Skip to main content

DNA Damage Signaling Downstream of ATM

  • Chapter
  • First Online:
Molecular Determinants of Radiation Response

Part of the book series: Current Cancer Research ((CUCR))

Abstract

ATM is the apical signaling molecule that triggers diverse cellular responses to double-strand DNA breaks. Directly and indirectly, ATM initiates a two-tiered cascade of protein kinase activation, composed of upstream phosphatidylinositol 3-kinase-like kinases, mediator proteins, and checkpoint kinases. Together, these proteins signal a broad network of downstream effectors that modulate virtually every aspect of cell growth and death. This review will focus on the signaling molecules required for the diverse ATM-dependent responses to DNA damage, with an emphasis on the extensively characterized pathways that suppress proliferation and promote DNA repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–96

    Article  PubMed  CAS  Google Scholar 

  • Adams KE, Medhurst AL, Dart DA et al (2006) Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 25:3894–904

    Article  PubMed  CAS  Google Scholar 

  • Aglipay JA, Martin SA, Tawara H et al (2006) ATM activation by ionizing radiation requires BRCA1-associated BAAT1. J Biol Chem 281:9710–8

    Article  PubMed  CAS  Google Scholar 

  • Ahn J, Urist M, Prives C (2004) The Chk2 protein kinase. DNA Repair (Amst) 3:1039–47

    Article  CAS  Google Scholar 

  • Alderton GK, Galbiati L, Griffith E et al (2006) Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nat Cell Biol 8:725–33

    Article  PubMed  CAS  Google Scholar 

  • Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–72.

    Article  PubMed  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB (2004) Initiating cellular stress responses. Cell 118:9–17

    Article  PubMed  CAS  Google Scholar 

  • Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–9

    Article  PubMed  CAS  Google Scholar 

  • Bartek J, Falck J, Lukas J (2001) CHK2 kinase – a busy messenger. Nat Rev Mol Cell Biol 2:877–86.

    Article  PubMed  CAS  Google Scholar 

  • Bell DW, Varley JM, Szydlo TE et al (1999) Heterozygous germ line hCHK2 mutations in Li–Fraumeni syndrome. Science 286:2528–31

    Article  PubMed  CAS  Google Scholar 

  • Boutros R, Dozier C, Ducommun B (2006) The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 18:185–91

    Article  PubMed  CAS  Google Scholar 

  • Brown EJ, Baltimore D (2003) Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev 17:615–28

    Article  PubMed  CAS  Google Scholar 

  • Canman CE, Wolff AC, Chen CY et al (1994) The p53-dependent G1 cell cycle checkpoint pathway and ataxia- telangiectasia. Cancer Res 54:5054–8

    PubMed  CAS  Google Scholar 

  • Canman CE, Lim DS, Cimprich KA et al (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–9

    Article  PubMed  CAS  Google Scholar 

  • Casper AM, Nghiem P, Arlt MF et al (2002) ATR regulates fragile site stability. Cell 111:779–89

    Article  PubMed  CAS  Google Scholar 

  • Chao C, Herr D, Chun J et al (2006) Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J 25:2615–22

    PubMed  CAS  Google Scholar 

  • Chehab NH, Malikzay A, Appel M et al (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14:278–88

    PubMed  CAS  Google Scholar 

  • Chini CC, Chen J (2004) Claspin, a regulator of Chk1 in DNA replication stress pathway. DNA Repair (Amst) 3:1033–7

    Article  CAS  Google Scholar 

  • Chini CC, Chen J (2006) Repeated phosphopeptide motifs in human Claspin are phosphorylated by Chk1 and mediate Claspin function. J Biol Chem 281:33276–82

    Article  PubMed  CAS  Google Scholar 

  • Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–27

    Article  PubMed  CAS  Google Scholar 

  • Cortez D, Wang Y, Qin J et al (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286:1162–6

    Article  PubMed  CAS  Google Scholar 

  • Cortez D, Guntuku S, Qin J et al (2001) ATR and ATRIP: Partners in Checkpoint Signaling. Science 294:1713–6

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado M, Martinez-Pastor B, Murga M et al (2006) ATM regulates ATR chromatin loading in response to DNA double-strand breaks. J Exp Med 203:297–303

    Article  PubMed  CAS  Google Scholar 

  • Deng CX (2006) BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 34:1416–26

    Article  PubMed  CAS  Google Scholar 

  • DiTullio RA Jr, Mochan TA, Venere M et al (2002) 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 4:998–1002

    Article  PubMed  CAS  Google Scholar 

  • Dodson GE, Tibbetts RS (2006) DNA replication stress-induced phosphorylation of cyclic AMP response element-binding protein mediated by ATM. J Biol Chem 281:1692–7

    Article  PubMed  CAS  Google Scholar 

  • Fanning E, Klimovich V, Nager AR (2006) A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34:4126–37

    Article  PubMed  CAS  Google Scholar 

  • Gatei M, Sloper K, Sorensen C et al (2003) Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem 278:14806–11

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M, Stucki M, Falck J et al (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421:952–6

    Article  PubMed  CAS  Google Scholar 

  • Gurtan AM, D’Andrea AD (2006) Dedicated to the core: understanding the Fanconi anemia complex. DNA Repair (Amst) 5:1119–25

    Article  CAS  Google Scholar 

  • Hirao A, Kong YY, Matsuoka S et al (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–7

    Article  PubMed  CAS  Google Scholar 

  • Horn HF, Vousden KH (2007) Coping with stress: multiple ways to activate p53. Oncogene 26:1306–16

    Article  PubMed  CAS  Google Scholar 

  • Hurley PJ, Bunz F (2007) ATM and ATR: Components of an integrated circuit. Cell Cycle 6:414–7

    Article  PubMed  CAS  Google Scholar 

  • Hurley PJ, Wilsker D, Bunz F (2007) Human cancer cells require ATR for cell cycle progression following exposure to ionizing radiation. Oncogene 26:2535–42

    Article  PubMed  CAS  Google Scholar 

  • Huyen Y, Zgheib O, Ditullio RA Jr et al (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432:406–11

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi K, Bartel PL, Li B et al (1994) Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci USA 91:6098-102

    Article  PubMed  CAS  Google Scholar 

  • Jack MT, Woo RA, Hirao A et al (2002) Chk2 is dispensable for p53-mediated G1 arrest but is required for a latent p53-mediated apoptotic response. Proc Natl Acad Sci USA 3:3

    Google Scholar 

  • Jallepalli PV, Lengauer C, Vogelstein B et al (2003) The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J Biol Chem 278:20475–9

    Article  PubMed  CAS  Google Scholar 

  • Jazayeri A, Falck J, Lukas C et al (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8:37–45

    Article  PubMed  CAS  Google Scholar 

  • Jowsey P, Morrice NA, Hastie CJ et al (2007) Characterisation of the sites of DNA damage-induced 53BP1 phosphorylation catalysed by ATM and ATR. DNA Repair (Amst) 6:1536–44

    Article  CAS  Google Scholar 

  • Karlsson-Rosenthal C, Millar JB (2006) Cdc25: mechanisms of checkpoint inhibition and ­recovery. Trends Cell Biol 16:285–92

    Article  PubMed  CAS  Google Scholar 

  • Kastan MB, Lim DS (2000) The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1:179–86

    Article  PubMed  CAS  Google Scholar 

  • Kruse JP, Gu W (2008) SnapShot: p53 posttranslational modifications. Cell 133:930–30.e1

    Article  PubMed  CAS  Google Scholar 

  • Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137:609–22

    Article  PubMed  CAS  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303

    Article  PubMed  CAS  Google Scholar 

  • Kumagai A, Dunphy WG (2000) Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6:839–49

    Article  PubMed  CAS  Google Scholar 

  • Kumagai A, Dunphy WG (2003) Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1. Nat Cell Biol 5:161–5

    Article  PubMed  CAS  Google Scholar 

  • Kumagai A, Dunphy WG (2006) How cells activate ATR. Cell Cycle 5:1265–8

    Article  PubMed  CAS  Google Scholar 

  • Lavin MF, Birrell G, Chen P et al (2005) ATM signaling and genomic stability in response to DNA damage. Mutat Res 569:123–32

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Collins KM, Brown AL et al (2000) hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404:201–4

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Kumagai A, Dunphy WG (2007) The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 282:28036–44

    Article  PubMed  CAS  Google Scholar 

  • Lin SY, Rai R, Li K et al (2005) BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc Natl Acad Sci USA 102:15105–9

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Guntuku S, Cui XS et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14:1448–59

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Bekker-Jensen S, Mailand N et al (2006) Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol Cell Biol 26:6056–64

    Article  PubMed  CAS  Google Scholar 

  • Lukas C, Melander F, Stucki M et al (2004) Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J 23:2674–83

    Article  PubMed  CAS  Google Scholar 

  • MacPherson D, Kim J, Kim T et al (2004) Defective apoptosis and B-cell lymphomas in mice with p53 point mutation at Ser 23. EMBO J 23:3689–99

    Article  PubMed  CAS  Google Scholar 

  • Manke IA, Nguyen A, Lim D et al (2005) MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 17:37–48

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–6

    Article  PubMed  CAS  Google Scholar 

  • McGowan CH (2002) Checking in on Cds1 (Chk2): A checkpoint kinase and tumor suppressor. Bioessays 24:502–11

    Article  PubMed  CAS  Google Scholar 

  • McGowan CH and Russell P (2004) The DNA damage response: sensing and signaling. Curr Opin Cell Biol 16:629-633

    Article  PubMed  CAS  Google Scholar 

  • Meijers-Heijboer H, van den Ouweland A, Klijn J et al (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31:55–9

    Article  PubMed  CAS  Google Scholar 

  • Mochan TA, Venere M, DiTullio RA Jr et al (2003) 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res 63:8586–91

    PubMed  CAS  Google Scholar 

  • Mohammad DH, Yaffe MB (2009) 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response. DNA Repair (Amst) 8:1009–17

    Article  CAS  Google Scholar 

  • Mordes DA, Glick GG, Zhao R et al (2008) TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev 22:1478–89

    Article  PubMed  CAS  Google Scholar 

  • Myers JS, Cortez D (2006) Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 281:9346–50

    Article  PubMed  CAS  Google Scholar 

  • Niida H, Katsuno Y, Banerjee B et al (2007) Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol 27:2572–81

    Article  PubMed  CAS  Google Scholar 

  • O’Driscoll M, Gennery AR, Seidel J et al (2004) An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR–Seckel syndrome. DNA Repair (Amst) 3:1227–235

    Article  CAS  Google Scholar 

  • Okada S, Ouchi T (2003) Cell cycle differences in DNA damage-induced BRCA1 phosphorylation affect its subcellular localization. J Biol Chem 278:2015–20

    Article  PubMed  CAS  Google Scholar 

  • Oliver AW, Knapp S, Pearl LH (2007) Activation segment exchange: a common mechanism of kinase autophosphorylation? Trends Biochem Sci 32:351–6

    Article  PubMed  CAS  Google Scholar 

  • Osborn AJ, Elledge SJ, Zou L (2002) Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol 12:509–16

    Article  PubMed  CAS  Google Scholar 

  • Ouchi T (2006) BRCA1 phosphorylation: biological consequences. Cancer Biol Ther 5:470–5

    Article  PubMed  CAS  Google Scholar 

  • Parrilla-Castellar ER, Arlander SJ, Karnitz L (2004) Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 3:1009–14

    Article  CAS  Google Scholar 

  • Peng G, Yim EK, Dai H et al (2009) BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat Cell Biol 11:865–72

    Article  PubMed  CAS  Google Scholar 

  • Puc J, Parsons R (2005) PTEN loss inhibits CHK1 to cause double stranded-DNA breaks in cells. Cell Cycle 4:927–9

    Article  PubMed  CAS  Google Scholar 

  • Puc J, Keniry M, Li HS et al (2005) Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell 7:193–204

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt HC, Yaffe MB (2009) Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 21:245–5

    Article  PubMed  CAS  Google Scholar 

  • Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–44

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Yamaguchi H, Higashimoto Y et al (2003) Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278:37536–44

    Article  PubMed  CAS  Google Scholar 

  • Shieh SY, Ahn J, Tamai K et al (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14:289–300

    PubMed  CAS  Google Scholar 

  • Shiloh Y (2006) The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31:402–10

    Article  PubMed  CAS  Google Scholar 

  • Sluss HK, Armata H, Gallant J et al (2004) Phosphorylation of serine 18 regulates distinct p53 functions in mice. Mol Cell Biol 24:976–84

    Article  PubMed  CAS  Google Scholar 

  • Smits VA (2006) Spreading the signal: dissociation of Chk1 from chromatin. Cell Cycle 5:1039–43

    Article  PubMed  CAS  Google Scholar 

  • Smits VA, Reaper PM, Jackson SP (2006) Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response. Curr Biol 16:150–9

    Article  PubMed  CAS  Google Scholar 

  • Sodha N, Williams R, Mangion J et al (2000) Screening hCHK2 for mutations. Science 289:359.

    Article  PubMed  CAS  Google Scholar 

  • Sodha N, Houlston RS, Bullock S et al (2002) Increasing evidence that germline mutations in CHEK2 do not cause Li–Fraumeni syndrome. Hum Mutat 20:460–2

    Article  PubMed  CAS  Google Scholar 

  • Stewart GS, Wang B, Bignell CR et al (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421:961–6

    Article  PubMed  CAS  Google Scholar 

  • Stiff T, Walker SA, Cerosaletti K et al (2006) ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25:5775–82

    Article  PubMed  CAS  Google Scholar 

  • Stokes MP, Comb MJ (2008) A wide-ranging cellular response to UV damage of DNA. Cell Cycle 7:2097–9

    Article  PubMed  CAS  Google Scholar 

  • Stokes MP, Rush J, Macneill J et al (2007) Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci USA 104:19855–60

    Article  PubMed  CAS  Google Scholar 

  • Stracker TH, Usui T, Petrini JH (2009) Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst) 8:1047–54

    Article  CAS  Google Scholar 

  • Stucki M, Jackson SP (2004) MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair (Amst) 3:953–7

    Article  CAS  Google Scholar 

  • Tibbetts RS, Brumbaugh KM, Williams JM et al (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13:152–7

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–10

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Matsuoka S, Carpenter PB et al (2002) 53BP1, a mediator of the DNA damage checkpoint. Science 298:1435–8

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zou L, Lu T et al (2006) Rad17 phosphorylation is required for claspin recruitment and Chk1 activation in response to replication stress. Mol Cell 23:331–41

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Kennedy RD, Ray K et al (2007) Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol Cell Biol 27:3098–108

    Article  PubMed  CAS  Google Scholar 

  • Ward IM, Minn K, van Deursen J et al (2003) p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol 23:2556–63

    Article  PubMed  CAS  Google Scholar 

  • Ward IM, Minn K, Chen J (2004) UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress. J Biol Chem 279:9677–80

    Article  PubMed  CAS  Google Scholar 

  • Ward IM, Difilippantonio S, Minn K et al (2005) 53BP1 cooperates with p53 and functions as a haploinsufficient tumor suppressor in mice. Mol Cell Biol 25:10079–86

    Article  PubMed  CAS  Google Scholar 

  • Ward I, Kim JE, Minn K et al (2006) The tandem BRCT domain of 53BP1 is not required for its repair function. J Biol Chem 281:38472–7

    Article  PubMed  CAS  Google Scholar 

  • Weischer M, Bojesen SE, Ellervik C et al (2008) CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J Clin Oncol 26:542–8

    Article  PubMed  Google Scholar 

  • Wilsker D, Petermann E, Helleday T et al (2008) Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. Proc Natl Acad Sci USA 105:20752–7

    Article  PubMed  CAS  Google Scholar 

  • Wilson KA, Stern DF (2008) NFBD1/MDC1, 53BP1 and BRCA1 have both redundant and unique roles in the ATM pathway. Cell Cycle 7:3584–94

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Earle J, Saito S et al (2002) Mutation of mouse p53 Ser23 and the response to DNA damage. Mol Cell Biol 22:2441–9

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Xue J, Sowin TJ et al (2006) Differential roles of checkpoint kinase 1, checkpoint kinase 2, and mitogen-activated protein kinase-activated protein kinase 2 in mediating DNA damage-induced cell cycle arrest: implications for cancer therapy. Mol Cancer Ther 5:1935–43

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Kim S, Kastan MB (2001) Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21:3445–50

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Lee J, Stern DF (2004) Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. J Biol Chem 279:34091–4

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Wu L, Cui G et al (2008) Structure of a second BRCT domain identified in the nijmegen breakage syndrome protein Nbs1 and its function in an MDC1-dependent localization of Nbs1 to DNA damage sites. J Mol Biol 381:361–72

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Chini CC, He M et al (2003) The BRCT domain is a phospho-protein binding domain. Science 302:639–42

    Article  PubMed  CAS  Google Scholar 

  • Zegerman P, Diffley JF (2009) DNA replication as a target of the DNA damage checkpoint. DNA Repair (Amst) 8:1077–88

    Article  CAS  Google Scholar 

  • Zhang J, Willers H, Feng Z et al (2004) Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 24:708–18

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Piwnica-Worms H (2001) ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21:4129–39

    Article  PubMed  CAS  Google Scholar 

  • Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes. Science 300:1542–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Bunz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bunz, F. (2011). DNA Damage Signaling Downstream of ATM. In: DeWeese, T., Laiho, M. (eds) Molecular Determinants of Radiation Response. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8044-1_2

Download citation

Publish with us

Policies and ethics