Skip to main content

Heterotopic Ossification Following Musculoskeletal Trauma: Modeling Stem and Progenitor Cells in Their Microenvironment

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 720))

Abstract

Heterotopic ossification (HO), characterized by the formation of mature bone in the soft tissues, is a complication that can accompany musculoskeletal injury, and it is a frequent occurrence within the military population that has experienced orthopaedic combat trauma. The etiology of this disease is largely unknown. Our laboratory has developed strategies to investigate the cellular and molecular events leading to HO using clinical specimens that were obtained during irrigation and debridement of musculoskeletal injuries. Our approach enables to study (1) the cell types that are responsible for pathological transformation and ossification, (2) the cell- and tissue-level signaling that induces the pathologic transformation, and (3) the effect of extracellular matrix topography and force transduction on HO progression. In this review, we will report on our findings in each of these aspects of HO etiology and describe our efforts to recapitulate our findings in an animal model for traumatic HO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Potter BK et al (2007) Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. J Bone Joint Surg Am 89(3):476–86

    Article  PubMed  Google Scholar 

  2. Potter BK et al (2006) Heterotopic ossification in the residual limbs of traumatic and combat-related amputees. J Am Acad Orthop Surg 14(10 Spec No.):S191–7

    PubMed  Google Scholar 

  3. Pape HC et al (2004) Current concepts in the development of heterotopic ossification. J Bone Joint Surg Br 86(6):783–7

    Article  PubMed  CAS  Google Scholar 

  4. Stover SL, Hataway CJ, Zeiger HE (1975) Heterotopic ossification in spinal cord-injured patients. Arch Phys Med Rehabil 56(5):199–204

    PubMed  CAS  Google Scholar 

  5. Peterson SL et al (1989) Postburn heterotopic ossification: insights for management decision making. J Trauma 29(3):365–9

    Article  PubMed  CAS  Google Scholar 

  6. Vanden Bossche L et al (2008) Free radical scavengers have a preventive effect on heterotopic bone formation following manipulation of immobilized rabbit legs. Eur J Phys Rehabil Med 44(4):423–8

    PubMed  CAS  Google Scholar 

  7. Shore EM et al (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38(5):525–7

    Article  PubMed  CAS  Google Scholar 

  8. Shafritz AB et al (1996) Overexpression of an osteogenic morphogen in fibrodysplasia ossificans progressiva. N Engl J Med 335(8):555–61

    Article  PubMed  CAS  Google Scholar 

  9. Ahn J et al (2003) Paresis of a bone morphogenetic protein-antagonist response in a genetic disorder of heterotopic skeletogenesis. J Bone Joint Surg Am 85-A(4):667–74

    PubMed  Google Scholar 

  10. Shore EM, Kaplan FS (2008) Insights from a rare genetic disorder of extra-skeletal bone formation, fibrodysplasia ossificans progressiva (FOP). Bone 43(3):427–33

    Article  PubMed  CAS  Google Scholar 

  11. Nesti LJ et al (2008) Differentiation potential of multipotent progenitor cells derived from war-­traumatized muscle tissue. J Bone Joint Surg Am 90(11):2390–8

    Article  PubMed  Google Scholar 

  12. Chamberlain G et al (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Article  PubMed  CAS  Google Scholar 

  13. Owen ME, Cave J, Joyner CJ (1987) Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. J Cell Sci 87(5):731–738

    PubMed  Google Scholar 

  14. Grefte S et al (2007) Skeletal muscle development and regeneration. Stem Cells Dev 16(5):857–68

    Article  PubMed  CAS  Google Scholar 

  15. Zheng B et al (2007) Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 25(9):1025–34

    Article  PubMed  CAS  Google Scholar 

  16. Lumelsky NL (2007) Commentary: engineering of tissue healing and regeneration. Tissue Eng 13(7):1393

    Article  PubMed  CAS  Google Scholar 

  17. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–84

    Article  PubMed  CAS  Google Scholar 

  18. Jackson WM et al (2010) Differentiation and regeneration potential of mesenchymal progenitor cells derived from traumatized muscle tissue. J Cell Mol Med 2010 Dec 3. doi: 10.1111/j.1582-4934.2010.01225.x. [Epub ahead of print]

    Google Scholar 

  19. Sivakumar P, Das A (2008) Fibrosis, chronic inflammation and new pathways for drug discovery. Inflamm Res 57(9):410–418

    Article  PubMed  CAS  Google Scholar 

  20. Jackson WM et al (2009) Mesenchymal progenitor cells derived from traumatized human muscle. J Tissue Eng Regen Med 3(2):129–38

    Article  PubMed  CAS  Google Scholar 

  21. Jackson WM et al (2009) Putative heterotopic ossification progenitor cells derived from traumatized muscle. J Orthop Res 27(12):1645–51

    Article  PubMed  CAS  Google Scholar 

  22. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37(5):1528–42

    Article  PubMed  CAS  Google Scholar 

  23. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–46

    Article  PubMed  CAS  Google Scholar 

  24. Quintero AJ et al (2009) Stem cells for the treatment of skeletal muscle injury. Clin Sports Med 28(1):1–11

    Article  PubMed  Google Scholar 

  25. Jackson WM et al (2011) Cytoke expression in ­muscle following traumatic injury. J Orthop Res 2011 Mar 30. doi: 10.1002/jor.21354. [Epub ahead of print]

    Google Scholar 

  26. Cowin AJ et al (2001) Expression of TGF-beta and its receptors in murine fetal and adult dermal wounds. Eur J Dermatol 11(5):424–31

    PubMed  CAS  Google Scholar 

  27. Lu L et al (2005) The temporal effects of anti-TGF-beta1, 2, and 3 monoclonal antibody on wound healing and hypertrophic scar formation. J Am Coll Surg 201(3):391–7

    Article  PubMed  Google Scholar 

  28. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    PubMed  CAS  Google Scholar 

  29. Jones DL, Wagers AJ (2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9(1):11–21

    Article  PubMed  CAS  Google Scholar 

  30. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55

    Article  PubMed  CAS  Google Scholar 

  31. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–7

    Article  PubMed  CAS  Google Scholar 

  32. Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8(6):457–70

    Article  PubMed  CAS  Google Scholar 

  33. Guilak F et al (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26

    Article  PubMed  CAS  Google Scholar 

  34. Lutton C, Goss B (2008) Caring about microenvironments. Nat Biotechnol 26(6):613–4

    Article  PubMed  CAS  Google Scholar 

  35. Lim SH, Mao HQ (2009) Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev 61(12):1084–96

    Article  PubMed  CAS  Google Scholar 

  36. Li WJ et al (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26(25):5158–66

    Article  PubMed  CAS  Google Scholar 

  37. Yim EK, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313(9):1820–9

    Article  PubMed  CAS  Google Scholar 

  38. Baker BM, Mauck RL (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28(11):1967–77

    Article  PubMed  CAS  Google Scholar 

  39. Sefcik LS et al (2008) Collagen nanofibres are a ­biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells. J Tissue Eng Regen Med 2(4):210–20

    Article  PubMed  CAS  Google Scholar 

  40. Nie H et al (2008) Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnol Bioeng 99(1):223–34

    Article  PubMed  CAS  Google Scholar 

  41. Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–89

    Article  PubMed  CAS  Google Scholar 

  42. Shih YR et al (2006) Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24(11):2391–7

    Article  PubMed  CAS  Google Scholar 

  43. Michelsson JE, Granroth G, Andersson LC (1980) Myositis ossificans following forcible manipulation of the leg. A rabbit model for the study of heterotopic bone formation. J Bone Joint Surg Am 62(5):811–5

    PubMed  CAS  Google Scholar 

  44. Lin L et al (2006) Adenovirus-mediated transfer of siRNA against Runx2/Cbfa1 inhibits the formation of heterotopic ossification in animal model. Biochem Biophys Res Commun 349(2):564–72

    Article  PubMed  CAS  Google Scholar 

  45. O’Connor JP (1998) Animal models of heterotopic ossification. Clin Orthop Relat Res 346:71–80

    Article  PubMed  Google Scholar 

  46. Kaplan FS et al (2004) Heterotopic ossification. J Am Acad Orthop Surg 12(2):116–25

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported acknowledged as part of the NIH Intramural Research Program. (Z01 AR41131 and 1ZIAAR041191), grants from the Department of Defense Military Amputee Research Program at WRAMC (PO5-A011), Comprehensive Neurosci­ences Program (CNP-2008-CR01) and Peer-Reviewed Orthopaedic Research Program (W81XWH-10-2-0084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon J. Nesti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ji, Y., Christopherson, G.T., Kluk, M.W., Amrani, O., Jackson, W.M., Nesti, L.J. (2011). Heterotopic Ossification Following Musculoskeletal Trauma: Modeling Stem and Progenitor Cells in Their Microenvironment. In: Rhim, J., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 720. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0254-1_4

Download citation

Publish with us

Policies and ethics