Skip to main content

Analysis of Muscular Work in Multisegmental Movements: Application to Cycling

  • Chapter
Multiple Muscle Systems

Abstract

In many athletic activities, efficiency and/or power are the keys to superior performance. For example, in activities which are primarily aerobic (e.g. distance running, cross-country skiing), the ability to perform the activity with high efficiency is one important factor in realizing superior performance. On the other hand, in activities which are primarily anaerobic (e.g. jumping, sprint running, power lifting), the ability to develop high power is an important ingredient in the recipe for superior achievement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott, B. C., Bigland, B., and Ritchie, J. M. (1952), “The Physiological Cost of Negative Work,” J. of Physiol 117: 380–390.

    CAS  Google Scholar 

  • Andrews, J. G. (1987), “The Functional Roles of the Hamstrings and Quadriceps During Cycling: Lombard’s Paradox Revisited,” J. of Biomech. 20: 565–575.

    Article  CAS  Google Scholar 

  • Andriacchi, T. P. (1987), “Clinical Applications of the SELSPOT System,” Proc. of the Biomech. Symp., AMD-Vol. 84, edited by D. L. Butler and P. A. Toizilli, American Society of Mechanical Engineers, New York, pp. 339–342.

    Google Scholar 

  • Asmussen, E. (1953), “Positive and Negative Muscular Work,” Acta Physiol Scand. 28: 364–382.

    Article  PubMed  CAS  Google Scholar 

  • Asmussen, E., and Bonde-Petersen, F. (1974), “Apparent Efficiency and Storage of Elastic Energy in Human Muscles During Exercise,” Acta Physiol Scand. 92: 537–545.

    Article  PubMed  CAS  Google Scholar 

  • Aura, O. and Komi, R. V. (1986), “Effects of Prestretch Intensity on Mechanical Efficiency of Positive Work and on Elastic Behavior of Skeletal Muscle in Stretch-Shortening Cycle Exercise,” Intern. J. of Sports Med. 7: 137–143.

    Article  CAS  Google Scholar 

  • Baildon, R.W.A. and Chapman, A.E. (1983), “A New Approach to the Human Muscle Model,” J. of Biomech. 16: 803–809.

    Article  CAS  Google Scholar 

  • Basmajian, J. V. (1974), Muscles Alive, Williams and Wilkins Co., Baltimore.

    Google Scholar 

  • Basmajian, J. V., Clifford, N. C., McLeod, W. D., and Nunnally, H. N. (1975), Computers in Electromyogr., Butterworths, Boston.

    Google Scholar 

  • Bosco, C., Ito, A., Komi, P. V., Luhtanen, P., Rahkila, P., Rusko, H. and Viitasalo, J. T. (1982), “Neuromuscular Function and Mechanical Efficiency of Human Leg Extensor Muscles During Jumping Exercises,” Acta Physiol Scand. 114: 543–550.

    Article  PubMed  CAS  Google Scholar 

  • Bosco, C. and Komi, P. V. (1979), “Potentiation of the Mechanical Behavior of the Human Skeletal Muscle Through Prestretching,” Acta Physiol Scand. 106: 467–472.

    Article  PubMed  CAS  Google Scholar 

  • Brand, R. A., Crowninshield, R. D., Wittstock, C. E., Petersen, D. R., Clark, C. R. and van Krieken, F. M. (1982), “A Model of Lower Extremity Muscular Anatomy,” J. of Biomech. Engineering 104: 304–310.

    Article  CAS  Google Scholar 

  • Cavagna, G. A. (1977), “Storage and Utilization of Elastic Energy in Skeletal Muscle,” Exercise and Sports Sciences Reviews, 5: 89–129.

    CAS  Google Scholar 

  • Cavagna, G. A., Dusman, B., and Margaria, R. (1968), “Positive Woik Done by a Previously Stretched Muscle,” J. ofAppl. Physiol 24: 21–32.

    CAS  Google Scholar 

  • Cavagna, G. A. and Kaneko, M. (1977), “Mechanical Woik and Efficiency in Level Walking and Running,” J. of Physiol 268: 467–481.

    CAS  Google Scholar 

  • Cavagna, G. A., Mazzanti, M., Heglund, N. C., and Citterio, G. (1985), “Storage and Release of Mechanical Energy by Active Muscle: A Non- Elastic Mechanism?,” J. ofExper. Biol Design and Performance of Muscular Systems, 115: 79–87.

    CAS  Google Scholar 

  • Cavanagh, P. R. and Kram, R. (1985), “Mechanical and Muscular Factors Affecting the Efficiency of Human Movement,” Medicine and Science in Sports and Exercise 17: 326–331.

    PubMed  CAS  Google Scholar 

  • Cavanagh, P. R. and Komi, P. V. (1979), “Electromechanical Delay in Human Skeletal Muscle Under Concentric and Eccentric Contractions,” Eur. J. ofAppl Physiol 42: 159–163.

    Article  CAS  Google Scholar 

  • Chao, E. Y. (1980), “Justification of the Triaxial Goniometer for the Measurement of Joint Rotation,” J. of Biomech. 13: 989–1006.

    Article  CAS  Google Scholar 

  • Crowninshield, R. D. (1978), “Use of Optimization Techniques to Predict Muscle Forces,” J. of Biomech. Engineering 100: 88–92.

    Article  Google Scholar 

  • Crowninshield, R. D. and Brand, R. A. (1981), “A Physiologically Based Criterion of Muscle Force Prediction in Locomotion,” J. of Biomechanics 14: 793–801.

    Article  CAS  Google Scholar 

  • Curtin, N. A. and Davies, R. E. (1975), “Very High Tension with Very Little ATP Breakdown by Active Skeletal Muscle,” J. of Mechanochemistry and Cell Motility 3: 147–154.

    CAS  Google Scholar 

  • Davies, R. E. (1965), “Bioenergetics of Muscular Contraction,” in Control of Energy Metabolism, edited by B. Chance, R. W. Estabrook and J. R. Williamson, Academic Press, New York, pp. 383–392.

    Google Scholar 

  • Davy, D. T. and Audu, M. L. (1987), “A Dynamic Optimization Technique for Predicting Muscle Forces in the Swing Phase of Gait,” J. of Biomech. 20: 187–201.

    Article  CAS  Google Scholar 

  • Delagi, E. F., Perotta, A., Iazetti, J., and Morrison, D. (1975), Anatomic Guide for the Electromyographs, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Dostal, W. F. and Andrews, J. G. (1981), “A Three Dimensional Biomechanics Model of Hip Musculature,” J. of Biomech. 14: 803–812.

    Article  CAS  Google Scholar 

  • Dul, J., Townsend, M. A., Shiaui, R. and Johnson, G. E. (1984) “Muscular Synergism. I. On Criteria for Load Sharing Between Synergistic Muscles,” J. of Biomech. 17: 663–673.

    Article  CAS  Google Scholar 

  • Edgerton, V. R., Roy, R. R., Gregor, R. J. and Rugg, S. (1986), “Morphological Basis of Skeletal Muscle Power Output,” in Human Muscle Power, edited by N. L. Jones and A. L. McComas, Human Kinetics Publishers, Champaign, Illinois, pp. 43–58.

    Google Scholar 

  • Ekblom, B. (1987), “External and Internal Factors Influencing Physical Performance,” in Medicine and Sports Science: Muscular Function in Exercise and Training, edited by P. Marconnet and P. V. Komi, Karger, New York, Vol. 26, pp. 90–97.

    Google Scholar 

  • Ericson, M. O., Nisell, R., Arborelius, U. P. and Ekholm, J., (1985), “Muscular Activity During Ergometer Cycling,” Scand. J. of Rehabilitative Medicine 17: 53–61.

    CAS  Google Scholar 

  • Faulkner, J. A., Claflin, D. R. and McCully, K. K. (1986), “Power Output of Fast and Slow Fibres from Human Skeletal Muscles,” in Human Muscle Power, edited by N. L. Jones and A. L. McComas, Human Kinetics Publishers, Champaign, Illinois, pp. 81–96.

    Google Scholar 

  • Gottlieb, G. L. and Agarwal, G. C. (1971), “Dynamic Relationship Between Isometric Muscle Tension and the Electromyogram in Man,” J. of Appl. Physiol 30: 345–351.

    CAS  Google Scholar 

  • Goubel, F. (1987), “Muscle Mechanics: Fundamental Concepts in Stretch- Shortening Cycle,” in Medicine Sport Science: Muscular Function in Exercise and Training, edited by P. Marconnet and P. V. Komi, Karger, New York, Vol. 26, pp. 24–35.

    Google Scholar 

  • Green, H. J. (1986), “Muscle Power: Fibre Type Recruitment Metabolism, Fatigue,” in Human Muscle Power, edited by N. L. Jones and A. L. McComas, Human Kinetics Publishers, Champaign, Illinois, pp. 65–79.

    Google Scholar 

  • Gregor, R. J., Komi, P. V., and Jarvinen, M. (1987), “Achilles Tendon Forces During Cycling,” Intern. J. of Sports Medicine 8: 9–14.

    Article  Google Scholar 

  • Hatze, H. (1981), Myocybernetic Control Models of Skeletal Muscles, University of South Africa, Muckleneuk, Pretoria.

    Google Scholar 

  • Hawkins, D. A., Hawthorne, D. L., De Lozier, G. S., Campbell, K. R. and Grabiner, M. D. (1987), “The Use of Videography for Three Dimensional Motion Analysis,” in High Speed Photography, Videography, and Photonics V, edited by H. C. Johnson, International Society for Optical Engineering, Bellingham, Washington, pp. 42–45.

    Google Scholar 

  • Heglund, N. C. and Cavagna, G. A. (1985), “Efficiency of Vertebrate Locomotory Muscles,” J. of Exper. Biology: Design and Perf. of Muscular Systems, 115: 283–292.

    CAS  Google Scholar 

  • Hof, A. L. and van den Berg, J. W. (1981), “EMG to Force Processing I: An Electrical Analog of the HiU Muscle Model,” J. of Biomech. 14: 747–758.

    Article  CAS  Google Scholar 

  • Hornbeck, R.W. (1975), Numerical Methods, Prentice- Hall, Inc., Englewood Cliffs, New Jersey, pp. 16–23.

    Google Scholar 

  • Hull, M.L. and Davis, R.R. (1981), “Measurement of Pedal Loads in Bicycling: I. Instrumentation,” J. of Biomech. 14: 843–855.

    Article  CAS  Google Scholar 

  • Hull, M. L. and Jorge, M. (1985), “A Method for Biomechanical Analysis of Bicycle Pedalling,” J. of Biomech. 18: 631–644.

    Article  CAS  Google Scholar 

  • Jorge, M. and Hull, M. L. (1986), “Analysis of EMG Measurements During Bicycling,” J. of Biomech. 19: 683–694.

    Article  CAS  Google Scholar 

  • Kadaba, M. P., Wotten, M. E., Ramarkrishnan, H. K., Hurwitz, D. and Cochran, G.V.B. (1987), “Assessment of Human Motion With VICON,” Proc. of the Biomechanics Symposium, AMD-Vol. 84, edited by D. L. Butler and P. A. Torzilli, American Society of Mechanical Engineers, New York, pp. 335–338.

    Google Scholar 

  • Komi, P.V. (1973), “Relationship Between Muscle Tension, EMG, and Velocity of Contraction Under Concentric and Eccentric Work,” in New Devel. in Electromyography and Clinical Neurophysiology, edited by J. E. Desmedt, Karger, Basel, Vol. 1, pp. 596–606.

    Google Scholar 

  • Komi, P. V. (1987), “Neuromuscular Factors Related to Physical Performance”, in Medicine and Sport Sciences: Muscular Functions in Exercise and Training, edited by P. Marconnet and P. V. Komi, Karger, New York, Vol. 26, pp. 48–66.

    Google Scholar 

  • Lafortune, M., Cavanagh, P. R., Valient, G. A. and Buike, E. R. (1983), “A Study of the Riding Mechanics of Elite Cyclists,” Medicine and Science in Sports and Exercise 15: 113.

    Google Scholar 

  • Lloyd, B. B. and Zacks, R. M. (1972), “The Mechanical Efficiency of Treadmill Running Against a Horizontal Impeding Force,” J. of Physiol. 223: 355–363.

    CAS  Google Scholar 

  • Loeb, G. E. and Gans, C. (1986), Electromyography for Experimentalists, University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Lombard, W. P. (1903), “The Action of Two-Joint Muscles,” Amer. Physical Education Review 8: 141–145.

    Google Scholar 

  • Miller, J.A.A. (1987), “Motion Analysis Using the 2 Camera CODA-3 Measurement System,” in Proc. of the Biomech. Symp., AMD-Vol. 84, edited by D.L. Butler and P.A. Torzilli, American Society of Mechanical Engineers, New York, pp. 343–344.

    Google Scholar 

  • Morrison, J. B. (1968), “Bioengineering Analysis of Force Actions Transmitted by the Knee Joint,” Biomed. Engineering 3: 164–170.

    Google Scholar 

  • Muro, M. and Nagato, A. (1985), “The Effects of Electromechanical Delay of Muscle Stretch of the Human Triceps Surae,” Biomechanics IX-A, edited by D. A. Winter, R. W. Norman, R. P. Wells, K. C. Hayes and A. E. Patla, Human Kinetics Publishers, Champaign, Illinois, pp. 86–90.

    Google Scholar 

  • Norman, R. W. and Komi, P. V. (1979), “Electromechanical Delay in Skeletal Muscle Under Normal Movement Conditions,” Acta Physiol. Scand. 106: 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Pedotti, A., Krishnan, V. V. and Stark, L. (1978), “Optimization of Muscle- Force Sequencing in Human Locomotion,” Math. Biosci. 38: 57–76.

    Article  Google Scholar 

  • Pen, K. M. and Stanfield, J. W. (1972), “Mechanical Model of Skeletal Muscle,” Amer. J. of Physical Med. 51: 23–38.

    Google Scholar 

  • Penrod, D. D., Davy, D. T. and Singh, D. P. (1974), “An Optimization Approach to Tendon Force Analysis,” J. of Biomech. 7: 123–129.

    Article  CAS  Google Scholar 

  • Seireg, A. and Arvikar, A. (1973), “A Mathematical Model for the Evaluation of Forces in Lower Extremities of the Musculoskeletal System,” J. of Biomech. 6: 313–326.

    Article  CAS  Google Scholar 

  • Soudan, K. and Dierckx, P. (1979), “Calculation of Derivatives and Fourier Coefficients of Human Motion Data While Using Spline Functions,” J. of Biomech. 12: 21–26.

    Article  CAS  Google Scholar 

  • Stainsby, W. N. (1976), “Oxygen Uptake for Negative Work, Stretching Contractions by In Situ Dog Skeletal Muscle,” Amer. J. of Physiol 230: 1013–1017.

    CAS  Google Scholar 

  • Stern, J. T. (1974), “Computer Modeling of Gross Muscle Dynamics,” J. of Biomech. 7: 411–428.

    Article  Google Scholar 

  • Suzuki, S., Watanabe, S. and Hamma, S., (1982), “EMG Activity and Kinematics of Cycling Movements at Different Constant Velocities,” Brain Research 240: 245–258.

    Article  PubMed  CAS  Google Scholar 

  • Thys, H., Faraggiana, T. and Margaria, R. (1972), “Utilization of Muscle Elasticity in Exercise,” J. of Appl. Physiol. 32: 491–494.

    CAS  Google Scholar 

  • van Ingen Schenau, G. J. (1984), “An Alternative View of the Concept of Utilization of Elastic Energy in Human Movement,” Human Movem. Science 3: 301–336.

    Article  Google Scholar 

  • Vaughn, C. L. (1982), “Smoothing and Differentiation of Displacement-time Data: An Application of Splines and Digital Filtering,” Intern. J. of Biomed. Computing 13: 375–386.

    Article  Google Scholar 

  • Viitasalo, J. T. and Komi, P. V. (1981), “Interrelationships Between Electromyographic, Mechanical, Muscle Structure, and Reflex Time Measurements in Man,” Acta Physiol. Scand. 111: 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Walton, J. S. (1981), Close Range Cine- Photogrammetry: A Generalized Technique for Quantifying Gross Human Movement, Doctoral Dissertation, Pennsylvania State University, University Park, Pennsylvania.

    Google Scholar 

  • Whipp, B. J. and Wasserman, K. (1969), “Efficiency of Muscular Work,” J. of Appl. Physiol. 26: 644–648.

    CAS  Google Scholar 

  • White, D.C.S. (1977), “Muscle Mechanics,” in Mechanics and Energetics of Animal Locomotion, edited by R. McN. Alexander and G. Goldspink, Chapman and Hall, London, pp. 23–56.

    Google Scholar 

  • Wood, G. A. (1982) “Data Smoothing and Differentiation Procedures in Biomechanics,” Exercise and Sports Science Reviews, 10: 308–361.

    CAS  Google Scholar 

  • Zacks, R. M. (1973), “The Mechanical Efficiencies of Running and Cycling Against a Horizontal Impeding Force,” Internationale Zeitschrift fur Angewandte Physiologie Einschlieblich Arbeitsphysiologie 31: 249–258.

    CAS  Google Scholar 

  • Zernicke, R. F., Caldwell G. and Roberts, E. M. (1976), “Fitting Biomechanical Data with Cubic Spline Functions,” Res. Quart. 47: 9–19.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Hull, M.L., Hawkins, D.A. (1990). Analysis of Muscular Work in Multisegmental Movements: Application to Cycling. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_40

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics