotensin and substance P immunoreactivity, J. Comp. Neurol., 272: 516–535.

    Article  PubMed  CAS  Google Scholar 

  • Zahm, D.S. and Heimer, L., 1990, Two transpallidal pathways originating in nucleus accumbens, J. Comp. Neurol., 302: 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Zahm, D.S., Zaborszky, L., Alheid, G.F., and Heimer, L., 1987, The ventral striatopallidothalamic projection, II, The ventral pallidothalamic link, J. Comp. Neurol., 255: 592–605.

    Article  PubMed  CAS  Google Scholar 

  • Ziehen, T., 1909 (1897), Das Centrainervensystem der Monotremen und Mar- supialier. Ein Beitrag zur vergleichenden makroskopischen und mikroskopischen Anatomie und zur Vergleichenden Entwicklungsgeschichte des Wirbelthiergehirns, II. Theil. Mikroskopische Anatomie. Erster Abschnitt. Der Faserverlauf im Hirnstamm von Pseudochirus peregrinus. In: R. Semon (Ed.), “Zoologische Forschungsreisen in Australien und dem Malayischen Archipel, III, Monotremen und Marsupialier, II, I, Lieferun”, Jena, Gustav Fischer, pp. 677–728 (note: actual date is 1901; also listed as Denkschriften der Medicinisch-Natur-wissenschaftlichen Gesellschaft Zu Jena, Sechster Band).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Heimer, L., Alheid, G.F. (1991). Piecing together the Puzzle of Basal Forebrain Anatomy. In: Napier, T.C., Kalivas, P.W., Hanin, I. (eds) The Basal Forebrain. Advances in Experimental Medicine and Biology, vol 295. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0145-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0145-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0147-0

  • Online ISBN: 978-1-4757-0145-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics