Skip to main content

Electroporation and Cellular Physiology

  • Chapter
  • First Online:
Clinical Aspects of Electroporation

Abstract

Structural integrity of the cellular membrane is of critical importance for cellular viability. The membrane acts as a regulatory barrier for transport into and out of the cell and thereby enables the cell to build up chemical and electrical gradients important for cellular function. A large part of the metabolic energy required for cell function, used in the form of ATP catalysis, is invested in maintaining the transmembrane concentration gradients. If the membrane becomes hyperpermeable due to structural breakdown, the amount of ATP required to maintain normal osmotic balance and prevent fluid and electrolyte shifts would exceed the capability of cellular ATP generation. Thus, the cell faces metabolic energy exhaustion which may lead to cellular calcium (Ca2+) overload, Ca2+-mediated enzymatic breakdown, and increased superoxide generation. This may lead to further breakdown of the cellular membrane and a further influx of Ca2+, thus activating a vicious cycle. Most cells are very apt at repairing membranes, which makes it possible for the cell to regain control. Therefore, in many cases cell survival becomes dependent on the balance between degradative mechanisms (activated by Ca2+ and reactive oxidative species (ROS)) and the membrane repair mechanisms and thus on the metabolic demand on the cell. Depending on the electrical pulses used, cell membranes may reseal spontaneously or become permeabilized indefinitely. It is therefore important to exercise care when pulses are chosen for a given application. When cell survival and tissue recovery is important, it is possible to assist resealing and recovery from electroporation through the use of, for example, surfactants, antioxidants, and stimulation of the Na+, K+ pump.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clausen T, Van Hardeveld C, Everts ME. Significance of cation transport in control of energy metabolism and thermogenesis. Physiol Rev. 1991;71(3):733–74.

    PubMed  CAS  Google Scholar 

  2. Clausen T, Gissel H. Role of Na+, K+ pumps in restoring contractility following loss of cell membrane integrity in rat skeletal muscle. Acta Physiol Scand. 2005;183:263–71.

    Article  PubMed  CAS  Google Scholar 

  3. Hojman P, Gissel H, Andre F, et al. Physiological effects of high- and low-voltage pulse combinations for gene electrotransfer in muscle. Hum Gene Ther. 2008;19:1249–60.

    Article  PubMed  CAS  Google Scholar 

  4. Gabriel B, Teissie J. Generation of reactive-oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability. Eur J Biochem. 1994;223(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  5. Rols MP, Teissie J. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J. 1990;58(5):1089–98.

    Article  PubMed  CAS  Google Scholar 

  6. Saulis G. Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments. Biophys J. 1997;73(3):1299–309.

    Article  PubMed  CAS  Google Scholar 

  7. Bier M, Hammer SM, Canaday DJ, Lee RC. Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells. Bioelectromagnetics. 1999;20(3):194–201.

    Article  PubMed  CAS  Google Scholar 

  8. Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA. Calcium in cell injury and death. Annu Rev Pathol. 2006;1:405–34.

    Article  PubMed  CAS  Google Scholar 

  9. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4(7):552–65.

    Article  PubMed  CAS  Google Scholar 

  10. Han R, Campbell KP. Dysferlin and muscle membrane repair. Curr Opin Cell Biol. 2007;19(4):409–16.

    Article  PubMed  CAS  Google Scholar 

  11. Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Asp Med. 2004;25(4):365–451.

    CAS  Google Scholar 

  12. Nicholls DG. Mitochondria and calcium signaling. Cell Calcium. 2009;38(3–4):311–7.

    Google Scholar 

  13. Feissner RF, Skalska J, Gaum WE, Sheu SS. Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci. 2009;14:1197–218.

    Article  PubMed  CAS  Google Scholar 

  14. Godell CM, Smyers ME, Eddleman CS, Ballinger ML, Fishman HM, Bittner GD. Calpain activity promotes the sealing of severed giant axons. Proc Natl Acad Sci USA. 1997;94(9):4751–6.

    Article  PubMed  CAS  Google Scholar 

  15. Mellgren RL, Zhang W, Miyake K, McNeil PL. Calpain is required for the rapid, calcium-dependent repair of wounded plasma membrane. J Biol Chem. 2007;282(4):2567–75.

    Article  PubMed  CAS  Google Scholar 

  16. Steinhardt RA, Bi G, Alderton JM. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science. 1994;263(5145):390–3.

    Article  PubMed  CAS  Google Scholar 

  17. Togo T. Long-term potentiation of wound-induced exocytosis and plasma membrane repair is dependent on cAMP-response element-mediated transcription via a protein kinase C- and p38 MAPK-dependent pathway. J Biol Chem. 2004;279(43):44996–5003.

    Article  PubMed  CAS  Google Scholar 

  18. Togo T, Alderton JM, Bi GQ, Steinhardt RA. The mechanism of facilitated cell membrane resealing. J Cell Sci. 1999;112(Pt 5):719–31.

    PubMed  CAS  Google Scholar 

  19. Gehl J, Mir LM. Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochem Biophys Res Commun. 1999;261(2):377–80.

    Article  PubMed  CAS  Google Scholar 

  20. Schmolka IR. Physical basis for poloxamer interactions. Ann N Y Acad Sci. 1994;720:92–7.

    Article  PubMed  CAS  Google Scholar 

  21. Lee RC, River LP, Pan FS, Ji L, Wollmann RL. Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci USA. 1992;89(10):4524–8.

    Article  PubMed  CAS  Google Scholar 

  22. Collins JM, Despa F, Lee RC. Structural and functional recovery of electropermeabilized skeletal muscle in-vivo after treatment with surfactant poloxamer 188. Biochim Biophys Acta. 2007;1768(5):1238–46.

    Article  PubMed  CAS  Google Scholar 

  23. Serbest G, Horwitz J, Jost M, Barbee K. Mechanisms of cell death and neuroprotection by poloxamer 188 after mechanical trauma. FASEB J. 2006;20(2):308–10.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne Gissel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gissel, H., Lee, R.C., Gehl, J. (2011). Electroporation and Cellular Physiology. In: Kee, S., Gehl, J., Lee, E. (eds) Clinical Aspects of Electroporation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8363-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8363-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8362-6

  • Online ISBN: 978-1-4419-8363-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics