Skip to main content

Tubulointerstitial Injury: Signaling Pathways, Inflammation, Fibrogenesis

  • Chapter
  • First Online:
Renal Vascular Disease

Abstract

Renovascular hypertension (RVH) is an important cause of both renal and cardiovascular morbidity and mortality. Atherosclerosis is the most common etiology underlying the development of RVH. In the stenotic kidney, the development of interstitial fibrosis and tubular atrophy is associated with the influx of inflammatory cells. These morphologic alterations result from a complex interplay of several pathways involving the renin angiotensin system, oxidative stress, the TGF-β-Smad signaling pathway, and the mitogen-activated protein kinase (MAPK) pathway, leading to both local and systemic production of chemokines that promote ongoing inflammation and interstitial fibrosis. In this chapter, we will summarize recent human and experimental studies to determine how these signaling pathways interact and contribute to renal inflammation and fibrogenesis. Identification of these pathways will provide a mechanistic basis for the development of RVH and may provide the basis for novel therapeutic targets directed towards arresting the progression of renal disease in patients with renal artery stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Textor SC, Wilcox CS. Renal artery stenosis: a common, treatable cause of renal failure? Annu Rev Med. 2001;52:421–42.

    Article  PubMed  CAS  Google Scholar 

  2. Garovic VD, Textor SC. Renovascular hypertension and ischemic nephropathy. Circulation. 2005;112(9):1362–74.

    Article  PubMed  Google Scholar 

  3. Iglesias JI, Hamburger RJ, Feldman L, Kaufman JS. The natural history of incidental renal artery stenosis in patients with aortoiliac vascular disease. Am J Med. 2000;109(8):642–7.

    Article  PubMed  CAS  Google Scholar 

  4. Valabhji J, Robinson S, Poulter C, Robinson AC, Kong C, Henzen C, Gedroyc WM, Feher MD, Elkeles RS. Prevalence of renal artery stenosis in subjects with type 2 diabetes and coexistent hypertension. Diabetes Care. 2000;23(4):539–43.

    Article  PubMed  CAS  Google Scholar 

  5. Textor SC. Managing renal arterial disease and hypertension. Curr Opin Cardiol. 2003;18(4):260–7.

    Article  PubMed  Google Scholar 

  6. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM. Inflammation, immunity, and hypertension. Hypertension. 2011;57(2):132–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Stouffer GA, Pathak A, Rojas M. Unilateral renal artery stenosis causes a chronic vascular inflammatory response in ApoE mice. Trans Am Clin Climatol Assoc. 2010;121(252–64):64–6.

    Google Scholar 

  8. Oliver E, McGillicuddy F, Phillips C, Toomey S, Roche HM. The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proc Nutr Soc. 2010;69(2):232–43.

    Article  PubMed  CAS  Google Scholar 

  9. Li J-J, Fang C-H, Jiang H, Huang C-X, Hui R-T, Chen M-Z. Time course of inflammatory response after renal artery stenting in patients with atherosclerotic renal stenosis. Clin Chim Acta. 2004;350(1–2):115–21.

    Article  PubMed  CAS  Google Scholar 

  10. Brountzos EN, Tavernaraki K, Gouliamos AD, Degiannis D, Chaidaroglou A, Panagiotou I, Arsenis G, Kelekis D, Vlahakos D. Systemic inflammatory response to renal artery percutaneous angioplasty with stent placement and the risk for restenosis: a pilot study. J Vasc Interv Radiol. 2009;20(2):186–91.

    Article  PubMed  Google Scholar 

  11. Schlager O, Amighi J, Haumer M, Sabeti S, Dick P, Mlekusch W, Loewe C, Koppensteiner R, Minar E, Schillinger M. Inflammation and adverse cardiovascular outcome in patients with renal artery stenosis and peripheral artery disease. Atherosclerosis. 2009;205(1):314–8.

    Article  PubMed  CAS  Google Scholar 

  12. Keddis MT, Garovic VD, Bailey KR, Wood CM, Raissian Y, Grande JP. Ischaemic nephropathy secondary to atherosclerotic renal artery stenosis: clinical and histopathological correlates. Nephrol Dial Transplant. 2010;25(11):3615–22.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Xie Q-y, Ming S, Yang T-l, Sun Z-L. Losartan reduces monocyte chemoattractant protein-1 expression in aortic tissues of 2K1C hypertensive rats. Int J Cardiol. 2006;110(1):60–6.

    Article  PubMed  Google Scholar 

  14. Cheng J, Zhou W, Warner GM, Knudsen BE, Garovic VD, Gray CE, Lerman LO, Platt JL, Romero JC, Textor SC, Nath KA, Grande JP. Temporal analysis of signaling pathways activated in a murine model of two-kidney, one-clip hypertension. Am J Physiol Renal Physiol. 2009;297(4):F1055–68.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Urbieta-Caceres VH, Lavi R, Zhu X-Y, Crane JA, Textor SC, Lerman A, Lerman LO. Early atherosclerosis aggravates the effect of renal artery stenosis on the swine kidney. Am J Physiol Renal Physiol. 2010;299(1):F135–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Chade AR, Rodriguez-Porcel M, Grande JP, Krier JD, Lerman A, Romero JC, Napoli C, Lerman LO. Distinct renal injury in early atherosclerosis and renovascular disease. Circulation. 2002;106(9):1165–71.

    Article  PubMed  Google Scholar 

  17. Heo HJ, Yun MR, Jung KH, Lee JY, Park JY, Lee SJ, Bae SS, Lee WS, Kim CD. Endogenous angiotensin II enhances atherogenesis in apoprotein E-deficient mice with renovascular hypertension through activation of vascular smooth muscle cells. Life Sci. 2007;80(11):1057–63.

    Article  PubMed  CAS  Google Scholar 

  18. Chade AR, Rodriguez-Porcel M, Grande JP, Zhu X, Sica V, Napoli C, Sawamura T, Textor SC, Lerman A, Lerman LO. Mechanisms of renal structural alterations in combined hypercholesterolemia and renal artery stenosis. Arterioscler Thromb Vasc Biol. 2003;23(7):1295–301.

    Article  PubMed  CAS  Google Scholar 

  19. Lerman L, Textor SC. Pathophysiology of ischemic nephropathy. Urol Clin North Am. 2001;28(4):793–803, ix.

    Article  PubMed  CAS  Google Scholar 

  20. Gloviczki M, Lerman L, Textor S. Blood oxygen level-dependent (BOLD) MRI in renovascular hypertension. Curr Hypertens Rep. 2011;13(5):370–7.

    Article  PubMed  CAS  Google Scholar 

  21. Zhu XY, Chade AR, Rodriguez-Porcel M, Bentley MD, Ritman EL, Lerman A, Lerman LO. Cortical microvascular remodeling in the stenotic kidney: role of increased oxidative stress. Arterioscler Thromb Vasc Biol. 2004;24(10):1854–9.

    Article  PubMed  CAS  Google Scholar 

  22. Raizada V, Skipper B, Luo W, Griffith J. Intracardiac and intrarenal renin-angiotensin systems: mechanisms of cardiovascular and renal effects. J Investig Med. 2007;55(7):341–59.

    Article  PubMed  CAS  Google Scholar 

  23. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Lavoie JL, Sigmund CD. Minireview: overview of the renin-angiotensin system–an endocrine and paracrine system. Endocrinology. 2003;144(6):2179–83.

    Article  PubMed  CAS  Google Scholar 

  25. Morikawa T, Imanishi M, Suzuki H, Okada N, Okumura M, Konishi Y, Yoshioka K, Takai S, Miyazaki M. Mast cell chymase in the ischemic kidney of severe unilateral renovascular hypertension. Am J Kidney Dis. 2005;45(3):e45–50.

    Article  PubMed  Google Scholar 

  26. Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int. 2006;70(11):1914–9.

    PubMed  CAS  Google Scholar 

  27. Zhou Y, Poczatek MH, Berecek KH, Murphy-Ullrich JE. Thrombospondin 1 mediates angiotensin II induction of TGF-beta activation by cardiac and renal cells under both high and low glucose conditions. Biochem Biophys Res Commun. 2006;339(2):633–41.

    Article  PubMed  CAS  Google Scholar 

  28. Leask A. TGFβ, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res. 2007;74(2):207–12.

    Article  PubMed  CAS  Google Scholar 

  29. Steinmetz OM, Sadaghiani S, Panzer U, Krebs C, Meyer-Schwesinger C, Streichert T, Fehr S, Hamming I, van Goor H, Stahl RAK, Wenzel U. Antihypertensive therapy induces compartment-specific chemokine expression and a Th1 immune response in the clipped kidney of Goldblatt hypertensive rats. Am J Physiol Renal Physiol. 2007;292(2):F876–87.

    Article  PubMed  CAS  Google Scholar 

  30. Ouyang X, Le TH, Roncal C, Gersch C, Herrera-Acosta J, Rodriguez-Iturbe B, Coffman TM, Johnson RJ, Mu W. Th1 inflammatory response with altered expression of profibrotic and vasoactive mediators in AT1A and AT1B double-knockout mice. Am J Physiol Renal Physiol. 2005;289(4):F902–10.

    Article  PubMed  CAS  Google Scholar 

  31. Cheng J, Grande JP. Transforming growth factor-beta signal transduction and progressive renal disease. Exp Biol Med. 2002;227:943–56.

    CAS  Google Scholar 

  32. Cheng J, Grande J. Transforming growth factor-beta and kidney dysfunction. J Organ Dysfunct. 2009;5(3):182–92.

    Article  Google Scholar 

  33. Grande JP, Warner GM, Walker HJ, Yusufi AN, Cheng J, Gray CE, Kopp JB, Nath KA. TGF-beta1 is an autocrine mediator of renal tubular epithelial cell growth and collagen IV production. Exp Biol Med. 2002;227(3):171–81.

    CAS  Google Scholar 

  34. Warner GM, Cheng J, Knudsen BE, Gray CE, Deibel A, Juskewitch JE, Lerman LO, Textor SC, Nath KA, Grande JP. Genetic deficiency of Smad3 protects the kidneys from atrophy and interstitial fibrosis in 2K1C hypertension. Am J Physiol Renal Physiol. 2012;302(11):F1455–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Nath KA, Croatt AJ, Warner GM, Grande JP. Genetic deficiency of Smad3 protects against murine ischemic acute kidney injury. Am J Physiol Renal Physiol. 2011;301:F436–42.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest. 2003;112(10):1486–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Wang W, Huang XR, Canlas E, Oka K, Truong LD, Deng C, Bhowmick NA, Ju W, Bottinger EP, Lan HY. Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circ Res. 2006;98(8):1032–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-β signaling in vascular fibrosis. Cardiovasc Res. 2007;74(2):196–206.

    Article  PubMed  CAS  Google Scholar 

  39. Kobayashi K, Yokote K, Fujimoto M, Yamashita K, Sakamoto A, Kitahara M, Kawamura H, Maezawa Y, Asaumi S, Tokuhisa T, Mori S, Saito Y. Targeted disruption of TGF-beta-Smad3 signaling leads to enhanced neointimal hyperplasia with diminished matrix deposition in response to vascular injury. Circ Res. 2005;96(8):904–12.

    Article  PubMed  CAS  Google Scholar 

  40. Cheng J, Thompson MA, Walker HJ, Gray CE, Diaz Encarnacion MM, Warner GM, Grande JP. Differential regulation of mesangial cell mitogenesis by cAMP phosphodiesterase isozymes 3 and 4. Am J Physiol Renal Physiol. 2004;287(5):F940–53.

    Article  PubMed  CAS  Google Scholar 

  41. Cheng J, Diaz Encarnacion MM, Warner GM, Gray CE, Nath KA, Grande JP. TGF-beta1 stimulates monocyte chemoattractant protein-1 expression in mesangial cells through a phosphodiesterase isoenzyme 4-dependent process. Am J Physiol Cell Physiol. 2005;289(4):C959–70.

    Article  PubMed  CAS  Google Scholar 

  42. Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 2004;6(5):603–10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Yang M, Huang H, Li J, Li D, Wang H. Tyrosine phosphorylation of the LDL receptor-related protein (LRP) and activation of the ERK pathway are required for connective tissue growth factor to potentiate myofibroblast differentiation. FASEB J. 2004;18(15):1920–1.

    PubMed  CAS  Google Scholar 

  44. Li JH, Wang W, Huang XR, Oldfield M, Schmidt AM, Cooper ME, Lan HY. Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am J Pathol. 2004;164(4):1389–97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Adhikary L, Chow F, Nikolic-Paterson DJ, Stambe C, Dowling J, Atkins RC, Tesch GH. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia. 2004;47(7):1210–22.

    Article  PubMed  CAS  Google Scholar 

  46. Toyoda M, Suzuki D, Honma M, Uehara G, Sakai T, Umezono T, Sakai H. High expression of PKC-MAPK pathway mRNAs correlates with glomerular lesions in human diabetic nephropathy. Kidney Int. 2004;66(3):1107–14.

    Article  PubMed  CAS  Google Scholar 

  47. Sakai N, Wada T, Furuichi K, Iwata Y, Yoshimoto K, Kitagawa K, Kokubo S, Kobayashi M, Hara A, Yamahana J, Okumura T, Takasawa K, Takeda S, Yoshimura M, Kida H, Yokoyama H. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis. 2005;45(1):54–65.

    Article  PubMed  CAS  Google Scholar 

  48. Masaki T, Stambe C, Hill PA, Dowling J, Atkins RC, Nikolic-Paterson DJ. Activation of the extracellular-signal regulated protein kinase pathway in human glomerulopathies. J Am Soc Nephrol. 2004;15(7):1835–43.

    Article  PubMed  CAS  Google Scholar 

  49. Stambe C, Atkins RC, Hill PA, Nikolic-Paterson DJ. Activation and cellular localization of the p38 and JNK MAPK pathways in rat crescentic glomerulonephritis. Kidney Int. 2003;64(6):2121–32.

    Article  PubMed  CAS  Google Scholar 

  50. Diaz Encarnacion MM, Warner GM, Gray CE, Cheng J, Keryakos HK, Nath KA, Grande JP. Signaling pathways modulated by fish oil in salt-sensitive hypertension. Am J Physiol Renal Physiol. 2008;294(6):F1323–35.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Imai G, Satoh T, Kumai T, Murao M, Tsuchida H, Shima Y, Ogimoto G, Fujino T, Kobayashi S, Kimura K. Hypertension accelerates diabetic nephropathy in Wistar fatty rats, a model of type 2 diabetes mellitus, via mitogen-activated protein kinase cascades and transforming growth factor-beta1. Hypertens Res. 2003;26(4):339–47.

    Article  PubMed  CAS  Google Scholar 

  52. Pellieux C, Sauthier T, Aubert JF, Brunner HR, Pedrazzini T. Angiotensin II-induced cardiac hypertrophy is associated with different mitogen-activated protein kinase activation in normotensive and hypertensive mice. J Hypertens. 2000;18(9):1307–17.

    Article  PubMed  CAS  Google Scholar 

  53. Jo SK, Cho WY, Sung SA, Kim HK, Won NH. MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney Int. 2005;67(2):458–66.

    Article  PubMed  CAS  Google Scholar 

  54. Bokemeyer D, Panek D, Kitahara M, Trzaskos JM, Muller CE, Hockemeyer J, Kunter U, Boor P, Floege J, Kramer HJ, Ostendorf T. The map kinase ERK regulates renal activity of cyclin dependent kinase 2 in experimental glomerulonephritis. Nephrol Dial Transplant. 2007;18(11):2232–9.

    Google Scholar 

  55. Bokemeyer D, Panek D, Kramer HJ, Lindemann M, Kitahara M, Boor P, Kerjaschki D, Trzaskos JM, Floege J, Ostendorf T. In vivo identification of the mitogen-activated protein kinase cascade as a central pathogenic pathway in experimental mesangioproliferative glomerulonephritis. J Am Soc Nephrol. 2002;13(6):1473–80.

    Article  PubMed  CAS  Google Scholar 

  56. Koshikawa M, Mukoyama M, Mori K, Suganami T, Sawai K, Yoshioka T, Nagae T, Yokoi H, Kawachi H, Shimizu F, Sugawara A, Nakao K. Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome. J Am Soc Nephrol. 2005;16(9):2690–701.

    Article  PubMed  CAS  Google Scholar 

  57. Wada T, Furuichi K, Sakai N, Hisada Y, Kobayashi K, Mukaida N, Tomosugi N, Matsushima K, Yokoyama H. Involvement of p38 mitogen-activated protein kinase followed by chemokine expression in crescentic glomerulonephritis. Am J Kidney Dis. 2001;38(6):1169–77.

    Article  PubMed  CAS  Google Scholar 

  58. Kotliar C, Juncos L, Inserra F, de Cavanagh EM, Chuluyan E, Aquino JB, Hita A, Navari C, Sanchez R. Local and systemic cellular immunity in early renal artery atherosclerosis. Clin J Am Soc Nephrol. 2012;7(2):224–30.

    Article  PubMed  CAS  Google Scholar 

  59. Wang Y, Harris DC. Macrophages in renal disease. J Am Soc Nephrol. 2011;22(1):21–7.

    Article  PubMed  Google Scholar 

  60. Pauletto P, Rattazzi M. Inflammation and hypertension: the search for a link. Nephrol Dial Transplant. 2006;21(4):850–3.

    Article  PubMed  Google Scholar 

  61. Liu J, Yang F, Yang X-P, Jankowski M, Pagano PJ. NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol. 2003;23(5):776–82.

    Article  PubMed  CAS  Google Scholar 

  62. Luft FC. Workshop: mechanisms and cardiovascular damage in hypertension. Hypertension. 2001;37(2 Part 2):594–8.

    Article  PubMed  CAS  Google Scholar 

  63. Bjorkbacka H. Multiple roles of Toll-like receptor signaling in atherosclerosis. Curr Opin Lipidol. 2006;17(5):527–33.

    Article  PubMed  Google Scholar 

  64. Chade AR, Rodriguez-Porcel M, Herrmann J, Krier JD, Zhu X, Lerman A, Lerman LO. Beneficial effects of antioxidant vitamins on the stenotic kidney. Hypertension. 2003;42:605–12.

    Article  PubMed  CAS  Google Scholar 

  65. Chade AR, Rodriguez-Porcel M, Herrmann J, Zhu X, Grande JP, Napoli C, Lerman A, Lerman LO. Antioxidant intervention blunts renal injury in experimental renovascular disease. J Am Soc Nephrol. 2004;15(4):958–66.

    Article  PubMed  CAS  Google Scholar 

  66. Chade AR, Krier JD, Rodriguez-Porcel M, Breen JF, McKusick MA, Lerman A, Lerman LO. Comparison of acute and chronic antioxidant interventions in experimental renovascular disease. Am J Physiol Renal Physiol. 2004;286(6):F1079–86.

    Article  PubMed  CAS  Google Scholar 

  67. Garcia GE. ANG II receptor antagonists as modulators of macrophages polarization. Am J Physiol Renal Physiol. 2010;298(4):F868–9.

    Article  PubMed  CAS  Google Scholar 

  68. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Carlos CP, Mendes GE, Miquelin AR, Luz MA, da Silva CG, van Rooijen N, Coimbra TM, Burdmann EA. Macrophage depletion attenuates chronic cyclosporine A nephrotoxicity. Transplantation. 2010;89(11):1362–70.

    Article  PubMed  CAS  Google Scholar 

  70. Prabhakar NR. Sensory plasticity of the carotid body: role of reactive oxygen species and physiological significance. Respir Physiol Neurobiol. 2011;178(3):375–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Kitamoto K, Machida Y, Uchida J, Izumi Y, Shiota M, Nakao T, Iwao H, Yukimura T, Nakatani T, Miura K. Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. J Pharmacol Sci. 2009;111(3):285–92.

    Article  PubMed  CAS  Google Scholar 

  72. Tsuchiya K, Yoshimoto T, Hirono Y, Tateno T, Sugiyama T, Hirata Y. Angiotensin II induces monocyte chemoattractant protein-1 expression via a nuclear factor-kappaB-dependent pathway in rat preadipocytes. Am J Physiol Endocrinol Metabol. 2006;291(4):E771–8.

    Article  CAS  Google Scholar 

  73. Zhu XY, Chade AR, Krier JD, Daghini E, Lavi R, Guglielmotti A, Lerman A, Lerman LO. The chemokine monocyte chemoattractant protein-1 contributes to renal dysfunction in swine renovascular hypertension. J Hypertens. 2009;27(10):2063–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Ialenti A, Grassia G, Gordon P, Maddaluno M, Di Lauro MV, Baker AH, Guglielmotti A, Colombo A, Biondi G, Kennedy S, Maffia P. Inhibition of in-stent stenosis by oral administration of bindarit in porcine coronary arteries. Arterioscler Thromb Vasc Biol. 2011;31(11):2448–54.

    Article  PubMed  CAS  Google Scholar 

  75. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.

    Article  PubMed  CAS  Google Scholar 

  77. Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest. 2008;118(11):3522–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Aki K, Shimizu A, Masuda Y, Kuwahara N, Arai T, Ishikawa A, Fujita E, Mii A, Natori Y, Fukunaga Y, Fukuda Y. ANG II receptor blockade enhances anti-inflammatory macrophages in anti-glomerular basement membrane glomerulonephritis. Am J Physiol Renal Physiol. 2010;298(4):F870–82.

    Article  PubMed  CAS  Google Scholar 

  79. Ma L-J, Corsa BA, Zhou J, Yang H, Li H, Tang Y-W, Babaev VR, Major AS, Linton MF, Fazio S, Hunley TE, Kon V, Fogo AB. Angiotensin type 1 receptor modulates macrophage polarization and renal injury in obesity. Am J Physiol Renal Physiol. 2011;300(5):F1203–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Nishida M, Okumura Y, Fujimoto S, Shiraishi I, Itoi T, Hamaoka K. Adoptive transfer of macrophages ameliorates renal fibrosis in mice. Biochem Biophys Res Commun. 2005;332(1):11–6.

    Article  PubMed  CAS  Google Scholar 

  81. Wang Y, Wang YP, Zheng G, Lee VW, Ouyang L, Chang DH, Mahajan D, Coombs J, Wang YM, Alexander SI, Harris DC. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int. 2007;72(3):290–9.

    Article  PubMed  CAS  Google Scholar 

  82. Cao Q, Wang Y, Zheng D, Sun Y, Wang Y, Lee VWS, Zheng G, Tan TK, Ince J, Alexander SI, Harris DCH. IL-10/TGF-β–modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J Am Soc Nephrol. 2010;21(6):933–42; 1 June 2010;10(10):2208–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Textor SC, Lerman L. Renovascular hypertension and ischemic nephropathy. Am J Hypertens. 2010;23(11):1159–69.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Grande MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Hartono, S.P., Grande, J.P. (2014). Tubulointerstitial Injury: Signaling Pathways, Inflammation, Fibrogenesis. In: Lerman, L., Textor, S. (eds) Renal Vascular Disease. Springer, London. https://doi.org/10.1007/978-1-4471-2810-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2810-6_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2809-0

  • Online ISBN: 978-1-4471-2810-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics