Skip to main content

RAMPs and CGRP Receptors

  • Chapter
RAMPs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 744))

Abstract

Receptor activity modifying protein 1 (RAMP1) forms a complex with calcitonin receptor-like receptor (CLR) to produce the receptor for calcitonin gene-related peptide (CGRP). RAMP1 has two main roles. It facilitates the cell-surface expression of CLR. It is also essential for the binding of CGRP to the receptor. It seems likely that Y66, F93, H97 and F101, amongst other residues, form a binding site for CLR. These cluster together on the same face of the extracellular portion of RAMP1, probably close to where it enters the plasma membrane. Residues at the other end of RAMP1 are most likely to be involved in CGRP recognition, although it is currently unclear how they do this. Within this area, W74 is important for the binding of the nonpeptide antagonist, BIBN4096BS, although it does not seem to be involved in the binding of CGRP itself. It has been shown that there is an epitope within residues 23–60 of CLR that are essential for RAMP recognition. Under some circumstances, changes in the expression of RAMP1 can alter the sensitivity of cells to CGRP, demonstrating that regulation of its levels may be of physiological or pathophysiological importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fluhmann B, Muff R, Hunziker W et al. A human orphan calcitonin receptor-like structure. Biochem Biophys Res Commun 1995; 206(1):341–347.

    Article  PubMed  CAS  Google Scholar 

  2. Njuki F, Nicholl CG, Howard A et al. A new calcitonin-receptor-like sequence in rat pulmonary blood vessels. Clin Sci (Lond) 1993; 85(4):385–388.

    CAS  Google Scholar 

  3. Chang CP, Pearse RV, 2nd, O’Connell S et al. Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Neuron 1993; 11(6):1187–1195.

    Article  PubMed  CAS  Google Scholar 

  4. Poyner DR, Sexton PM, Marshall I et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin and calcitonin receptors. Pharmacol Rev 2002; 54(2):233–246.

    Article  PubMed  CAS  Google Scholar 

  5. Aiyar N, Rand K, Elshourbagy NA et al. A cDNA encoding the calcitonin gene-related peptide type 1 receptor. J Biol Chem 1996; 271(19):11325–11329.

    Article  PubMed  CAS  Google Scholar 

  6. McLatchie LM, Fraser NJ, Main MJ et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998; 393(6683):333–339.

    Article  PubMed  CAS  Google Scholar 

  7. Buhlmann N, Leuthauser K, Muff R et al. A receptor activity modifying protein (RAMP)2-dependent adrenomedullin receptor is a calcitonin gene-related peptide receptor when coexpressed with human RAMP1. Endocrinology. 1999; 140(6):2883–2890.

    Article  PubMed  CAS  Google Scholar 

  8. Christopoulos G, Perry KJ, Morfis M et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 1999; 56(1):235–242.

    PubMed  CAS  Google Scholar 

  9. Hay DL, Poyner DR, Quirion R. International Union of Pharmacology. LXIX. Status of the calcitonin gene-related peptide subtype 2 receptor. Pharmacol Rev 2008; 60(2):143–145.

    Article  PubMed  Google Scholar 

  10. Hoare SR. Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors. Drug Discov Today 2005; 10(6):417–427.

    Article  PubMed  CAS  Google Scholar 

  11. Grace CR, Perrin MH, Gulyas J et al. Structure of the N-terminal domain of a type B1 G protein-coupled receptor in complex with a peptide ligand. Proc Natl Acad Sci USA 2007; 104(12):4858–4863.

    Article  PubMed  CAS  Google Scholar 

  12. Parthier C, Kleinschmidt M, Neumann P et al. Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor. Proc Natl Acad Sci USA 2007; 104(35):13942–13947.

    Article  PubMed  CAS  Google Scholar 

  13. Sun C, Song D, Davis-Taber RA et al. Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS. Proc Natl Acad Sci USA 2007; 104(19):7875–7880.

    Article  PubMed  CAS  Google Scholar 

  14. Grace CR, Perrin MH, DiGruccio MR et al. NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc Natl Acad Sci USA 2004; 101(35):12836–12841.

    Article  PubMed  CAS  Google Scholar 

  15. Hilairet S, Foord SM, Marshall FH et al. Protein-protein interaction and not glycosylation determines the binding selectivity of heterodimers between the calcitonin receptor-like receptor and the receptor activity-modifying proteins. J Biol Chem 2001; 276(31):29575–29581.

    Article  PubMed  CAS  Google Scholar 

  16. Kuwasako K, Shimekake Y, Masuda M et al. Visualization of the calcitonin receptor-like receptor and its receptor activity-modifying proteins during internalization and recycling. J Biol Chem 2000; 275(38):29602–29609.

    Article  PubMed  CAS  Google Scholar 

  17. Hilairet S, Belanger C, Bertrand J et al. Agonist-promoted internalization of a ternary complex between calcitonin receptor-like receptor, receptor activity-modifying protein 1 (RAMP1) and beta-arrestin. J Biol Chem 2001; 276(45):42182–42190.

    Article  PubMed  CAS  Google Scholar 

  18. Muff R, Leuthauser K, Buhlmann N et al. Receptor activity modifying proteins regulate the activity of a calcitonin gene-related peptide receptor in rabbit aortic endothelial cells. FEBS Lett 1998; 441(3):366–368.

    Article  PubMed  CAS  Google Scholar 

  19. Koller D, Ittner LM, Muff R et al. Selective inactivation of adrenomedullin over calcitonin gene-related peptide receptor function by the deletion of amino acids 14–20 of the mouse calcitonin-like receptor. J Biol Chem 2004; 279(19):20387–20391.

    Article  PubMed  CAS  Google Scholar 

  20. Heroux M, Breton B, Hogue M et al. Assembly and signaling of CRLR and RAMP1 complexes assessed by BRET. Biochemistry 2007; 46(23):7022–7033.

    Article  PubMed  CAS  Google Scholar 

  21. Fraser NJ, Wise A, Brown J et al. The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol Pharmacol 1999; 55(6):1054–1059.

    PubMed  CAS  Google Scholar 

  22. Kuwasako K, Kitamura K, Nagoshi Y et al. Identification of the human receptor activity-modifying protein 1 domains responsible for agonist binding specificity. J Biol Chem 2003; 278(25):22623–22630.

    Article  PubMed  CAS  Google Scholar 

  23. Kusano S, Kukimoto-Niino M, Akasaka R et al. Crystal Structure of the Human Receptor Activity-Modifying Protein 1 Extracellular Domain. Protein Sci 2008; 17(11):1907–1914.

    Article  PubMed  CAS  Google Scholar 

  24. Simms J, Hay DL, Bailey RJ et al. Structure-function analysis of RAMP1 by alanine mutagenesis. Biochemistry 2009; 48(1):198–205.

    Article  Google Scholar 

  25. Mallee JJ, Salvatore CA, LeBourdelles B et al. Receptor activity-modifying protein 1 determines the species selectivity of nonpeptide CGRP receptor antagonists. J Biol Chem 2002; 277(16):14294–14298.

    Article  PubMed  CAS  Google Scholar 

  26. Qi T, Christopoulos G, Bailey RJ et al. Identification of N-terminal receptor activity-modifying protein residues important for calcitonin gene-related peptide, adrenomedullin and amylin receptor function. Mol Pharmacol 2008; 74(4):1059–1071.

    Article  PubMed  CAS  Google Scholar 

  27. Ittner LM, Koller D, Muff R et al. The N-terminal extracellular domain 23-60 of the calcitonin receptor-like receptor in chimeras with the parathyroid hormone receptor mediates association with receptor activity-modifying protein 1. Biochemistry 2005; 44(15):5749–5754.

    Article  PubMed  CAS  Google Scholar 

  28. Doods H, Hallermayer G, Wu D et al. Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Br J Pharmacol 2000; 129(3):420–423.

    Article  PubMed  CAS  Google Scholar 

  29. Hay DL, Christopoulos G, Christopoulos A et al. Determinants of 1-piperidinecarboxamide, N-[2-[[5-amino-l-[[4-(4-pyridinyl)-l-piperazinyl]carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2 H)-quinazolinyl) (BIBN4096BS) affinity for calcitonin gene-related peptide and amylin receptors—the role of receptor activity modifying protein 1. Mol Pharmacol 2006; 70(6):1984–1991.

    Article  PubMed  CAS  Google Scholar 

  30. Salvatore CA, Mallee JJ, Bell IM et al. Identification and Pharmacological Characterization of Domains Involved in Binding of CGRP Receptor Antagonists to the Calcitonin-like Receptor. Biochemistry 2006; 45(6):1881–1887.

    Article  PubMed  CAS  Google Scholar 

  31. Steiner S, Muff R, Gujer R et al. The transmembrane domain of receptor-activity-modifying protein 1 is essential for the functional expression of a calcitonin gene-related peptide receptor. Biochemistry 2002; 41(38):11398–11404.

    Article  PubMed  CAS  Google Scholar 

  32. Flahaut M, Rossier BC, Firsov D. Respective roles of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMP) in cell surface expression of CRLR/RAMP heterodimeric receptors. J Biol Chem 2002; 277(17):14731–14737.

    PubMed  CAS  Google Scholar 

  33. Conner AC, Hay DL, Simms J et al. A key role for transmembrane prolines in calcitonin receptor-like receptor agonist binding and signalling: implications for family B G-protein-coupled receptors. Mol Pharmacol 2005; 67(1):20–31.

    PubMed  CAS  Google Scholar 

  34. Aldecoa A, Gujer R, Fischer JA et al. Mammalian calcitonin receptor-like receptor/receptor activity modifying protein complexes define calcitonin gene-related peptide and adrenomedullin receptors in Drosophila Schneider 2 cells. FEBS Lett 2000; 471(2–3):156–160.

    Article  PubMed  CAS  Google Scholar 

  35. Udawela M, Christopoulos G, Morfis M et al. The effects of C-terminal truncation of receptor activity modifying proteins on the induction of amylin receptor phenotype from human CTb receptors. Regul Pept 2008; 145(1–3):65–71.

    Article  PubMed  CAS  Google Scholar 

  36. Udawela M, Christopoulos G, Tilakaratne N et al. Distinct receptor activity-modifying protein domains differentially modulate interaction with calcitonin receptors. Mol Pharmacol 2006; 69(6):1984–1989.

    Article  PubMed  CAS  Google Scholar 

  37. Udawela M, Christopoulos G, Morfis M et al. A critical role for the short intracellular C terminus in receptor activity-modifying protein function. Mol Pharmacol 2006; 70(5):1750–1760.

    Article  PubMed  CAS  Google Scholar 

  38. Kuwasako K, Cao YN, Chu CP et al. Functions of the cytoplasmic tails of the human receptor activity-modifying protein components of CGRP and adrenomedullin receptors. J Biol Chem 2006; 281(11):7205–7213.

    Article  PubMed  CAS  Google Scholar 

  39. Prado MA, Evans-Bain B, Dickerson IM. Receptor component protein (RCP): a member of a multi-protein complex required for G-protein-coupled signal transduction. Biochem Soc Trans 2002; 30(4):460–464.

    Article  PubMed  CAS  Google Scholar 

  40. Cottrell GS, Padilla B, Pikios S et al. Post-endocytic sorting of calcitonin receptor-like receptor and receptor activity-modifying protein 1. J Biol Chem 2007; 282(16):12260–12271.

    Article  PubMed  CAS  Google Scholar 

  41. Bomberger JM, Parameswaran N, Hall CS et al. Novel function for receptor activity-modifying proteins (RAMPs) in post-endocytic receptor trafficking. J Biol Chem 2005; 280(10):9297–9307.

    Article  PubMed  CAS  Google Scholar 

  42. Tsujikawa K, Yayama K, Hayashi T et al. Hypertension and dysregulated proinflammatory cytokine production in receptor activity-modifying protein 1-deficient mice. Proc Natl Acad Sci USA 2007; 104(42):16702–16707.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang Z, Winborn CS, Marquez de Prado B et al. Sensitization of calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. J Neurosci 2007; 27(10):2693–2703.

    Article  PubMed  CAS  Google Scholar 

  44. Marquez-Rodas I, Longo F, Aras-Lopez R et al. Aldosterone increases RAMP1 expression in mesenteric arteries from spontaneously hypertensive rats. Regul Pept 2006; 134(1):61–66.

    Article  PubMed  CAS  Google Scholar 

  45. Marquez-Rodas I, Xavier FE, Arroyo-Villa I et al. Increased expression in calcitonin-like receptor induced by aldosterone in cerebral arteries from spontaneously hypertensive rats does not correlate with functional role of CGRP receptor. Regul Pept 2008; 146(1–3):125–130.

    Article  PubMed  CAS  Google Scholar 

  46. Dong YL, Green KE, Vegiragu S et al. Evidence for decreased calcitonin gene-related peptide (CGRP) receptors and compromised responsiveness to CGRP of fetoplacental vessels in preeclamptic pregnancies. J Clin Endocrinol Metab 2005; 90(4):2336–2343.

    Article  PubMed  CAS  Google Scholar 

  47. Cueille C, Pidoux E, de Vernejoul MC et al. Increased myocardial expression of RAMP1 and RAMP3 in rats with chronic heart failure. Biochem Biophys Res Commun 2002; 294(2):340–346.

    Article  PubMed  CAS  Google Scholar 

  48. ter Haar E, Koth CM, Abdul-Manan N et al. Crystal structure of the ectodomain complex of the CGRP receptor, a class-B GPCR, reveals the site of drug antagonism. Structure 2010; 18:1083–1093.

    Article  PubMed  Google Scholar 

  49. Barwell J, Gingell JJ, Watkins HA et al. Calcitonin and calcitonin receptor-like receptors: common themes with family B GPCRs? Br J Pharmacol 2011; in press.

    Google Scholar 

  50. Archbold JK, Flanagan JU, Watkins HA et al. Structural insights into RAMP modification of secretin family G protein-coupled receptors: implications for drug development. Trends Pharmacol Sci. 2011; in press

    Google Scholar 

  51. Sexton, PM, Poyner DR, Simms J et al. RAMPS as drug targets. In: Spielmann W, Parameswaran N, eds. RAMPs. Austin/New York: Landes Bioscience/ Springer Science + Business Media, 2012: 63–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Poyner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Barwell, J., Wootten, D., Simms, J., Hay, D.L., Poyner, D.R. (2012). RAMPs and CGRP Receptors. In: Spielman, W.S., Parameswaran, N. (eds) RAMPs. Advances in Experimental Medicine and Biology, vol 744. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2364-5_2

Download citation

Publish with us

Policies and ethics