Skip to main content

Anticancer Gene Transfer for Cancer Gene Therapy

  • Chapter
  • First Online:
Anticancer Genes

Abstract

Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinkovics J, Horvath J (1993) New developments in the virus therapy of cancer: a historical review. Intervirology 36:193–214

    CAS  PubMed  Google Scholar 

  2. Kelly E, Russell SJ (2007) History of oncolytic viruses: genesis to genetic engineering. Mol Ther 15:651–659

    Article  CAS  PubMed  Google Scholar 

  3. Hoster HA, Zanes RP Jr, von Haam E (1949) Studies in Hodgkin’s syndrome; the association of viral hepatitis and Hodgkin’s disease; a preliminary report. Cancer Res 9:473–480

    CAS  PubMed  Google Scholar 

  4. Kaur B, Cripe TP, Chiocca EA (2009) “Buy one get one free”: armed viruses for the treatment of cancer cells and their microenvironment. Curr Gene Ther 9:341–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Doyle TC, Burns SM, Contag CH (2004) In vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol 6:303–317

    Article  CAS  PubMed  Google Scholar 

  6. Piwnica-Worms D, Schuster DP, Garbow JR (2004) Molecular imaging of host-pathogen interactions in intact small animals. Cell Microbiol 6:319–331

    Article  CAS  PubMed  Google Scholar 

  7. Peng KW, Hadac EM, Anderson BD, Myers R, Harvey M, Greiner SM, Soeffker D, Federspiel MJ, Russell SJ (2006) Pharmacokinetics of oncolytic measles virotherapy: eventual equilibrium between virus and tumor in an ovarian cancer xenograft model. Cancer Gene Ther 13:732–738

    Article  CAS  PubMed  Google Scholar 

  8. Cattaneo R, Miest T, Shashkova EV, Barry MA (2008) Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol 6:529–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Msaouel P, Dispenzieri A, Galanis E (2009) Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview. Curr Opin Mol Ther 11:43–53

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Alvarez-Breckenridge C, Kaur B, Chiocca EA (2009) Pharmacologic and chemical adjuvants in tumor virotherapy. Chem Rev 109:3125–3140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kumar S, Gao L, Yeagy B, Reid T (2008) Virus combinations and chemotherapy for the treatment of human cancers. Curr Opin Mol Ther 10:371–379

    PubMed  Google Scholar 

  12. Hardcastle J, Kurozumi K, Chiocca EA, Kaur B (2007) Oncolytic viruses driven by tumor-specific promoters. Curr Cancer Drug Targets 7:181–189

    Article  CAS  PubMed  Google Scholar 

  13. Waehler R, Russell SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8:573–587

    Article  CAS  PubMed  Google Scholar 

  14. Grimm S, Noteborn M (2010) Anticancer genes: inducers of tumour-specific cell death signalling. Trends Mol Med 16:88–96

    Article  CAS  PubMed  Google Scholar 

  15. Nayerossadat N, Maedeh T, Ali PA (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, den Dunnen JT, Koop K, van der Kooi AJ, Goemans NM, de Kimpe SJ, Ekhart PF, Venneker EH, Platenburg GJ, Verschuuren JJ, van Ommen GJ (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357:2677–2686

    Article  PubMed  Google Scholar 

  17. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Guglieri M, Ashton E, Abbs S, Nihoyannopoulos P, Garralda ME, Rutherford M, Mcculley C, Popplewell L, Graham IR, Dickson G, Wood MJ, Wells DJ, Wilton SD, Kole R, Straub V, Bushby K, Sewry C, Morgan JE, Muntoni F (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8:918–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, Abbs S, Garralda ME, Bourke J, Wells DJ, Dickson G, Wood MJ, Wilton SD, Straub V, Kole R, Shrewsbury SB, Sewry C, Morgan JE, Bushby K, Muntoni F (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, Hua Y, Rigo F, Matson J, Hung G, Kaye EM, Shihabuddin LS, Krainer AR, Bennett CF, Cheng SH (2011) Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 3:72ra18

    PubMed Central  PubMed  Google Scholar 

  20. Cartier N, Aubourg P (2010) Hematopoietic stem cell transplantation and hematopoietic stem cell gene therapy in X-linked adrenoleukodystrophy. Brain Pathol 20:857–862

    Article  PubMed  Google Scholar 

  21. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, Morecki S, Andolfi G, Tabucchi A, Carlucci F, Marinello E, Cattaneo F, Vai S, Servida P, Miniero R, Roncarolo MG, Bordignon C (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296:2410–2413

    Article  CAS  PubMed  Google Scholar 

  22. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, Mahlaoui N, Kiermer V, Mittelstaedt D, Bellesme C, Lahlou N, Lefrere F, Blanche S, Audit M, Payen E, Leboulch P, L’Homme B, Bougneres P, von Kalle C, Fischer A, Cavazzana-Calvo M, Aubourg P (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823

    Article  CAS  PubMed  Google Scholar 

  23. Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Diez IA, Dewey RA, Bohm M, Nowrouzi A, Ball CR, Glimm H, Naundorf S, Kuhlcke K, Blasczyk R, Kondratenko I, Marodi L, Orange JS, von Kalle C, Klein C (2010) Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 363:1918–1927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, Dionisio F, Calabria A, Giannelli S, Castiello MC, Bosticardo M, Evangelio C, Assanelli A, Casiraghi M, di Nunzio S, Callegaro L, Benati C, Rizzardi P, Pellin D, di Serio C, Schmidt M, von Kalle C, Gardner J, Mehta N, Neduva V, Dow DJ, Galy A, Miniero R, Finocchi A, Metin A, Banerjee PP, Orange JS, Galimberti S, Valsecchi MG, Biffi A, Montini E, Villa A, Ciceri F, Roncarolo MG, Naldini L (2013) Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341:1233151

    Article  PubMed  CAS  Google Scholar 

  25. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, Baldoli C, Martino S, Calabria A, Canale S, Benedicenti F, Vallanti G, Biasco L, Leo S, Kabbara N, Zanetti G, Rizzo WB, Mehta NA, Cicalese MP, Casiraghi M, Boelens JJ, del Carro U, Dow DJ, Schmidt M, Assanelli A, Neduva V, di Serio C, Stupka E, Gardner J, von Kalle C, Bordignon C, Ciceri F, Rovelli A, Roncarolo MG, Aiuti A, Sessa M, Naldini L (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:1233158

    Article  PubMed  CAS  Google Scholar 

  26. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239

    Article  CAS  PubMed  Google Scholar 

  27. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL, Rossi S, Marshall K, Banfi S, Surace EM, Sun J, Redmond TM, Zhu X, Shindler KS, Ying GS, Ziviello C, Acerra C, Wright JF, Mcdonnell JW, High KA, Bennett J, Auricchio A (2010) Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 18:643–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lewitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, Kostyk SK, Thomas K, Sarkar A, Siddiqui MS, Tatter SB, Schwalb JM, Poston KL, Henderson JM, Kurlan RM, Richard IH, van Meter L, Sapan CV, During MJ, Kaplitt MG, Feigin A (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10:309–319

    Article  CAS  PubMed  Google Scholar 

  29. Palfi S, Gurruchaga JM, Ralph SG, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J, Kelleher M, Deeley S, Iwamuro H, Lefaucheur JP, Thiriez C, Fenelon G, Lucas C, Brugières P, Gabriel I, Abhay K, Drouot X, Tani N, Kas A, Ghaleh B, Corvoisier PL, Dolphin P, Breen DP, Mason S, Guzman NV, Mazarakis ND, Radcliffe PA, Harrop R, Kingsman SM, Rasco LO, Naylor S, Barker RA, Hantraye P, Remy P, Cesaro P, Mitrophanous KA (2013) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet: 383(9923):1138–46

    Google Scholar 

  30. Klenk HD, Garten W (1994) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2:39–43

    Article  CAS  PubMed  Google Scholar 

  31. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  32. Yi Y, Noh MJ, Lee KH (2011) Current advances in retroviral gene therapy. Curr Gene Ther 11:218–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Cattaneo R (2010) Paramyxovirus entry and targeted vectors for cancer therapy. PLoS Pathog 6:e1000973

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Morling FJ, Peng KW, Cosset FL, Russell SJ (1997) Masking of retroviral envelope functions by oligomerizing polypeptide adaptors. Virology 234:51–61

    Article  CAS  PubMed  Google Scholar 

  35. Peng KW, Vile R, Cosset FL, Russell S (1999) Selective transduction of protease-rich tumors by matrix-metalloproteinase-targeted retroviral vectors. Gene Ther 6:1552–1557

    Article  CAS  PubMed  Google Scholar 

  36. Springfeld C, von Messling V, Frenzke M, Ungerechts G, Buchholz CJ, Cattaneo R (2006) Oncolytic efficacy and enhanced safety of measles virus activated by tumor-secreted matrix metalloproteinases. Cancer Res 66:7694–7700

    Article  CAS  PubMed  Google Scholar 

  37. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  38. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, Mccormick F (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274:373–376

    Article  CAS  PubMed  Google Scholar 

  39. O’Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A, Boyle L, Pandey K, Soria C, Kunich J, Shen Y, Habets G, Ginzinger D, Mccormick F (2004) Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 6:611–623

    Article  PubMed  Google Scholar 

  40. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A, Hawkins L, Kirn D (2000) An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 6:1134–1139

    Article  CAS  PubMed  Google Scholar 

  41. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, Mcdonnell TJ, Mitlianga P, Shi YX, Levin VA, Yung WK, Kyritsis AP (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19:2–12

    Article  CAS  PubMed  Google Scholar 

  42. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1:938–943

    Article  CAS  PubMed  Google Scholar 

  43. Cinatl J Jr, Michaelis M, Driever PH, Cinatl J, Hrabeta J, Suhan T, Doerr HW, Vogel JU (2004) Multimutated herpes simplex virus g207 is a potent inhibitor of angiogenesis. Neoplasia 6:725–735

    Article  PubMed Central  PubMed  Google Scholar 

  44. Reichard KW, Lorence RM, Cascino CJ, Peeples ME, Walter RJ, Fernando MB, Reyes HM, Greager JA (1992) Newcastle disease virus selectively kills human tumor cells. J Surg Res 52:448–453

    Article  CAS  PubMed  Google Scholar 

  45. Kuroda T, Rabkin SD, Martuza RL (2006) Effective treatment of tumors with strong beta-catenin/T-cell factor activity by transcriptionally targeted oncolytic herpes simplex virus vector. Cancer Res 66:10127–10135

    Article  CAS  PubMed  Google Scholar 

  46. Stojdl DF, Lichty BD, Tenoever BR, Paterson JM, Power AT, Knowles S, Marius R, Reynard J, Poliquin L, Atkins H, Brown EG, Durbin RK, Durbin JE, Hiscott J, Bell JC (2003) VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4:263–275

    Article  CAS  PubMed  Google Scholar 

  47. Muster T, Rajtarova J, Sachet M, Unger H, Fleischhacker R, Romirer I, Grassauer A, Url A, Garcia-Sastre A, Wolff K, Pehamberger H, Bergmann M (2004) Interferon resistance promotes oncolysis by influenza virus NS1-deletion mutants. Int J Cancer 110:15–21

    Article  CAS  PubMed  Google Scholar 

  48. Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  CAS  PubMed  Google Scholar 

  49. Harada JN, Berk AJ (1999) p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol 73:5333–5344

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Dix BR, O’Carroll SJ, Myers CJ, Edwards SJ, Braithwaite AW (2000) Efficient induction of cell death by adenoviruses requires binding of E1B55k and p53. Cancer Res 60:2666–2672

    CAS  PubMed  Google Scholar 

  51. Noser JA, Mael AA, Sakuma R, Ohmine S, Marcato P, Lee PW, Ikeda Y (2007) The RAS/Raf1/MEK/ERK signaling pathway facilitates VSV-mediated oncolysis: implication for the defective interferon response in cancer cells. Mol Ther 15:1531–1536

    Article  CAS  PubMed  Google Scholar 

  52. Lorence RM, Rood PA, Kelley KW (1988) Newcastle disease virus as an antineoplastic agent: induction of tumor necrosis factor-alpha and augmentation of its cytotoxicity. J Natl Cancer Inst 80:1305–1312

    Article  CAS  PubMed  Google Scholar 

  53. Smith KD, Mezhir JJ, Bickenbach K, Veerapong J, Charron J, Posner MC, Roizman B, Weichselbaum RR (2006) Activated MEK suppresses activation of PKR and enables efficient replication and in vivo oncolysis by Deltagamma(1)34.5 mutants of herpes simplex virus 1. J Virol 80:1110–1120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Veerapong J, Bickenbach KA, Shao MY, Smith KD, Posner MC, Roizman B, Weichselbaum RR (2007) Systemic delivery of (gamma1)34.5-deleted herpes simplex virus-1 selectively targets and treats distant human xenograft tumors that express high MEK activity. Cancer Res 67:8301–8306

    Article  CAS  PubMed  Google Scholar 

  55. Bergmann M, Romirer I, Sachet M, Fleischhacker R, Garcia-Sastre A, Palese P, Wolff K, Pehamberger H, Jakesz R, Muster T (2001) A genetically engineered influenza A virus with ras-dependent oncolytic properties. Cancer Res 61:8188–8193

    CAS  PubMed  Google Scholar 

  56. Huang TG, Savontaus MJ, Shinozaki K, Sauter BV, Woo SL (2003) Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther 10:1241–1247

    Article  CAS  PubMed  Google Scholar 

  57. Everts B, van der Poel HG (2005) Replication-selective oncolytic viruses in the treatment of cancer. Cancer Gene Ther 12:141–161

    Article  CAS  PubMed  Google Scholar 

  58. Nagano S, Oshika H, Fujiwara H, Komiya S, Kosai K (2005) An efficient construction of conditionally replicating adenoviruses that target tumor cells with multiple factors. Gene Ther 12:1385–1393

    Article  CAS  PubMed  Google Scholar 

  59. Meier O, Greber UF (2003) Adenovirus endocytosis. J Gene Med 5:451–462

    Article  CAS  PubMed  Google Scholar 

  60. Spear PG (2004) Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 6:401–410

    Article  CAS  PubMed  Google Scholar 

  61. Gianni T, Campadelli-Fiume G, Menotti L (2004) Entry of herpes simplex virus mediated by chimeric forms of nectin1 retargeted to endosomes or to lipid rafts occurs through acidic endosomes. J Virol 78:12268–12276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Guo ZS, Bartlett DL (2004) Vaccinia as a vector for gene delivery. Expert Opin Biol Ther 4:901–917

    Article  CAS  PubMed  Google Scholar 

  63. Nakano K, Asano R, Tsumoto K, Kwon H, Goins WF, Kumagai I, Cohen JB, Glorioso JC (2005) Herpes simplex virus targeting to the EGF receptor by a gD-specific soluble bridging molecule. Mol Ther 11:617–626

    Article  CAS  PubMed  Google Scholar 

  64. Bucheit AD, Kumar S, Grote DM, Lin Y, von Messling V, Cattaneo RB, Fielding AK (2003) An oncolytic measles virus engineered to enter cells through the CD20 antigen. Mol Ther 7:62–72

    Article  CAS  PubMed  Google Scholar 

  65. Peng KW, Donovan KA, Schneider U, Cattaneo R, Lust JA, Russell SJ (2003) Oncolytic measles viruses displaying a single-chain antibody against CD38, a myeloma cell marker. Blood 101:2557–2562

    Article  CAS  PubMed  Google Scholar 

  66. Vorburger SA, Hunt KK (2002) Adenoviral gene therapy. Oncologist 7:46–59

    Article  CAS  PubMed  Google Scholar 

  67. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  CAS  PubMed  Google Scholar 

  68. Green NK, Seymour LW (2002) Adenoviral vectors: systemic delivery and tumor targeting. Cancer Gene Ther 9:1036–1042

    Article  CAS  PubMed  Google Scholar 

  69. Wu Q, Moyana T, Xiang J (2001) Cancer gene therapy by adenovirus-mediated gene transfer. Curr Gene Ther 1:101–122

    Article  CAS  PubMed  Google Scholar 

  70. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323

    Article  CAS  PubMed  Google Scholar 

  71. Koehler DR, Frndova H, Leung K, Louca E, Palmer D, Ng P, Mckerlie C, Cox P, Coates AL, Hu J (2005) Aerosol delivery of an enhanced helper-dependent adenovirus formulation to rabbit lung using an intratracheal catheter. J Gene Med 7:1409–1420

    Article  CAS  PubMed  Google Scholar 

  72. Koehler DR, Martin B, Corey M, Palmer D, Ng P, Tanswell AK, Hu J (2006) Readministration of helper-dependent adenovirus to mouse lung. Gene Ther 13:773–780

    Article  CAS  PubMed  Google Scholar 

  73. Lai CM, Lai YK, Rakoczy PE (2002) Adenovirus and adeno-associated virus vectors. DNA Cell Biol 21:895–913

    Article  CAS  PubMed  Google Scholar 

  74. Flotte T, Carter B, Conrad C, Guggino W, Reynolds T, Rosenstein B, Taylor G, Walden S, Wetzel R (1996) A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Hum Gene Ther 7:1145–1159

    Article  CAS  PubMed  Google Scholar 

  75. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, Mcclelland A, Glader B, Chew AJ, Tai SJ, Herzog RW, Arruda V, Johnson F, Scallan C, Skarsgard E, Flake AW, High KA (2000) Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 24:257–261

    Article  CAS  PubMed  Google Scholar 

  76. Yuan L, Zhao H, Zhang L, Liu X (2013) The efficacy of combination therapy using adeno-associated virus-mediated co-expression of apoptin and interleukin-24 on hepatocellular carcinoma. Tumour Biol 34:3027–3034

    Article  CAS  PubMed  Google Scholar 

  77. Todo T (2008) Oncolytic virus therapy using genetically engineered herpes simplex viruses. Front Biosci 13:2060–2064

    Article  CAS  PubMed  Google Scholar 

  78. Todo T (2008) “Armed” oncolytic herpes simplex viruses for brain tumor therapy. Cell Adh Migr 2:208–213

    Article  PubMed Central  PubMed  Google Scholar 

  79. Trobridge GD (2009) Foamy virus vectors for gene transfer. Expert Opin Biol Ther 9:1427–1436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, Palmer CA, Feigenbaum F, Tornatore C, Tufaro F, Martuza RL (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7:867–874

    Article  CAS  PubMed  Google Scholar 

  81. Chou J, Kern ER, Whitley RJ, Roizman B (1990) Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 250:1262–1266

    Article  CAS  PubMed  Google Scholar 

  82. Todo T, Martuza RL, Rabkin SD, Johnson PA (2001) Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci U S A 98:6396–6401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Moroziewicz D, Kaufman HL (2005) Gene therapy with poxvirus vectors. Curr Opin Mol Ther 7:317–325

    CAS  PubMed  Google Scholar 

  84. Gomez CE, Najera JL, Krupa M, Esteban M (2008) The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. Curr Gene Ther 8:97–120

    Article  CAS  PubMed  Google Scholar 

  85. Moss B (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci U S A 93:11341–11348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Stripecke R, Koya RC, Ta HQ, Kasahara N, Levine AM (2003) The use of lentiviral vectors in gene therapy of leukemia: combinatorial gene delivery of immunomodulators into leukemia cells by state-of-the-art vectors. Blood Cells Mol Dis 31:28–37

    Article  CAS  PubMed  Google Scholar 

  87. Zhang KX, Moussavi M, Kim C, Chow E, Chen IS, Fazli L, Jia W, Rennie PS (2009) Lentiviruses with trastuzumab bound to their envelopes can target and kill prostate cancer cells. Cancer Gene Ther 16:820–831

    Article  CAS  PubMed  Google Scholar 

  88. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  CAS  PubMed  Google Scholar 

  89. Meirow D, Nugent D (2001) The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update 7:535–543

    Article  CAS  PubMed  Google Scholar 

  90. Schliemann C, Neri D (2007) Antibody-based targeting of the tumor vasculature. Biochim Biophys Acta 1776:175–192

    CAS  PubMed  Google Scholar 

  91. Friedrich I, Shir A, Klein S, Levitzki A (2004) RNA molecules as anti-cancer agents. Semin Cancer Biol 14:223–230

    Article  CAS  PubMed  Google Scholar 

  92. Ansari J, Palmer DH, Rea DW, Hussain SA (2009) Role of tyrosine kinase inhibitors in lung cancer. Anticancer Agents Med Chem 9:569–575

    Article  CAS  PubMed  Google Scholar 

  93. Sasaki T, Rodig SJ, Chirieac LR, Janne PA (2010) The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer 46:1773–1780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Boviatsis EJ, Park JS, Sena-Esteves M, Kramm CM, Chase M, Efird JT, Wei MX, Breakefield XO, Chiocca EA (1994) Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res 54:5745–5751

    CAS  PubMed  Google Scholar 

  95. Chase M, Chung RY, Chiocca EA (1998) An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nat Biotechnol 16:444–448

    Article  CAS  PubMed  Google Scholar 

  96. Chalikonda S, Kivlen MH, O’Malley ME, Eric Dong XD, Mccart JA, Gorry MC, Yin XY, Brown CK, Zeh HJ 3rd, Guo ZS, Bartlett DL (2008) Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Ther 15:115–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Foloppe J, Kintz J, Futin N, Findeli A, Cordier P, Schlesinger Y, Hoffmann C, Tosch C, Balloul JM, Erbs P (2008) Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther 15:1361–1371

    Article  CAS  PubMed  Google Scholar 

  98. Wong HH, Lemoine NR, Wang Y (2010) Oncolytic viruses for cancer therapy: overcoming the obstacles. Viruses 2:78–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Spurbeck WW, Ng CY, Vanin EF, Davidoff AM (2003) Retroviral vector-producer cell-mediated in vivo gene transfer of TIMP-3 restricts angiogenesis and neuroblastoma growth in mice. Cancer Gene Ther 10:161–167

    Article  CAS  PubMed  Google Scholar 

  100. Ahonen M, Ala-Aho R, Baker AH, George SJ, Grenman R, Saarialho-Kere U, Kahari VM (2002) Antitumor activity and bystander effect of adenovirally delivered tissue inhibitor of metalloproteinases-3. Mol Ther 5:705–715

    Article  CAS  PubMed  Google Scholar 

  101. Lamfers ML, Gianni D, Tung CH, Idema S, Schagen FH, Carette JE, Quax PH, van Beusechem VW, Vandertop WP, Dirven CM, Chiocca EA, Gerritsen WR (2005) Tissue inhibitor of metalloproteinase-3 expression from an oncolytic adenovirus inhibits matrix metalloproteinase activity in vivo without affecting antitumor efficacy in malignant glioma. Cancer Res 65:9398–9405

    Article  CAS  PubMed  Google Scholar 

  102. Mahller YY, Vaikunth SS, Ripberger MC, Baird WH, Saeki Y, Cancelas JA, Crombleholme TM, Cripe TP (2008) Tissue inhibitor of metalloproteinase-3 via oncolytic herpesvirus inhibits tumor growth and vascular progenitors. Cancer Res 68:1170–1179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Peng Z (2005) Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 16:1016–1027

    Article  CAS  PubMed  Google Scholar 

  104. Wang X, Su C, Cao H, Li K, Chen J, Jiang L, Zhang Q, Wu X, Jia X, Liu Y, Wang W, Liu X, Wu M, Qian Q (2008) A novel triple-regulated oncolytic adenovirus carrying p53 gene exerts potent antitumor efficacy on common human solid cancers. Mol Cancer Ther 7:1598–1603

    Article  CAS  PubMed  Google Scholar 

  105. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Chen L, Chen D, Gong M, Na M, Li L, Wu H, Jiang L, Qian Y, Fang G, Xue X (2009) Concomitant use of Ad5/35 chimeric oncolytic adenovirus with TRAIL gene and taxol produces synergistic cytotoxicity in gastric cancer cells. Cancer Lett 284:141–148

    Article  CAS  PubMed  Google Scholar 

  107. Zhang Z, Huang Y, Newman K, Gu J, Zhang X, Wu H, Zhao M, Xianyu Z, Liu X (2009) Reexpression of human somatostatin receptor gene 2 gene mediated by oncolytic adenovirus increases antitumor activity of tumor necrosis factor-related apoptosis-inducing ligand against pancreatic cancer. Clin Cancer Res 15:5154–5160

    Article  CAS  PubMed  Google Scholar 

  108. Jin J, Liu H, Yang C, Li G, Liu X, Qian Q, Qian W (2009) Effective gene-viral therapy of leukemia by a new fiber chimeric oncolytic adenovirus expressing TRAIL: in vitro and in vivo evaluation. Mol Cancer Ther 8:1387–1397

    Article  CAS  PubMed  Google Scholar 

  109. Suzuki S, Nakasato M, Shibue T, Koshima I, Taniguchi T (2009) Therapeutic potential of proapoptotic molecule Noxa in the selective elimination of tumor cells. Cancer Sci 100:759–769

    Article  CAS  PubMed  Google Scholar 

  110. Sauane M, Su ZZ, Gupta P, Lebedeva IV, Dent P, Sarkar D, Fisher PB (2008) Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis. Proc Natl Acad Sci U S A 105:9763–9768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Hallgren O, Aits S, Brest P, Gustafsson L, Mossberg AK, Wullt B, Svanborg C (2008) Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells). Adv Exp Med Biol 606:217–240

    Article  CAS  PubMed  Google Scholar 

  112. Inoue S, Shanker M, Miyahara R, Gopalan B, Patel S, Oida Y, Branch CD, Munshi A, Meyn RE, Andreeff M, Tanaka F, Mhashilkar AM, Chada S, Ramesh R (2006) MDA-7/IL-24-based cancer gene therapy: translation from the laboratory to the clinic. Curr Gene Ther 6:73–91

    Article  CAS  PubMed  Google Scholar 

  113. Tong AW, Nemunaitis J, Su D, Zhang Y, Cunningham C, Senzer N, Netto G, Rich D, Mhashilkar A, Parker K, Coffee K, Ramesh R, Ekmekcioglu S, Grimm EA, van Wart Hood J, Merritt J, Chada S (2005) Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients. Mol Ther 11:160–172

    Article  CAS  PubMed  Google Scholar 

  114. Fox NL, Humphreys R, Luster TA, Klein J, Gallant G (2010) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-1 and receptor-2 agonists for cancer therapy. Expert Opin Biol Ther 10:1–18

    Article  CAS  PubMed  Google Scholar 

  115. Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF, Soffer EB, Mondkar S, King GD, Hu J, Sciascia SA, Candolfi M, Greengold DS, Lowenstein PR, Castro MG (2005) Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther 12:189–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Winkeler A, Sena-Esteves M, Paulis LE, Li H, Waerzeggers Y, Ruckriem B, Himmelreich U, Klein M, Monfared P, Rueger MA, Heneka M, Vollmar S, Hoehn M, Fraefel C, Graf R, Wienhard K, Heiss WD, Jacobs AH (2007) Switching on the lights for gene therapy. PLoS One 2:e528

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Guo ZS, Thorne SH, Bartlett DL (2008) Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta 1785:217–231

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Ferguson MS, Lemoine NR, Wang Y (2012) Systemic delivery of oncolytic viruses: hopes and hurdles. Adv Virol 2012:805629

    PubMed Central  PubMed  Google Scholar 

  119. Iguchi K, Sakurai F, Tomita K, Katayama K, Yamaguchi T, Kawabata K, Tagawa M, Kawabata M, Shirakawa T, Mizuguchi H (2012) Efficient antitumor effects of carrier cells loaded with a fiber-substituted conditionally replicating adenovirus on CAR-negative tumor cells. Cancer Gene Ther 19:118–125

    Article  CAS  PubMed  Google Scholar 

  120. Hamada K, Desaki J, Nakagawa K, Zhang T, Shirakawa T, Gotoh A, Tagawa M (2007) Carrier cell-mediated delivery of a replication-competent adenovirus for cancer gene therapy. Mol Ther 15:1121–1128

    CAS  PubMed  Google Scholar 

  121. Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A, Rocconi RP, Numnum TM, Everts M, Chow LT, Douglas JT, Siegal GP, Zhu ZB, Bender HG, Dall P, Stoff A, Pereboeva L, Curiel DT (2007) Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 105:157–167

    Article  PubMed  Google Scholar 

  122. Aggarwal S (2010) Targeted cancer therapies. Nat Rev Drug Discov 9:427–428

    Article  CAS  PubMed  Google Scholar 

  123. Pal SK, Figlin RA, Reckamp K (2010) Targeted therapies for non-small cell lung cancer: an evolving landscape. Mol Cancer Ther 9:1931–1944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Msaouel P, Opyrchal M, Domingo Musibay E, Galanis E (2013) Oncolytic measles virus strains as novel anticancer agents. Expert Opin Biol Ther 13:483–502

    Article  CAS  PubMed  Google Scholar 

  125. Clarke J, Butowski N, Chang S (2010) Recent advances in therapy for glioblastoma. Arch Neurol 67:279–283

    Article  PubMed  Google Scholar 

  126. Donnelly OG, Melcher AA, Vile RG, Pulido J (2012) What new immunotherapeutic techniques are currently being investigated for the treatment of melanoma? Immunotherapy 4:749–751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Natarajan N, Telang S, Miller D, Chesney J (2011) Novel immunotherapeutic agents and small molecule antagonists of signalling kinases for the treatment of metastatic melanoma. Drugs 71:1233–1250

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Mazarakis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Pazarentzos, E., Mazarakis, N.D. (2014). Anticancer Gene Transfer for Cancer Gene Therapy. In: Grimm, S. (eds) Anticancer Genes. Advances in Experimental Medicine and Biology, vol 818. Springer, London. https://doi.org/10.1007/978-1-4471-6458-6_13

Download citation

Publish with us

Policies and ethics