Skip to main content

Evidence for FGF23 Involvement in a Bone-Kidney Axis Regulating Bone Mineralization and Systemic Phosphate and Vitamin D Homeostasis

  • Chapter
Endocrine FGFs and Klothos

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 728))

Abstract

Bone is involved in the maintenance of phosphate and vitamin D homeostasis via its production and secretion of FGF23 and serves as a reservoir for the storage and release of calcium and phosphate into the circulation. Alterations in mineralization of extracellular matrix and the remodeling activities of the skeleton are coupled to the kidney conservation of phosphate and production of 1,25(OH)2D via the regulation of FGF23 production by osteocytes through yet-to-be defined locally derived factors. In addition, FGF23 production is regulated by 1,25(OH)2D in a feedback loop where FGF23 stimulate Cyp24 mediated degradation of 1,25(OH)2D that serves to protect the organism from the toxic effects of vitamin D excess. In this chapter, we will review the regulation and function of FGF23.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 2008; 118(12):3820–8.

    PubMed  CAS  Google Scholar 

  2. Rizzoli R, Fleisch H, Bonjour JP. Role of 1,25-dihydroxyvitamin D3 on intestinal phosphate absorption in rats with a normal vitamin D supply. J Clin Invest 1977; 60(3):639–47.

    PubMed  CAS  Google Scholar 

  3. Talmage RV, Doppelt SH, Fondren FB. An interpretation of acute changes in plasma 45Ca following parathyroid hormone administration to thyroparathyroidectomized rats. Calcif Tissue Res 1976; 22(2):117–28.

    PubMed  CAS  Google Scholar 

  4. Ma YL, Cain RL, Halladay DL et al. Catabolic effects of continuous human PTH (1–38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology 2001; 142(9):4047–54.

    PubMed  CAS  Google Scholar 

  5. Shiraki M, Gee MV, Baum BJ et al. Parathyroid hormone stimulates phosphate efflux through an apparently adenosine 3’,5’-monophosphate-independent process in rat parotid cell aggregates. Endocrinology 1986; 118(5):2009–15.

    PubMed  CAS  Google Scholar 

  6. Confavreux CB, Levine RL, Karsenty G. A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms. Mol Cell Endocrinol 2009; 310(1–2):21–9.

    PubMed  CAS  Google Scholar 

  7. Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 2000; 277(2):494–8.

    PubMed  CAS  Google Scholar 

  8. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet 2004; 20(11):563–9.

    PubMed  CAS  Google Scholar 

  9. Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 2008; 237(1):18–27.

    PubMed  CAS  Google Scholar 

  10. Suzuki M, Uehara Y, Motomura-Matsuzaka K et al. betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 2008; 22(4):1006–14.

    PubMed  CAS  Google Scholar 

  11. Kurosu H, Ogawa Y, Miyoshi M et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006; 281(10):6120–3.

    PubMed  CAS  Google Scholar 

  12. Urakawa I, Yamazaki Y, Shimada T et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444(7120):770–4.

    PubMed  CAS  Google Scholar 

  13. Yu X, Ibrahimi OA, Goetz R et al. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Endocrinology 2005; 146(11):4647–56.

    PubMed  CAS  Google Scholar 

  14. Li SA, Watanabe M, Yamada H et al. Immunohistochemical localization of Klotho protein in brain, kidney and reproductive organs of mice. Cell Struct Funct 2004; 29(4):91–9.

    PubMed  CAS  Google Scholar 

  15. Yamazaki Y, Tamada T, Kasai N et al.. Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res 2008; 23(9):1509–18.

    PubMed  CAS  Google Scholar 

  16. Liu S, Tang W, Zhou J et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 2006; 17(5):1305–15.

    PubMed  CAS  Google Scholar 

  17. Bai X, Miao D, Li J et al. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology 2004; 145(11):5269–79.

    PubMed  CAS  Google Scholar 

  18. Larsson T, Marsell R, Schipani E et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia and disturbed phosphate homeostasis. Endocrinology 2004; 145(7):3087–94.

    PubMed  CAS  Google Scholar 

  19. Shimada T, Mizutani S, Muto T et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 2001; 98(11):6500–5.

    PubMed  CAS  Google Scholar 

  20. Shimada T, Yamazaki Y, Takahashi M et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 2005; 289(5):F1088–95.

    PubMed  CAS  Google Scholar 

  21. Saito H, Kusano K, Kinosaki M. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate cotransport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 2003; 278(4):2206–11.

    PubMed  CAS  Google Scholar 

  22. Zhang F, Zhai G, Kato BS et al. Association between KLOTHO gene and hand osteoarthritis in a female Caucasian population. Osteoarthritis Cartilage, 2007.

    Google Scholar 

  23. Kuro-o M, Matsumura Y, Aizawa H et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390(6655):45–51.

    PubMed  CAS  Google Scholar 

  24. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest 2007; 117(12):4003–8.

    PubMed  CAS  Google Scholar 

  25. Wang H, Yoshiko Y, Yamamoto R et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 2008; 23(6):939–48.

    PubMed  CAS  Google Scholar 

  26. Liu S, Zhou J, Tang W et al. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 2006; 291(1):E38–49.

    PubMed  CAS  Google Scholar 

  27. Shimada T, Kakitani M, Yamazaki Y et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113(4):561–8.

    PubMed  CAS  Google Scholar 

  28. Sitara D, Razzaque MS, Hesse M et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 2004; 23(7):421–32.

    Google Scholar 

  29. Hesse M, Fröhlich LF, Zeitz U et al. Ablation of vitamin D signaling rescues bone, mineral and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol 2007; 26(2):75–84.

    PubMed  CAS  Google Scholar 

  30. Sitara D, Razzaque MS, St-Arnaud R et al. Genetic ablation of vitamin d activation pathway reverses biochemical and skeletal anomalies in fgf-23-null animals. Am J Pathol 2006; 169(6):2161–70.

    PubMed  CAS  Google Scholar 

  31. Stubbs J, Liu S, Tang W et al. Role of Hyperphosphatemia and 1,25(OH)2D3 in Vascular Calcifications and Mortality in FGF23 Null Mice. J Am Soc Nephrol 2007; 17:689A.

    Google Scholar 

  32. Brownstein CA, Adler F, Nelson-Williams C et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci USA 2008; 105(9):3455–60.

    PubMed  CAS  Google Scholar 

  33. Bai XY, Miao D, Goltzman D et al. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 2003; 278(11):9843–9.

    PubMed  CAS  Google Scholar 

  34. Benet-Pagès A, Lorenz-Depiereux B, Zischka H et al. FGF23 is processed by proprotein convertases but not by PHEX. Bone 2004; 35(2):455–62.

    PubMed  Google Scholar 

  35. Feng JQ, Ward LM, Liu S et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 2006; 38(11):1310–5.

    PubMed  CAS  Google Scholar 

  36. Lorenz-Depiereux B, Bastepe M, Benet-Pagès A et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 2006; 38(11):1248–50.

    PubMed  CAS  Google Scholar 

  37. Ling Y, Rios HF, Myers ER et al. DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. J Bone Miner Res 2005; 20(12):2169–77.

    PubMed  CAS  Google Scholar 

  38. Jonsson KB, Zahradnik R, Larsson T et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 2003; 348(17):1656–63.

    PubMed  CAS  Google Scholar 

  39. Weber TJ, Liu S, Indridason OS et al. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res 2003; 18(7):1227–34.

    PubMed  CAS  Google Scholar 

  40. Berndt T, Craig TA, Bowe AE et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J Clin Invest 2003; 112(5):785–94.

    PubMed  CAS  Google Scholar 

  41. Guo R, Quarles LD. Cloning and sequencing of human PEX from a bone cDNA library: evidence for its developmental stage-specific regulation in osteoblasts. J Bone Miner Res 1997; 12(7):1009–17.

    PubMed  CAS  Google Scholar 

  42. The HYP Consortium, A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 1995; 11(2):130–6.

    Google Scholar 

  43. Thompson DL, Sabbagh Y, Tenenhouse HS et al. Ontogeny of Phex/PHEX protein expression in mouse embryo and subcellular localization in osteoblasts. J Bone Miner Res 2002; 17(2):311–20.

    PubMed  CAS  Google Scholar 

  44. Liu S, Guo R, Simpson LG et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 2003; 278(39):37419–26.

    PubMed  CAS  Google Scholar 

  45. White KE, Cabral JM, Davis SI et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 2005; 76(2):361–7.

    PubMed  CAS  Google Scholar 

  46. Benet-Pagès A, Orlik P, Strom TM et al. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005; 14(3):385–90.

    PubMed  Google Scholar 

  47. Larsson T, Davis SI, Garringer HJ et al. Fibroblast growth factor-23 mutants causing familial tumoral calcinosis are differentially processed. Endocrinology 2005; 146(9):3883–91.

    PubMed  CAS  Google Scholar 

  48. Lyles KW, Burkes EJ, Ellis GJ et al. Genetic transmission of tumoral calcinosis: autosomal dominant with variable clinical expressivity. J Clin Endocrinol Metab 1985; 60(6):1093–6.

    PubMed  CAS  Google Scholar 

  49. Ichikawa S, Imel EA, Kreiter ML et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 2007; 117(9):2684–2691.

    PubMed  CAS  Google Scholar 

  50. Topaz O, Indelman M, Chefetz I et al. A deleterious mutation in SAMD9 causes normophosphatemic familial tumoral calcinosis. Am J Hum Genet 2006; 79(4):759–64.

    PubMed  CAS  Google Scholar 

  51. Bennett EP, Hassan H, Clausen H. cDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine. Polypeptide N-acetylgalactosaminyltransferase, GalNAc-t3. J Biol Chem 1996; 271(29):17006–12.

    PubMed  CAS  Google Scholar 

  52. Segawa H, Yamanaka S, Ohno Y et al. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol 2007; 292(2):F769–79.

    PubMed  CAS  Google Scholar 

  53. Yoshida T, Fujimori T, Nabeshima Y. Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology 2002; 143(2):683–9.

    PubMed  CAS  Google Scholar 

  54. Razzaque MS, Sitara D, Taguchi T et al. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J 2006; 20(6):720–2.

    PubMed  CAS  Google Scholar 

  55. Amanzadeh J, Reilly RF, Jr. Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol 2006; 2(3):136–48.

    PubMed  CAS  Google Scholar 

  56. Block GA, Klassen PS, Lazarus JM et al. Mineral metabolism, mortality and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004; 15(8):2208–18.

    PubMed  CAS  Google Scholar 

  57. Masuyama R, Stockmans I, Torrekens S et al. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 2006; 116(12):3150–9.

    PubMed  CAS  Google Scholar 

  58. Samadfam R, Richard C, Nguyen-Yamamoto L et al. Bone formation regulates circulating concentrations of fibroblast growth factor 23. Endocrinology 2009; 150(11):4835–45.

    PubMed  CAS  Google Scholar 

  59. Tebben PJ, Singh RJ, Clarke BL et al. Fibroblast growth factor 23, parathyroid hormone and 1alpha,25-dihydroxyvitamin D in surgically treated primary hyperparathyroidism. Mayo Clin Proc 2004; 79(12):1508–13.

    PubMed  CAS  Google Scholar 

  60. Kawata T, Imanishi Y, Kobayashi K et al. Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol 2007; 18(10):2683–8.

    PubMed  CAS  Google Scholar 

  61. Saji F, Shiizaki K, Shimada S et al. Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron Physiol 2009; 111(4):p59–66.

    Google Scholar 

  62. Perwad F, Azam N, Zhang MY et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 2005; 146(12):5358–64.

    PubMed  CAS  Google Scholar 

  63. Ferrari SL, Bonjour JP, Rizzoli R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 2005; 90(3):1519–24.

    PubMed  CAS  Google Scholar 

  64. Nishida Y, Taketani Y, Yamanaka-Okumura H et al. Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int 2006; 70(12):2141–7.

    PubMed  CAS  Google Scholar 

  65. Domrongkitchaiporn S, Disthabanchong S, Cheawchanthanakij R et al. Oral phosphate supplementation corrects hypophosphatemia and normalizes plasma FGF23 and 25-hydroxyvitamin D3 levels in women with chronic metabolic acidosis. Exp Clin Endocrinol Diabetes 2010; 118(2):105–12.

    PubMed  CAS  Google Scholar 

  66. Prentice A, Ceesay M, Nigdikar S et al. FGF23 is elevated in Gambian children with rickets. Bone 2008; 42(4):788–97.

    PubMed  CAS  Google Scholar 

  67. van Boekel G, Ruinemans-Koerts J, Joosten F et al. Tumor producing fibroblast growth factor 23 localized by two-staged venous sampling. Eur J Endocrinol 2008; 158(3):431–7.

    PubMed  Google Scholar 

  68. Rowe PS, Kumagai Y, Gutierrez G et al. MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone 2004; 34(2):303–19.

    PubMed  CAS  Google Scholar 

  69. Liu S, Rowe PS, Vierthaler L et al. Phosphorylated acidic serine-aspartate-rich MEPE-associated motif peptide from matrix extracellular phosphoglycoprotein inhibits phosphate regulating gene with homologies to endopeptidases on the X-chromosome enzyme activity. J Endocrinol 2007; 192(1):261–7.

    PubMed  CAS  Google Scholar 

  70. Yuan B, Takaiwa M, Clemens TL et al. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J Clin Invest 2008; 118(2):722–34.

    PubMed  CAS  Google Scholar 

  71. Bowe AE, Finnegan R, Jan de Beur SM et al. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001; 284(4):977–81.

    PubMed  CAS  Google Scholar 

  72. Guo R, Liu S, Spurney RF et al. Analysis of recombinant Phex: an endopeptidase in search of a substrate. Am J Physiol Endocrinol Metab 2001; 281(4):E837–47.

    PubMed  CAS  Google Scholar 

  73. Campos M, Couture C, Hirata IY et al. Human recombinant endopeptidase PHEX has a strict S1’ specificity for acidic residues and cleaves peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein. Biochem J 2003; 373(Pt 1):271–9.

    PubMed  CAS  Google Scholar 

  74. Addison WN, Nakano Y, Loisel T et al. MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: an inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 2008; 23(10):1638–49.

    PubMed  CAS  Google Scholar 

  75. Martin A, David V, Laurence JS et al. Degradation of MEPE, DMP1 and release of SIBLING ASARM-peptides (minhibins): ASARM-peptide(s) are directly responsible for defective mineralization in HYP. Endocrinology 2008; 149(4):1757–72.

    PubMed  CAS  Google Scholar 

  76. Liu S, Brown TA, Zhou J et al. Role of matrix extracellular phosphoglycoprotein in the pathogenesis of X-linked hypophosphatemia. J Am Soc Nephrol 2005; 16(6):1645–53.

    PubMed  CAS  Google Scholar 

  77. Bai X, Miao D, Panda D et al. Partial rescue of the Hyp phenotype by osteoblast-targeted PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) expression. Mol Endocrinol 2002; 16(12):2913–25.

    PubMed  CAS  Google Scholar 

  78. Erben RG, Mayer D, Weber K et al. Overexpression of human PHEX under the human beta-actin promoter does not fully rescue the Hyp mouse phenotype. J Bone Miner Res 2005; 20(7):1149–60.

    PubMed  CAS  Google Scholar 

  79. Liu S, Guo R, Tu Q et al. Overexpression of Phex in osteoblasts fails to rescue the Hyp mouse phenotype. J Biol Chem 2002; 277(5):3686–97.

    PubMed  CAS  Google Scholar 

  80. Feng JQ, Ward LM, Liu S et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism.Nat Genet, 2006.

    Google Scholar 

  81. Narayanan K, Ramachandran A, Hao J et al. Dual functional roles of dentin matrix protein 1._Implications in biomineralization and gene transcription by activation of intracellular Ca2+ store. J Biol Chem 2003; 278(19):17500–8.

    PubMed  CAS  Google Scholar 

  82. Ogbureke KU, Fisher LW. Expression of SIBLINGs and their partner MMPs in salivary glands. J Dent Res 2004; 83(9):664–70.

    PubMed  CAS  Google Scholar 

  83. Goebel S, Lienau J, Rammoser U et al. FGF23 is a putative marker for bone healing and regeneration. J Orthop Res 2009.

    Google Scholar 

  84. Lu Y, Qin C, Xie Y et al. Studies of the DMP1 57-kDa functional domain both in vivo and in vitro. Cells Tissues Organs 2009; 189(1-4):175–85.

    PubMed  CAS  Google Scholar 

  85. Liu S, Tang W, Zhou J et al. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice. Am J Physiol Endocrinol Metab 2008 Aug;295(2):E254–61.

    PubMed  CAS  Google Scholar 

  86. Xiao ZS, Crenshaw M, Guo R et al. Intrinsic mineralization defect in Hyp mouse osteoblasts. Am J Physiol 1998; 275(4 Pt 1):E700–8.

    PubMed  CAS  Google Scholar 

  87. Liu S, Zhou J, Tang W et al. Pathogenic role of Fgf23 in Dmp1-null mice. Am J Physiol Endocrinol Metab 2008; 295(2):E254–61.

    PubMed  CAS  Google Scholar 

  88. Liu S, Zhou J, Tang W et al. Pathogenic Role of Fgf23 in Dmp1 Null Mice. Am J Physiol Endocrinol Metab, 2008.

    Google Scholar 

  89. Marie PJ, Travers R, Glorieux FH. Bone response to phosphate and vitamin D metabolites in the hypophosphatemic male mouse. Calcif Tissue Int 1982; 34(2):158–64.

    PubMed  CAS  Google Scholar 

  90. Sitara D, Kim S, Razzaque MS et al. Genetic evidence of serum phosphate-independent functions of FGF-23 on bone. PLoS Genet 2008; 4(8):e1000154.

    PubMed  Google Scholar 

  91. Liu S, Vierthaler L, Tang W et al. FGFR3 and 4 do not mediate renal effectso of FGF23 in vivo. J Am Soc Nephrol 2008; In Press.

    Google Scholar 

  92. He G, George A. Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro. J Biol Chem 2004; 279(12):11649–56.

    PubMed  CAS  Google Scholar 

  93. Rowe PS, Matsumoto N, Jo OD et al. Correction of the mineralization defect in hyp mice treated with protease inhibitors CA074 and pepstatin. Bone, 2006.

    Google Scholar 

  94. Laizé V, Martel P, Viegas CS et al. Evolution of matrix and bone gamma-carboxyglutamic acid proteins in vertebrates. J Biol Chem 2005; 280(29):26659–68.

    PubMed  Google Scholar 

  95. Luo G, Ducy P, McKee MD et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997; 386(6620):78–81.

    PubMed  CAS  Google Scholar 

  96. Gopalakrishnan R, Suttamanatwong S, Carlson AE et al. Role of matrix Gla protein in parathyroid hormone inhibition of osteoblast mineralization. Cells Tissues Organs 2005; 181(3-4):166–75.

    PubMed  CAS  Google Scholar 

  97. Narouz-Ott L, Maurer P, Nitshce DP et al. Thrombospondin-4 binds specifically to both collagenous and noncollagenous extracellular matrix proteins via its C-terminal domains. J Biol Chem 2000; 275(47):37110–7.

    PubMed  CAS  Google Scholar 

  98. Posey KL, Hankenson K, Veerisetty AC et al. Skeletal abnormalities in mice lacking extracellular matrix proteins, thrombospondin-1, thrombospondin-3, thrombospondin-5 and type IX collagen. Am J Pathol 2008; 172(6):1664–74.

    PubMed  CAS  Google Scholar 

  99. Hankenson KD, Hormuzdi SG, Meganck JA et al. Mice with a disruption of the thrombospondin 3 gene differ in geometric and biomechanical properties of bone and have accelerated development of the femoral head. Mol Cell Biol 2005; 25(13):5599–606.

    PubMed  CAS  Google Scholar 

  100. Ueno A, Miwa Y, Miyoshi K et al. Constitutive expression of thrombospondin 1 in MC3T3-E1 osteoblastic cells inhibits mineralization. J Cell Physiol 2006; 209(2):322–32.

    PubMed  CAS  Google Scholar 

  101. Venta PJ, Welty RJ, Johnson TM et al. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His—Tyr): complete structure of the normal human CA II gene. Am J Hum Genet 1991; 49(5):1082–90.

    PubMed  CAS  Google Scholar 

  102. Mori S, Wu CY, Yamaji S et al. Direct binding of integrin alphavbeta3 to FGF1 plays a role in FGF1 signaling. J Biol Chem 2008; 283(26):18066–75.

    PubMed  CAS  Google Scholar 

  103. Guo R, Rowe PS, Liu S et al. Inhibition of MEPE cleavage by Phex. Biochem Biophys Res Commun 2002; 297(1):38–45.

    PubMed  CAS  Google Scholar 

  104. Rowe PS, Garrett IR, Schwarz PM et al. Surface Plasmon Resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 2005; 36(1):33–46.

    PubMed  CAS  Google Scholar 

  105. Lu Y, Ye L, Yu S et al. Rescue of odontogenesis in Dmp1-deficient mice by targeted re-expression of DMP1 reveals roles for DMP1 in early odontogenesis and dentin apposition in vivo. Dev Biol 2007; 303(1):191–201.

    PubMed  CAS  Google Scholar 

  106. Fang MA, Glackin CA, Sadhu A et al. Transcriptional regulation of alpha 2(I) collagen gene expression by fibroblast growth factor-2 in MC3T3-E1 osteoblast-like cells. J Cell Biochem 2001; 80(4):550–9.

    PubMed  CAS  Google Scholar 

  107. Nauman EA, Sakata T, Keaveny TM et al. bFGF administration lowers the phosphate threshold for mineralization in bone marrow stromal cells. Calcif Tissue Int 2003; 73(2):147–52.

    PubMed  CAS  Google Scholar 

  108. Carpenter TO, Ellis BK, Insogna KL et al. FGF7—an inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J Clin Endocrinol Metab, 2004.

    Google Scholar 

  109. Laroche M, Boyer JF, Jahafar H et al. Normal FGF23 levels in adult idiopathic phosphate diabetes. Calcif Tissue Int 2009; 84(2):112–7.

    PubMed  CAS  Google Scholar 

  110. Riminucci M, Collins MT, Fedarko NS et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 2003; 112(5):683–92.

    PubMed  CAS  Google Scholar 

  111. Gutierrez O, Isakova T, Rhee E et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 2005; 16(7):2205–15.

    PubMed  CAS  Google Scholar 

  112. Bahrami A, Weiss SW, Montgomery E et al. RT-PCR analysis for FGF23 using paraffin sections in the diagnosis of phosphaturic mesenchymal tumors with and without known tumor induced osteomalacia. Am J Surg Pathol 2009; 33(9):1348–54.

    PubMed  Google Scholar 

  113. Rhee Y. FGF23 gene expression is upregulated by PTH receptor activation in osteocytes in vitro and in vivo: a parathyroid-bone link influencing the endocrine function of osteocytes. J Bone Miner Res 2009; 24(Suppl 1).

    Google Scholar 

  114. Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 2009; 19(3):219–33.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Darryl Quarles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Martin, A., Quarles, L.D. (2012). Evidence for FGF23 Involvement in a Bone-Kidney Axis Regulating Bone Mineralization and Systemic Phosphate and Vitamin D Homeostasis. In: Kuro-o, M. (eds) Endocrine FGFs and Klothos. Advances in Experimental Medicine and Biology, vol 728. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0887-1_4

Download citation

Publish with us

Policies and ethics