Skip to main content

Risk Stratification and Patient Management

  • Chapter
  • First Online:
Atlas of Nuclear Cardiology

Abstract

Since its beginnings in the early 1970s, clinical nuclear cardiology has evolved substantially, gaining both technical sophistication and enhanced imaging capabilities. Importantly, in parallel to these developments, an extensive literature supporting the clinical and cost-effectiveness of this modality has developed. Today, state-of-the-art nuclear cardiology allows for the objective measurement of both myocardial function and relative regional myocardial perfusion at rest and stress, providing accurate risk assessment in a wider variety of patient subsets. This chapter will highlight stress myocardial perfusion single-photon emission CT (SPECT), which currently comprises approximately 95 % of the procedures performed in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hasdai D, Gibbons RJ, Holmes Jr DR, et al. Coronary endothelial dysfunction in humans is associated with myocardial perfusion defects. Circulation. 1997;96:3390–5.

    Article  PubMed  CAS  Google Scholar 

  2. Ladenheim ML, Pollock BH, Rozanski A, et al. Extent and severity of myocardial hypoperfusion as predictors of prognosis in patients with suspected coronary artery disease. J Am Coll Cardiol. 1986;7:464–71.

    Article  PubMed  CAS  Google Scholar 

  3. Garcia EV. Quantitative myocardial perfusion single-photon emission computed tomographic imaging: quo vadis? (Where do we go from here?). J Nucl Cardiol. 1994;1:83–93.

    Article  PubMed  CAS  Google Scholar 

  4. Sharir T, Germano G, Waechter PB, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. II: validation and diagnostic yield. J Nucl Med. 2000;41:720–7.

    PubMed  CAS  Google Scholar 

  5. Germano G, Kavanagh P, Waechter P, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility. J Nucl Med. 2000;41:712–9.

    PubMed  CAS  Google Scholar 

  6. Berman DS, Abidov A, Kang X, et al. Prognostic validation of a 17-segment score derived from a 20-segment score for myocardial perfusion SPECT interpretation. J Nucl Cardiol. 2004;11:414–23.

    Article  PubMed  Google Scholar 

  7. Berman DS, Kiat H, Friedman JD, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol. 1993;22:1455–64.

    Article  PubMed  CAS  Google Scholar 

  8. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardialsegmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.

    Article  PubMed  Google Scholar 

  9. Berman DS, Kang X, Gransar H, et al. Quantitative assessment of myocardialperfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol. 2009;16(1):45–53.

    Article  PubMed  Google Scholar 

  10. Slomka PJ, Nishina H, Berman DS, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol. 2005;12:66–77.

    Article  PubMed  Google Scholar 

  11. Mazzanti M, Germano G, Kiat H, et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol. 1996;27:1612–20.

    Article  PubMed  CAS  Google Scholar 

  12. Shaw LJ, Hachamovitch R, Berman DS, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. J Am Coll Cardiol. 1999;33:661–9.

    Article  PubMed  CAS  Google Scholar 

  13. Matzer L, Kiat H, Van Train K, et al. Quantitative severity of stress thallium-201 myocardial perfusion single-photon emission computed tomography defects in one-vessel coronary artery disease. Am J Cardiol. 1993;72:273–9.

    Article  PubMed  CAS  Google Scholar 

  14. Sharir T, Bacher-Stier C, Dhar S, et al. Identification of severe and extensivecoronary artery disease by postexercise regional wall motion abnormalities inTc-99m sestamibi gated single-photon emission computed tomography. Am J Cardiol. 2000;86:1171–5.

    Article  PubMed  CAS  Google Scholar 

  15. Borges-Neto S, Shaw LK, Tuttle RH. Incremental prognostic power of SPECT myocardial perfusion imaging in patients with known or suspected coronary artery disease. Am J Cardiol. 2005;95:182–8.

    Article  PubMed  Google Scholar 

  16. Berman DS, Hachamovitch R, Kiat H, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 1995;26:639–47 (published erratum appears in J Am Coll Cardiol. 1996;27:756).

    Article  PubMed  CAS  Google Scholar 

  17. Christian TF, Miller TD, Bailey KR, Gibbons RJ. Exercise tomographic thallium-201 imaging in patients with severe coronary artery disease and normal electrocardiograms. Ann Intern Med. 1994;121:825–32.

    Article  PubMed  CAS  Google Scholar 

  18. Hachamovitch R, Berman DS, Kiat H, et al. Value of stress myocardial perfusion single photon emission computed tomography in patients with normal resting electrocardiograms: an evaluation of incremental prognostic value and costeffectiveness. Circulation. 2002;105:823–9.

    Article  PubMed  Google Scholar 

  19. Klocke FJ, Baird MG, Lorell BH, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging-executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC committee to revise the 1995 guidelines for the clinical use of cardiac radionuclide imaging). Circulation. 2003;108:1404–18.

    Article  PubMed  Google Scholar 

  20. Berman DS, Hachamovitch R, Shaw LJ, et al. Nuclear cardiology. In: Fuster V, O’Rourke RA, Roberts R, et al., editors. Hurst’s the heart. 11th ed. New York: McGraw-Hill Companies; 2004. p. 563–97.

    Google Scholar 

  21. Ladenheim ML, Kotler TS, Pollock BH, et al. Incremental prognostic power of clinical history, exercise electrocardiography and myocardial perfusion scintigraphy in suspected coronary artery disease. Am J Cardiol. 1987;59:270–7.

    Article  PubMed  CAS  Google Scholar 

  22. Hachamovitch R, Berman DS, Kiat H, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation. 1996;93:905–14.

    Article  PubMed  CAS  Google Scholar 

  23. Hachamovitch R, Berman DS, Shaw LJ, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97:535–43.

    Article  PubMed  CAS  Google Scholar 

  24. Marwick TH, Shaw LJ, Lauer MS, et al. The noninvasive prediction of cardiac mortality in men and women with known or suspected coronary artery disease. Economics of Noninvasive Diagnosis (END) Study Group. Am J Med. 1999;106:172–8.

    Article  PubMed  CAS  Google Scholar 

  25. Sharir T, Germano G, Kang X, et al. Prognostic value of post-stress left ventricular volume and ejection fraction by gated myocardial perfusion single photon emission computed tomography in women: gender related differences in normal limits and outcome [abstract]. Circulation. 2002;106:II–523.

    Google Scholar 

  26. Zellweger MJ, Lewin HC, Lai S, et al. When to stress patients after coronary artery bypass surgery? Risk stratification in patients early and late post-CABG using stress myocardial perfusion SPECT: implications of appropriate clinical strategies. J Am Coll Cardiol. 2001;37:144–52.

    Article  PubMed  CAS  Google Scholar 

  27. Sharir T, Germano G, Kang X, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med. 2001;42:831–7.

    PubMed  CAS  Google Scholar 

  28. Travin MI, Heller GV, Johnson LL, et al. The prognostic value of ECG-gated SPECT imaging in patients undergoing stress Tc-99m sestamibi myocardialperfusion imaging. J Nucl Cardiol. 2004;11:253–62.

    Article  PubMed  Google Scholar 

  29. Thomas GS, Miyamoto MI, Morello AP, et al. Technetium99m based myocardial perfusion imaging predicts clinical outcome in the community outpatient setting: the nuclear utility in the community (“nuc”) study. J Am Coll Cardiol. 2004;43:213–23.

    Article  PubMed  Google Scholar 

  30. Heller GV, Herman SD, Travin MI, et al. Independent prognostic value of intravenous dipyridamole with technetium-99m sestamibi tomographic imaging in predicting cardiac events and cardiac-related hospital admissions. J Am Coll Cardiol. 1995;26:1202–8.

    Article  PubMed  CAS  Google Scholar 

  31. Kang X, Berman DS, Lewin HC, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography in patients with diabetes mellitus. Am Heart J. 1999;138(6 Pt 1):1025–32.

    Article  PubMed  CAS  Google Scholar 

  32. Giri S, Shaw LJ, Murthy DR, et al. Impact of diabetes on the risk stratification using stress single-photon emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. Circulation. 2002;105:32–40.

    Article  PubMed  Google Scholar 

  33. Vanzetto G, Ormezzano O, Fagret D, et al. Long-term additive prognostic value of thallium-201 myocardial perfusion imaging over clinical and exercise stress test in low to intermediate risk patients: study in 1137 patients with 6-year follow-up. Circulation. 1999;100:1521–7.

    Article  PubMed  CAS  Google Scholar 

  34. Diamond GA, Staniloff HM, Forrester JS, et al. Computer-assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease. J Am Coll Cardiol. 1983;1(2 Pt 1):444–55.

    Article  PubMed  CAS  Google Scholar 

  35. Wackers FJ, Young LH, Inzucchi SE, et al. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care. 2004;27:1954–61.

    Article  PubMed  Google Scholar 

  36. Sharir T, Berman DS, Lewin HC, et al. Incremental prognostic value of rest-redistribution Tl-201 single-photon emission computed tomography. Circulation. 1999;100:1964–70.

    Article  PubMed  CAS  Google Scholar 

  37. Hachamovitch R, Hayes SW, Friedman JD, et al. Stress myocardial perfusion SPECT is clinically effective and cost-effective in risk-stratification of patients with a high likelihood of CAD but no known CAD. J Am Coll Cardiol. 2004;43:200–8.

    Article  PubMed  Google Scholar 

  38. Gibbons RJ, Chatterjee K, Daley J, et al. ACC/AHA/ACP-ASIM guidelines forthe management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on PracticeGuidelines (Committee on Management of Patients with Chronic Stable Angina). J Am Coll Cardiol. 1999;33:2092–197.

    Article  PubMed  CAS  Google Scholar 

  39. Gibbons RJ, Hodge DO, Berman DS, et al. Long-term outcome of patients with intermediate-risk exercise electrocardiograms who do not have myocardialperfusion defects on radionuclide imaging. Circulation. 1999;100:2140–5.

    Article  PubMed  CAS  Google Scholar 

  40. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 2004;11:171–85.

    Article  PubMed  Google Scholar 

  41. Expert Panel on Detection. Evaluation, and treatment of high blood cholesterol in adults: executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285:2486–97.

    Article  Google Scholar 

  42. Beller GA. The epidemics of obesity and type 2 diabetes: Implications for noninvasive cardiovascular imaging. Journal of Nuclear Cardiology 2004; 11(2):105–6

    Article  PubMed  Google Scholar 

  43. Stratmann HG, Tamesis BR, Younis LT, et al. Prognostic value of dipyridamole technetium-99m sestamibi myocardial tomography in patients with stable chest pain who are unable to exercise. Am J Cardiol. 1994;73:647–52.

    Article  PubMed  CAS  Google Scholar 

  44. Shaw L, Chaitman BR, Hilton TC, et al. Prognostic value of dipyridamole thallium-201 imaging in elderly patients [comment]. J Am Coll Cardiol. 1992;19:1390–8.

    Article  PubMed  CAS  Google Scholar 

  45. Calnon DA, McGrath PD, Doss AL, et al. Prognostic value of dobutamine stress technetium-99m-sestamibi single-photon emission computed tomographymyocardial perfusion ­imaging: stratification of a high-risk population [comment]. J Am Coll Cardiol. 2001;38:1511–7.

    Article  PubMed  CAS  Google Scholar 

  46. Amanullah AM, Kiat H, Friedman JD, Berman DS. Adenosine technetium-99m sestamibi myocardial perfusion SPECT in women: diagnostic efficacy in detection of coronary artery disease. J Am Coll Cardiol. 1996;27:803–9.

    Article  PubMed  CAS  Google Scholar 

  47. Hachamovitch R, Hayes S, Friedman JD, et al. Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan? J Am Coll Cardiol. 2003;41:1329–40.

    Article  PubMed  Google Scholar 

  48. Hachamovitch R, Hayes SW, Friedman JD, et al. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7.

    Article  PubMed  Google Scholar 

  49. Berman DS, Kang X, Hayes SW, et al. Adenosine myocardial perfusion single-photon emission computed tomography in women compared with men. Impact of diabetes mellitus on incremental prognostic value and effect on patient management. J Am Coll Cardiol. 2003;41:1125–33.

    Article  PubMed  Google Scholar 

  50. Hachamovitch R, Rozanski A, Hayes SW, et al. Predicting therapeutic benefit from myocardial revascularization procedures: are measurements of both resting left ventricular ejection fraction and stress-induced myocardial ischemia necessary? J Nucl Cardiol. 2006;13:768–78.

    Article  PubMed  Google Scholar 

  51. He ZX, Hedrick TD, Pratt CM, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation. 2000;101:244–51.

    Article  PubMed  CAS  Google Scholar 

  52. Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol. 1998;32:57–62.

    Article  PubMed  CAS  Google Scholar 

  53. Abidov A, Hachamovitch R, Rozanski A, et al. Prognostic implications of atrial fibrillation in patients undergoing myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 2004;44:1062–70.

    Article  PubMed  Google Scholar 

  54. Shaw LJ, Hendel RC, Cerqueira M, et al. Ethnic differences in the prognostic value of stress technetium-99m tetrofosmin gated single-photon emission computed tomography myocardial perfusion imaging. J Am Coll Cardiol. 2005;45:1494–504.

    Article  PubMed  Google Scholar 

  55. Matsuo S, Nakajima K, Horie M, J-ACCESS Investigators, et al. Prognostic value of normal stress myocardial perfusion imaging in Japanese population. Circ J. 2008;72:611–7.

    Article  PubMed  Google Scholar 

  56. Zellweger MJ, Hachamovitch R, Kang X, et al. Prognostic ­relevance of symptoms versus objective evidence of coronary artery disease in diabetic patients. Euro Heart J. 2004;25:543–50.

    Article  Google Scholar 

  57. Abidov A, Hachamovitch R, Hayes SW, et al. Prognostic impact of hemodynamic response to adenosine in patients older than age 55 years undergoing vasodilator stress myocardial perfusion study. Circulation. 2003;107:2894–9.

    Article  PubMed  Google Scholar 

  58. Hachamovitch R, Hayes SW, Friedman JD, et al. A prognostic score for prediction of cardiac mortality risk after adenosine stress myocardial perfusion scintigraphy. J Am Coll Cardiol. 2005;45:722–9.

    Article  PubMed  Google Scholar 

  59. Hachamovitch R, Friedman JD, Cohen I, et al. Is there a referral bias against revascularization of patients with reduced LV ejection fraction? Influence of ejection fraction and inducible ischemia on post-SPECT management of patients without history of CAD. J Am Coll Cardiol. 2003;42:1286–94.

    Article  PubMed  Google Scholar 

  60. Hachamovitch R, Di Carli MF. Methods and limitations of assessing newnoninvasive tests: part I: anatomy-based validation of noninvasive testing. Circulation. 2008;117:2684–90.

    Article  PubMed  Google Scholar 

  61. Shaw LJ, Berman DS, Maron DJ, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the clinical outcomes utilizing revascularization and aggressive drug evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117:1283–91.

    Article  PubMed  Google Scholar 

  62. Berman DS, Wong ND, Gransar H, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol. 2004;44:923–30.

    Article  PubMed  CAS  Google Scholar 

  63. Rozanski A, Gransar H, Wong ND, et al. Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy. J Am Coll Cardiol. 2007;49:1352–61.

    Article  PubMed  CAS  Google Scholar 

  64. Schenker MP, Dorbala S, Hong EC, et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation. 2008;117:1693–700.

    Article  PubMed  Google Scholar 

  65. Anand DV, Lim E, Hopkins D, et al. Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J. 2006;27:713–21.

    Article  PubMed  Google Scholar 

  66. Blumenthal RS, Becker DM, Yanek LR, et al. Comparison of coronary calcium and stress myocardial perfusion imaging in apparently healthy siblings of individuals with premature coronary artery disease. Am J Cardiol. 2006;97:328–33.

    Article  PubMed  CAS  Google Scholar 

  67. Rozanski A, Gransar H, Wong ND, et al. Use of coronary ­calcium scanning for predicting inducible myocardial ischemia: Influence of patients’ clinical presentation. J Nucl Cardiol. 2007;14:669–79.

    Article  PubMed  Google Scholar 

  68. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–39.

    Article  PubMed  Google Scholar 

  69. Anand DV, Lim E, Raval U, et al. Prevalence of silent myocardial ischemia in asymptomatic individuals with subclinical atherosclerosis detected by electron beam tomography. J Nucl Cardiol. 2004;11:450–7.

    Article  PubMed  Google Scholar 

  70. Wong ND, Rozanski A, Gransar H, et al. Metabolic syndrome and diabetes are associated with an increased likelihood of inducible myocardial ischemia among patients with subclinical atherosclerosis. Diabetes Care. 2005;28:1445–50.

    Article  PubMed  Google Scholar 

  71. Berman DS, Hayes S, Friedman J, et al. Normal myocardial perfusion SPECT does not imply the absence of significant atherosclerosis [abstract]. Circulation. 2003;108:IV–562.

    Google Scholar 

  72. Berman DS, Hachamovitch R, Shaw LJ, et al. Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease. J Nucl Med. 2006;47:1107–18.

    PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the valuable assistance of Xingping Kang, MD in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hachamovitch, R., Berman, D., Shaw, L.J., Germano, G., Mieres, J.H. (2013). Risk Stratification and Patient Management. In: Dilsizian, V., Narula, J. (eds) Atlas of Nuclear Cardiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5551-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5551-6_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5549-3

  • Online ISBN: 978-1-4614-5551-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics