Skip to main content

Sparse-Fur (spf) Mouse as a Model of Hyperammonemia: Alterations in the Neurotransmitter Systems

  • Chapter
Advances in Cirrhosis, Hyperammonemia, and Hepatic Encephalopathy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 420))

Abstract

Literature on sparse-fur (spf) mutant mouse, as an animal model of congenital hyperammonemia has been reviewed earlierl,4. Our current estimates indicate that over one hundred full-fledged articles have been published on spf mice since 1976, when the X-linked hepatic ornithine transcarbamylase (OTC; E.C. 2.1.3.3.) deficiency associated with the sparse-fur mutation was described for the first time5. An allelic form, the spfash (abnormal skin and hair) mutation, having a somewhat different phenotype to spf mouse, was also shown to have a quantitative deficiency of the hepatic OTC6. These publications have covered various aspects of the expression of the spf gene, including the clinical pathology, neurochemical pathology, behavior, experimental carcinogenesis and pharmacogenetics. Moreover, the spf mouse is now established as an animal model to study the effects of transgenic and viral-mediated gene therapy7,12. As indicated in Figure. 1, this has brought in a dramatic increase in new research studies on the spf and spfash mice, a big majority of which were initiated from our laboratory. It can be said that the spf mouse is now established as the most appropriate model to study the pathology and therapy of chronic hyperammonemic encephalopathy, particularly of hereditary origin. In the following text, we shall briefly review the nature and expression of the spf mutation, at the hepatic and intestinal levels, and its similarity to the human OTC deficiency. Particular emphasis shall be given to the neurochemical pathology in the spf mouse, from the point of view of metabolic and neurotransmitter abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.A. Qureshi, J. Letarte, and S.R. Qureshi, Congenital hyperammonemia (Model No. 235), in: Handbook of Animal Models of Human Disease, C. C. Capen, D. B Hackle, T. C Jones, G. Migaki ed., Fase 11. Washington, D.C: Registry of Comparative Pathology, pp 2–4 (1981).

    Google Scholar 

  2. M.L. Batshaw, S.L. Hyman, C. Bachmann, I.A. Qureshi and J.T. Coyle, Animal Models of congenital hyperammonemia, in: Animal Models of Dementia, J.T.Coyle, ed., Alan. R. Liss, Inc, New York, pp 163–198 (1987).

    Google Scholar 

  3. I.A. Qureshi, Congenital hyperammonemia (Model No. 235) Supplemetal Update, in: Handbook of Animal Models of Human Disease, C. C. Capen, D. B Hackle, T. C Jones, G. Migaki, ed., Fase 11. Washington, D.C: Registry of Comparative Pathology, pp 1–2 (1989).

    Google Scholar 

  4. I.A. Qureshi, Animal models of hereditary hyperammonemias, in: Neuromethods, Animal Models of Neurological Disease, II, A. Boulton., G. Baker and R. Butterworth, ed., The Humana Press Inc, New York pp 329–356 (1992).

    Chapter  Google Scholar 

  5. R. Demars, S.L. LeVan, B.L. Trend and L.B. Russel, Abnormal ornithine carbamoyl-transferase in mice having the sparse-fur mutation. Proc. Natl. Acad. Sci, U.S.A. 73:1693–1698 (1976).

    Article  PubMed  CAS  Google Scholar 

  6. I.A. Qureshi, J. Letarte and R. Ouellet, Spontaneous animal models of ornithine transcarbamylase deficiency: Studies on serum and urinary nitrogen metabolites, in: Urea Cycle Diseases, A. Lowenthal, A. Mori and B. Marecau, ed., Plenum Press, New York, pp 173–183 (1983).

    Google Scholar 

  7. M.L. Batshaw, M. Yudkoff, B.A. McLaughlin, E. Gorry, N.J. Anegawa, I.A.S. Smith and M.B. Robinson, The sparse-fur mouse as a model of gene therapy in ornithine carbamoyltransferase deficiency, Gene Therapy. 2:743–749 (1995).

    PubMed  CAS  Google Scholar 

  8. J.C. Pages, M. Andreoletti, M. Bennoun, C. Vons, J. Elcheroth, P. Lehn, D. Houssin, J. Chapman, P. Briand, R. Benarous, D. Franco and A. Weber, Efficient retroviral-mediated gene transfer into primary cultures of murine and human hepatocytes: Expression of LDL receptor, Human Gene Therapy 6:21–30 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. S.E. Raper, Hepatocyte transplantation and gene therapy, Clin Transplantation. 9:249–254 (1995).

    CAS  Google Scholar 

  10. M.A. Morsy and C.T. Caskey, Ornithine transcarbamylase deficiency: A model for gene therapy, in: Hepatic Encephalopathy, Hyperammonemia, and Ammonia Toxicity, V. Felipo and S. Grisolia, ed., Plenum Press, New York, pp 145–154 (1994).

    Chapter  Google Scholar 

  11. M.A. Morsy, J.Z. Zhao, T.T. Ngo, A.W. Warman, W.E. O’Brien and F.L. Graham, Patient selection may affect gene therapy success, J. Clin. Invest. 97:826–831 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. X. Ye, M.B. Robinson, M.L. Batshaw, E.E. Furth, I. Smith and J.M. Wilson, Prolonged metabolic correction in adult ornithine transcarbamylase-deficient mice with adenoviral vectors, J. Biol. Chem. 271:3639–3646 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. I.A. Qureshi, J. Letarte and R. Ouellet, Ornithine transcarbamylase deficiency in mutant mice I. Studies on the characterization of enzyme defect and suitability as animal model of human disease, Pediat. Res. 13:807–811 (1979).

    Article  PubMed  CAS  Google Scholar 

  14. G. Veres, R.A. Gibbs, S.E. Scherer and C.T. Caskey, The molecular basis of sparse-fur mouse mutation, Science. 237:415–417 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. N.S. Cohen, C.W. Cheung and L. Raijman, Altered enzyme activities and citrulline synthesis in liver mitochondria from ornithine carbamoyltransferase-deficient sparse-furash mice, Biochem. J. 257:251–257 (1989).

    PubMed  CAS  Google Scholar 

  16. P. Briand, S. Mirira, M. Mori, L. Cathelineau, P. Kamoun and M. Talibana, Cell-free synthesis and transport of precursors of mutant ornithine carbamoyltransferases into mitochondria, Biochem. Biophys. Acta, 760:389–397 (1983).

    Article  PubMed  CAS  Google Scholar 

  17. A. Ohtake, M. Takayanagi, S. Yamamoto, H. Nakajima and M. Mori, Ornithine transcarbamylase deficiency in spf and spf-ash mice: Genes, mRNA and mRNA precursors, Biochem. Biophys. Res. Commun. 146:1064–1070 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. N. Dubois, C. Cavard, J.F. Chasse, P. Kamoun and P. Briand, Compared expression of ornithine transcarbamylase and carbamyl phosphate synthetase in liver and small intestine of normal and mutant mice, Biochim. Biophys. Acta. 950:321–328 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. Y.R. Mawal, K.V. RamaRao and I.A. Qureshi, Enhanced expression of hepatic mitochondrial urea cycle enzymes and cytochrome C oxidase with chronic acetyl-L-carnitine treatment in spf mice with ornithine transcarbamylase deficiency, J. Biol. Chem. (submitted) (1996).

    Google Scholar 

  20. A. Russel, B. Levin, V.G. Oberholzer and L. Sinclair, Hyperammonemia. A new instance of an inborn enzymatic defect of the biosynthesis of urea, Lancet. 2:699–700 (1962).

    Article  Google Scholar 

  21. E.M. Short, HO. Conn, P.I. Snodgrass, A.G.M. Campbell and L.E. Rosenberg, Evidence for X-linked dominant inheritance of ornithine transcarbamylase deficiency, N. Engl. J. Med. 288:7–12 (1973).

    Article  PubMed  CAS  Google Scholar 

  22. P. Briand, B. Francois, D. Rabier and L. Cathelineau, Omithine transcarbamylase deficiencies in human males: Kinetic and immunochemical classification, Biochem. Biophys. Acta. 704:100–106 (1982).

    Article  PubMed  CAS  Google Scholar 

  23. I.A. Qureshi, J. Letarte and R. Ouellet, Expression of ornithine transcarbamylase deficiency in the small intestine and colon of sparse-fur mutant mice, J. Pediatr. Gastroenterol. Nutr. 4:118–124 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. E.S. Spector and R.A. Mazzochi, The sparse-fur mouse: An animal model for a human inborn error of metabolism of the urea cycle, in: Orphan Drugs and Orphan Diseases: Clinical Realities and Public Policy, Alan R. Liss, Inc, New York, pp 86–96 (1983).

    Google Scholar 

  25. I.A. Qureshi, J. Letarte and R. Ouellet, Activity of orotate metabolizing enzyme complex and various urea cycle enzymes in mutant mice with ornithine trans-carbamylase deficiency, Experientia. 38:308–309 (1982).

    Article  PubMed  CAS  Google Scholar 

  26. S. Vasudevan, I.A. Qureshi, L. Mores, P.M. Rao, S. Rajalakshmi and D.S.R. Sarma, Abnormal hepatic nucleotide pools in sparse-fur (spf) mutant mice deficient in ornithine transcarbamylase, Biochem Med. Metabol. Biol. 47:274–278 (1992).

    Article  CAS  Google Scholar 

  27. L. Vasudevan, I.A. Qureshi, M. Lambert, P. Rao, S. Rajalakshmi and D.S.R. Sarma, Nucleotide pool imbalances in the livers of patients with urea cycle disorders associated with increased levels of orotic acid, Biochem. Mol. Biol. Int. 35:685–690 (1995).

    PubMed  CAS  Google Scholar 

  28. I.A. Qureshi, J. Letarte, S. Lebel and R. Ouellet, Variablite de l’active enzymatique et de l’acidurie orotique chez les souris spf/+ heterozygotes deficientes en ornithine transcarbamylase, Diabete. Metabolisme. 12:250–255 (1986).

    PubMed  CAS  Google Scholar 

  29. J.C. Feoli-Fonseca, M. Lambert, G. Mitchell, S.B. Melançon, L. Dallaire, D.S. Millington and I.A. Qureshi, Chronic sodium benzoate therapy in children with inborn errors of urea synthesis: Effect on carnitine metabolism and ammonia nitrogen removal, Biochem. Mol. Med. 57:31–36 (1996).

    Article  PubMed  CAS  Google Scholar 

  30. A. Michalak and I.A. Qureshi, Carnitine musculaire chez les souris hyperammoniémiques: effect du traitement au benzoate de sodium, Can. J. Physiol. Pharmacol. 71:439–446 (1990).

    Article  Google Scholar 

  31. A. Michalak and I.A. Qureshi, Profil des acylcarnitines hepatiques et musculares chez les souris chroniquement hyperammonemiques apres un traitment aigu avec le benzoate de sodium: etudes dose-response, Ann Biol Clin. 50:879–885 (1993).

    Google Scholar 

  32. I. Inoue, T. Gushiken, K. Kobayashi and T. Saheki, Accumulation of large neutral amino acids in the brains of sparse-fur mice at hyperammonemic state, Biochem Med. Metabol. Biol. 38:378–386 (1987).

    Article  CAS  Google Scholar 

  33. L. Ratnakumari, I.A. Qureshi and R.F. Butterworth, Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice, Biochem. Biophys. Res. Commn. 184:746–751 (1992).

    Article  CAS  Google Scholar 

  34. L. Ratnakumari, I.A. Qureshi and R.F. Butterworth, Effect of sodium benzoate on cerebral and hepatic energy metabolites in spf mice with congenital hyperammonemia, Biochem. Pharmacol. 45:137–146 (1993).

    Article  PubMed  CAS  Google Scholar 

  35. L. Ratnakumari, I.A. Qureshi and R.F. Butterworth, Regional amino acid neuro-transmitter changes in brains of spf/Y mice with congenital omithine transcarbamylase deficiency, Metabol Brain Dis. 9:43–51 (1994).

    Article  CAS  Google Scholar 

  36. L. Ratnakumari, I.A. Qureshi, R.F. Butterworth, B. Marescau and P.P. De Deyn, Arginine-related guanidino compounds and nitric oxide synthase in brain of ornithine transcarbamylase deficient spf mutant mouse: Effect of metabolic arginine deficiency, Neurosci. Lett. 215:153–156 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. M.L. Batshaw, S.L. Human, J.T. Coyle, M.B. Robinson, I.A. Qureshi, E.D. Mellits and S. Quaskey, Effect of sodium benzoate and sodium phenylacetate on brain serotonin turnover in the omithine transcarbamylasedeficient sparse-fur mouse, Pediatr. Res. 23:368–374 (1988).

    Article  PubMed  CAS  Google Scholar 

  38. A. Conelly, J.H. Cross, D.G. Gadien, J.V Hunter, F.J. Kirkham and J.V. Leonard, Magnetic resonance spectrocopy shows increased brain glutamine in ornithine trans-carbamylase deficiency, Pediatr. Res. 33:77–81 (1993).

    Article  Google Scholar 

  39. S.W. Brusilow and A.L. Horwich, Urea cycle enzymes, in: Metabolic and Molecular Bases of Inherited Disease, C.R. Scriver, A.L. Beaudet, W.S. Sly and D. Valle ed., McGraw Hill, New York, pp 1187–1232, (1995).

    Google Scholar 

  40. J.F. Giguere and R.F. Butterworth, Amino acid changes in regions of CNS in relation to function in experimental portal-systemic encephalopathy, Neurochem. Res. 9:1309–1321 (1984).

    Article  PubMed  CAS  Google Scholar 

  41. I.A. Qureshi, B. Marescau, M. Levy, P.P. DeDeyn, J. Letarte and A. Lowenthal, Serum and urinary guanidino compounds in sparse-fur mutant mice with ornithine transcarbamylase deficiency, in: Guanidines 2, A. Mori, B.D. Cohen and H. Koide, ed., Plenum Press, New York, pp 45–51 (1989).

    Chapter  Google Scholar 

  42. V.L.R. Rao, I.A. Qureshi and R.F. Butterworth, Increased densities of binding sites for peripheral-type benzodiazepine receptor ligand [3H]PK 11195 in congenital ornithine transcarbamylase-deficient sparse-fur mouse, Pediatr. Res. 6:777–780 (1993).

    Google Scholar 

  43. R.R.H. Anholt, Mitochondrial benzodiazepine receptors as potential modulators of intermediary metabolism, Trend. Pharmacol Sci. 7:506–511 (1986).

    Article  CAS  Google Scholar 

  44. A.J.L. Cooper and F. Plum, Biochemistry and physiology of brain ammonia, Physiol Rev. 67:440–519 (1987).

    PubMed  CAS  Google Scholar 

  45. K.V. Rama Rao, Y.R. Mawal and I.A. Qureshi, Progressive decrease of cerebral cytochrome C oxidase activity in spf mice: Effect of acetyl-L-carnitine in restoring the ammonia-induced cerebral energy depletion, Neurosci. Lett (accepted with revision) 1996.

    Google Scholar 

  46. L. Ratnakumari, G.Y.C.V. Subbalaxmi and Ch.R.K. Murthy, Acute effects of ammonia on the enzymes of citric acid cycle in rat brain, Neurochem. Int. 8:115–120 (1986).

    Article  PubMed  CAS  Google Scholar 

  47. L. Ratnakumari and Ch.R.K. Murthy, Activities of pyruvate dehydrogenase, enzymes of citric acid cycle and aminotransferases in the subcellular fractions of cerebral cortex in normal and hyperammonemic rats, Neurochem. Res. 14:221–228 (1989).

    Article  PubMed  CAS  Google Scholar 

  48. B. Hindfelt, F. Plum and T.E. Duffy, Effect of acute ammonia intoxication on cerebral energy metabolism in rats with porta-caval shunts, J. Clin. Invest. 59:386–396 (1977).

    Article  PubMed  CAS  Google Scholar 

  49. C. Bachmann and J.P. Colombo, Increased tryptophan and 5-hydroxyindoleacetic acid in the brain of ornithine carbamoyltransferase deficient sparse-fur mice, Pediatr. Res. 18:372–375 (1984).

    Article  PubMed  CAS  Google Scholar 

  50. F. Chaouloff, D. Laude, E. Mignot, P. Kamoun and J.L. Elghozi, Tryptophan and serotonin turnover rate in the brain of genetically hyperammonemic mice, Neurochem. Int. 7:143–153 (1985).

    Article  PubMed  CAS  Google Scholar 

  51. I. Inoue, T. Shimizu, T. Saheki, T. Noda and T. Fukuda, Serotonin-and catecholamine-related substances in the brain of ornithine transcarbamylase-deficient sparse-fur mice in the hyperammonemic state: Comparision of two procedures for obtaining brain extract, decapitation and microwave irradiation, Biochem Med. Metabol Biol, 42:232–239 (1989).

    Article  CAS  Google Scholar 

  52. V.L.R. Rao, I.A. Qureshi and R.F. Butterworth, Activities of monoamine oxidase-A and-B are altered in the brains of congenitally hyperammonemic sparse-fur (spf) mice, Neurosci. Lett. 170:27–30 (1994).

    Article  PubMed  CAS  Google Scholar 

  53. M.B. Robinson, N.J. Anegawa, E. Gorry, I.A. Qureshi, J.T. Coyle, I. Lucki and M.L. Batshaw, Brain serotonin2 and serotonin1A receptors are altered in the congenitally hyperammonemic sparse fur mouse, J. Neurochem. 58:1016–1022 (1992).

    Article  PubMed  CAS  Google Scholar 

  54. S.L. Hyman, J.C. Parke and C. Porter, Anorexia and altered serotonin metabolism in a patient with argininosuccinic aciduria, J. Pediatr. 108:705–709 (1986).

    Article  PubMed  CAS  Google Scholar 

  55. M.B. Robinson, K. Hopkins, M.L. Batshaw, B.A. McLaughlin, M.P. Heyes and M.L. Oster-granite, Evidence of excitotoxicity in the brain of the ornithine carbamoyltransferase deficient sparse fur mouse, Dev. Brain. Res. 90:35–44 (1995).

    Article  CAS  Google Scholar 

  56. M.L. Batshaw, M.B. Robinson, K. Heyland, S. Djali and M.P. Heyes, Quinolinic acid in children with congenital hyperammonemia, Ann Neurol. 34:676–681 (1993).

    Article  PubMed  CAS  Google Scholar 

  57. M.L. Btashaw, Inborn errors of urea synthesis, Ann Neurol. 35:133–141 (1994).

    Article  Google Scholar 

  58. S.W. Brusilow and A.L. Horwich, Urea cycle enzymes, in: Metabolic and Molecular Bases of Inherited Disease, C.R. Scriver, A. L. Beaudet, W.S. Sly and D. Valle, ed., McGraw Hill, New York, pp 1187–1232 (1995).

    Google Scholar 

  59. D.S. Olton, Dementia: Animal models of the cognitive impairments following damage to the basal forebrain cholinergic system, Brain Res. Bull. 25:499–502 (1990).

    Article  PubMed  CAS  Google Scholar 

  60. L. Ratnakumari, I.A. Qureshi, D. Maysinger and R.F. Butterworth, Developmental deficiency of the cholinergie system in congenitally hyperammonemic spf mice: Effect of acetyl-L-carnitine, J. Pharmacol. Exp. Ther. 274:437–443 (1995).

    PubMed  CAS  Google Scholar 

  61. H.J. Martinez., C.F. Dreyfus., G.M. Jonakait and I.B. Black, Nerve growth factor promotes cholinergic development in brain striatal cultures, Proc. Natl. Acad. Sci. U.S.A. 82: 7777–7781 (1985).

    Article  PubMed  CAS  Google Scholar 

  62. L. Ratnakumari., I.A. Qureshi and R.F. Butterworth, Central muscarinic cholinergic M1 and M2 receptor changes in congenital ornithine transcarbamylase deficiency, Pediatr Res, 40: 25–28 (1996).

    Article  PubMed  CAS  Google Scholar 

  63. L. Ratnakumari., I.A. Qureshi and R.F. Butterworth, Evidence of cholinergic neuronal loss in brain in congenital ornithine transcarbamylase deficiency, Neurosci. Lett, 178: 63–65 (1994).

    Article  PubMed  CAS  Google Scholar 

  64. C.L. Dolman., R.A. Clasen and K. Dorovini-Zis, Severe cerebral damage in ornithine transcarbamylase deficiency, Clin. Neuropathol. 7: 10–15 (1988).

    PubMed  CAS  Google Scholar 

  65. B.N. Harding., J.V. Leonard and M. Erdohazi, Ornithine transcarbamylase deficiency. A neuropathological study, Pediatrics. 141: 215–220 (1984).

    CAS  Google Scholar 

  66. M. Msall., P.S. Monahan., N. Chapanis and M.L. Batshaw, Cognitive development in children with inborn errors of urea synthesis. Acta. Pediatr (Jpn). 30: 435–441 (1988).

    Article  CAS  Google Scholar 

  67. J. Alberch., E. Perez-Navarro., N.E. Calvo and J. Marsal, Trophic factors protect neostriatal cholinergie neurons against quinolinic acid lesion, Soc. Neurosci. Abstr. 19: 276.12 (1993).

    Google Scholar 

  68. L. Ratnakumari., I.A. Qureshi and R.F. Butterworth, Loss of [3H]MK801 binding sites in brain in congenital ornithine transcarbamylase deficiency, Metabol Brain Dis. 10: 249–255 (1994).

    Article  Google Scholar 

  69. F. Moroni, G. Lombardi, V. Carla, D. Pelligrini, G.L. Carassale and C. Cortesini, Content of quinolinic acid and other tryptophan metabolites increases in brains of rats used as experimental models of hepatic encephalopathy, J. Neurochem. 46:869–874 (1986).

    Article  PubMed  CAS  Google Scholar 

  70. V.L. Raghavendra Rao, A.K. Agrawal and Ch. R.K. Murthy, Ammonia-induced alteration in glutamate and muscimol binding to cerebellar synaptic membranes, Neurosci. Lett. 130:251–259 (1991).

    Article  PubMed  CAS  Google Scholar 

  71. J. Astrup, P. Sorensen and H. Sorensen, Oxygen and glucose consumption related to Na+-K+-transport in canine brain, Stroke. 12:726–730 (1981).

    Article  PubMed  CAS  Google Scholar 

  72. L. Ratnakumari, R. Audet, I.A. Qureshi and R.F. Butterworth, Na+,K+-ATPase activities are increased in brain in both congenital and aquired hyperammonemic syndromes, Neurosci. Lett. 197:89–92 (1995).

    Article  PubMed  CAS  Google Scholar 

  73. E. Kosenko, Y. Kaminsky, E. Gran, M.D. Minara, M.G. Grisolia, S. Grisolia and V. Felipo, Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+,K+-ATPase, J. Neurochem. 63:2172–2178 (1994).

    Article  PubMed  CAS  Google Scholar 

  74. . A.M. Bartello, A. Aperia, S.I. Walaas, A.C Nairn and P. Greengard, Phosphorylation of catalytic subunit of Na+- K+-ATPase inhibits the activity of the enzyme, Proc. Natl. Acad. Sci. USA. 88:11359–11362 (1991).

    Article  Google Scholar 

  75. J.T. Neary, L-OB. Norenberg, M.P. Gutierrez and M.D. Norenberg, Hyperammonemia causes altered protein phosphorylation in astrocytes, Brain Res. 437:161–164 (1987).

    Article  PubMed  CAS  Google Scholar 

  76. N. Seiler, Is ammonia a pathogenetic factor in Alzheimers disease, Neurochem Res. 18:235–245 (1993).

    Article  PubMed  CAS  Google Scholar 

  77. S. Hoycr, Possible role of ammonia in the brain in dementia of Alzheimer type, in: Hepatic Encephalopathy and Hyperammonemia and Ammonia Toxicity, V. Felipo and S. Grisolia ed. Plenum Press, New York, pp 197–208 (1994).

    Google Scholar 

  78. F.M. Beal, Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses, Ann. Neurol. 31:119–130 (1992).

    Article  PubMed  CAS  Google Scholar 

  79. T. Gushiken, N. Yoshimura and T. Saheki, Transient hyperammonemia during aging in ornithine transcarbamylase-deficient, sparse-fur mice, Biochem. Int. 11:637–643 (1985).

    PubMed  CAS  Google Scholar 

  80. C. Malo, I.A. Qureshi and J. Letarte, Postnatal maturation of enterocytes in sparse-fur mutant mice, Am. J. Physiol. 250:G177–184 (1986).

    PubMed  CAS  Google Scholar 

  81. N. Seiler, C. Grauffel, G. Daune-Anglard, S. Sarhan and B. Knodgen, Decreased hyperammonemia and orotic aciduria due to inactivation of ornithine aminotransferase in mice with a hereditary abnormal ornithine carbamoyltransferase, J. Inher. Metab. Dis. 17:691–703 (1994).

    Article  PubMed  CAS  Google Scholar 

  82. K. Monastiri, D. Rabier and P. Kamoun, Prenatal diagnosis of ornithine transcarbamylase deficiency: Results in spfash mice, Prenatal Diagnosis. 13:441–447 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Qureshi, I.A., Rao, K.V.R. (1997). Sparse-Fur (spf) Mouse as a Model of Hyperammonemia: Alterations in the Neurotransmitter Systems. In: Felipo, V., Grisolía, S. (eds) Advances in Cirrhosis, Hyperammonemia, and Hepatic Encephalopathy. Advances in Experimental Medicine and Biology, vol 420. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5945-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5945-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7724-5

  • Online ISBN: 978-1-4615-5945-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics