Skip to main content

Mitochondrial Protein Quality Control Systems in Aging and Disease

  • Chapter
Protein Metabolism and Homeostasis in Aging

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 694))

Abstract

Preserving the integrity of proteins, biomolecules prone to molecular damage, is a fundamental function of all biological systems. Impairments in protein quality control (PQC) may lead to degenerative processes, such as aging and various disorders and diseases. Fortunately, cells contain a hierarchical system of pathways coping protein damage. Specific molecular pathways detect misfolded proteins and act either to unfold or degrade them. Degradation of proteins generates peptides and amino acids that can be used for remodelling of impaired pathways and cellular functions. At increased levels of cellular damage whole organelles can be removed via autophagy, a process that depends on the activity of lysosomes. In addition, cells may undergo apoptosis, a form of programmed cell death, which in single-cellular and lower multicellular organisms can lead to death of the individual.

Molecular damage of cellular compartments is mainly caused by reactive oxygen species (ROS). ROS is generated via different cellular pathways and frequently arises in the mitochondrial electron transport chain as a by-product of oxygenic energy transduction. Consequently, mitochondrial proteins are under high risk to become damaged. Perhaps for this reason mitochondria contain a very efficient PQC system that keeps mitochondrial proteins functional as long as damage does not reach a certain threshold and the components of this system themselves are not excessively damaged. The mitochondrial PQC system consists of chaperones that counteract protein aggregation through binding and refolding misfolded polypeptides and of membrane-bound and soluble ATP-dependent proteases that are involved in degradation of damaged proteins. During aging and in neurodegenerative diseases components of this PQC system, including Lon protease present in the mitochondrial matrix, become functionally impaired.

In this chapter we summarise the current knowledge of cellular quality control systems with special emphasis on the role of the mitochondrial PQC system and its impact on biological aging and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mogk A, Haslberger T, Tessarz P et al. Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochem Soc Trans 2008; 36(Pt 1):120–125.

    CAS  PubMed  Google Scholar 

  2. Pickart CM, Cohen RE. Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 2004; 5(3):177–187.

    CAS  PubMed  Google Scholar 

  3. Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell 2006; 125(3):443–451.

    CAS  PubMed  Google Scholar 

  4. Mogk A, Schmidt R, Bukau B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 2007; 17(4):165–172.

    CAS  PubMed  Google Scholar 

  5. Tolkovsky AM. Mitophagy. Biochim Biophys Acta 2009; 1793(9):1508–1515.

    CAS  PubMed  Google Scholar 

  6. Okamoto K, Shaw JM. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 2005; 39:503–536.

    CAS  PubMed  Google Scholar 

  7. Hoppins S, Lackner L, Nunnari J. The machines that divide and fuse mitochondria. Annu Rev Biochem 2007; 76:751–780.

    CAS  PubMed  Google Scholar 

  8. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 2007; 462(2):245–253.

    CAS  PubMed  Google Scholar 

  9. Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem 2007; 76:723–749.

    CAS  PubMed  Google Scholar 

  10. Craig EA, Kramer J, Kosic-Smithers J. SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc Natl Acad Sci USA 1987; 84(12):4156–4160.

    CAS  PubMed  Google Scholar 

  11. Wagner I, Arlt H, Van Dyck L et al. Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J 1994; 13(21):5135–5145.

    CAS  PubMed  Google Scholar 

  12. Savel’ev AS, Novikova LA, Kovaleva IE et al. ATP-dependent proteolysis in mitochondria. m-AAA protease and PIM1 protease exert overlapping substrate specificities and cooperate with the mtHsp70 system. J Biol Chem 1998; 273(32):20596–20602.

    CAS  Google Scholar 

  13. Van Dyck L, Dembowski M, Neupert W et al. Mcx1p, a ClpX homologue in mitochondria of Saccharomyces cerevisiae. FEBS Lett 1998; 438(3):250–254.

    PubMed  Google Scholar 

  14. Hess DC, Myers CL, Huttenhower C et al. Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis. PLoS Genet 2009; 5(3):e1000407.

    PubMed  Google Scholar 

  15. Gottesman S, Maurizi MR, Wickner S. Regulatory subunits of energy-dependent proteases. Cell 1997; 91(4):435–438.

    CAS  PubMed  Google Scholar 

  16. Gottesman S, Wickner S, Maurizi MR. Protein quality control: triage by chaperones and proteases. Genes Dev 1997; 11(7):815–823.

    CAS  PubMed  Google Scholar 

  17. Schmitt M, Neupert W, Langer T. Hsp78, a Clp homologue within mitochondria, can substitute for chaperone functions of mt-hsp70. EMBO J 1995; 14(14):3434–3444.

    CAS  PubMed  Google Scholar 

  18. Schmitt M, Neupert W, Langer T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J Cell Biol 1996; 134(6):1375–1386.

    CAS  PubMed  Google Scholar 

  19. von Janowsky B, Major T, Knapp K et al. The disaggregation activity of the mitochondrial ClpB homolog Hsp78 maintains Hsp70 function during heat stress. J Mol Biol 2006; 357(3):793–807.

    Google Scholar 

  20. Yoneda T, Benedetti C, Urano F et al. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 2004; 117(Pt 18):4055–4066.

    CAS  PubMed  Google Scholar 

  21. Reading DS, Hallberg RL, Myers AM. Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 1989; 337(6208):655–659.

    CAS  PubMed  Google Scholar 

  22. Casari G, De Fusco M, Ciarmatori S et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998; 93(6):973–983.

    CAS  PubMed  Google Scholar 

  23. Bross P, Naundrup S, Hansen J et al. The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J Biol Chem 2008; 283(23):15694–15700.

    CAS  PubMed  Google Scholar 

  24. Hansen J, Corydon TJ, Palmfeldt J et al. Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13). Neuroscience 2008; 153(2):474–482.

    CAS  PubMed  Google Scholar 

  25. Van Dyck L, Pearce DA, Sherman F. PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J Biol Chem 1994; 269(1):238–242.

    PubMed  Google Scholar 

  26. Corydon TJ, Bross P, Holst HU et al. A human homologue of Escherichia coli ClpP caseinolytic protease: recombinant expression, intracellular processing and subcellular localization. Biochem J 1998; 331(Pt 1):309–316.

    CAS  PubMed  Google Scholar 

  27. Thorsness PE, White KH, Fox TD. Inactivation of YME1, a member of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13(9):5418–5426.

    Google Scholar 

  28. Lemberg MK, Menendez J, Misik A et al. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J 2005; 24(3):464–472.

    CAS  PubMed  Google Scholar 

  29. Arlt H, Tauer R, Feldmann H et al. The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell 1996; 85(6):875–885.

    CAS  PubMed  Google Scholar 

  30. Vande Walle L, Lamkanfi M, Vandenabeele P. The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ 2008; 15(3):453–460.

    Google Scholar 

  31. Kambacheld M, Augustin S, Tatsuta T et al. Role of the novel metallopeptidase Mop112 and saccharolysin for the complete degradation of proteins residing in different subcompartments of mitochondria. J Biol Chem 2005; 280(20):20132–20139.

    CAS  PubMed  Google Scholar 

  32. Buchler M, Tisljar U, Wolf DH. Proteinase yscD (oligopeptidase yscD). Structure, function and relationship of the yeast enzyme with mammalian thimet oligopeptidase (metalloendopeptidase, EP 24.15). Eur J Biochem 1994; 219(1–2):627–639.

    Google Scholar 

  33. Margineantu DH, Emerson CB, Diaz D et al. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007; 2(10):e1066.

    PubMed  Google Scholar 

  34. Radke S, Chander H, Schafer P et al. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J Biol Chem 2008; 283(19):12681–12685.

    CAS  PubMed  Google Scholar 

  35. Graef M, Seewald G, Langer T. Substrate recognition by AAA+ ATPases: distinct substrate binding modes in ATP-dependent protease Yme1 of the mitochondrial intermembrane space. Mol Cell Biol 2007; 27(7):2476–2485.

    CAS  PubMed  Google Scholar 

  36. Poyton RO, McEwen JE. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 1996; 65:563–607.

    CAS  PubMed  Google Scholar 

  37. Leonhard K, Herrmann JM, Stuart RA et al. AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria. EMBO J 1996; 15(16):4218–4229.

    CAS  PubMed  Google Scholar 

  38. Leonhard K, Guiard B, Pellecchia G et al. Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol Cell 2000; 5(4):629–638.

    CAS  PubMed  Google Scholar 

  39. Leonhard K, Stiegler A, Neupert W et al. Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 1999; 398(6725):348–351.

    CAS  PubMed  Google Scholar 

  40. Hanson PI, Whiteheart SW. AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 2005; 6(7):519–529.

    CAS  PubMed  Google Scholar 

  41. Weber ER, Hanekamp T, Thorsness PE. Biochemical and functional analysis of the YME1 gene product, an ATP and zinc-dependent mitochondrial protease from S. cerevisiae. Mol Biol Cell 1996; 7(2):307–317.

    CAS  PubMed  Google Scholar 

  42. Pajic A, Tauer R, Feldmann H et al. Yta10p is required for the ATP-dependent degradation of polypeptides in the inner membrane of mitochondria. FEBS Lett 1994; 353(2):201–206.

    CAS  PubMed  Google Scholar 

  43. Kremmidiotis G, Gardner AE, Settasatian C et al. Molecular and functional analyses of the human and mouse genes encoding AFG3L1, a mitochondrial metalloprotease homologous to the human spastic paraplegia protein. Genomics 2001; 76(1–3):58–65.

    CAS  PubMed  Google Scholar 

  44. Koppen M, Metodiev MD, Casari G et al. Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol Cell Biol 2007; 27(2):758–767.

    CAS  PubMed  Google Scholar 

  45. Steglich G, Neupert W, Langer T. Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria. Mol Cell Biol 1999; 19(5):3435–3442.

    CAS  PubMed  Google Scholar 

  46. Campbell CL, Tanaka N, White KH et al. Mitochondrial morphological and functional defects in yeast caused by yme1 are suppressed by mutation of a 26S protease subunit homologue. Mol Biol Cell 1994; 5(8):899–905.

    CAS  PubMed  Google Scholar 

  47. Nebauer R, Schuiki I, Kulterer B et al. The phosphatidylethanolamine level of yeast mitochondria is affected by the mitochondrial components Oxa1p and Yme1p. FEBS J 2007; 274(23):6180–6190.

    CAS  PubMed  Google Scholar 

  48. Campbell CL, Thorsness PE. Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments. J Cell Sci 1998; 111(Pt 16):2455–2464.

    CAS  PubMed  Google Scholar 

  49. Pearce DA, Sherman F. Degradation of cytochrome oxidase subunits in mutants of yeast lacking cytochrome c and suppression of the degradation by mutation of yme1. J Biol Chem 1995; 270(36):20879–20882.

    CAS  PubMed  Google Scholar 

  50. Nakai T, Yasuhara T, Fujiki Y et al. Multiple genes, including a member of the AAA family, are essential for degradation of unassembled subunit 2 of cytochrome c oxidase in yeast mitochondria. Mol Cell Biol 1995; 15(8):4441–4452.

    CAS  PubMed  Google Scholar 

  51. Augustin S, Nolden M, Muller S et al. Characterization of peptides released from mitochondria: evidence for constant proteolysis and peptide efflux. J Biol Chem 2005; 280(4):2691–2699.

    CAS  PubMed  Google Scholar 

  52. Arnold I, Wagner-Ecker M, Ansorge W et al. Evidence for a novel mitochondria-to-nucleus signalling pathway in respiring cells lacking i-AAA protease and the ABC-transporter Mdl1. Gene 2006; 367:74–88.

    CAS  PubMed  Google Scholar 

  53. Kominsky DJ, Brownson MP, Updike DL et al. Genetic and biochemical basis for viability of yeast lacking mitochondrial genomes. Genetics 2002; 162(4):1595–1604.

    CAS  PubMed  Google Scholar 

  54. Thorsness PE, Fox TD. Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus. Genetics 1993; 134(1):21–28.

    CAS  PubMed  Google Scholar 

  55. Kolodziejczak M, Gibala M, Urantowka A et al. The significance of Arabidopsis AAA proteases for activity and assembly/stability of mitochondrial OXPHOS complexes. Physiologia Plantarum 2007; 129:135–142.

    CAS  Google Scholar 

  56. Coppola M, Pizzigoni A, Banfi S et al. Identification and characterization of YME1L1, a novel paraplegin-related gene. Genomics 2000; 66(1):48–54.

    CAS  PubMed  Google Scholar 

  57. Shah ZH, Hakkaart GA, Arku B et al. The human homologue of the yeast mitochondrial AAA metalloprotease Yme1p complements a yeast yme1 disruptant. FEBS Lett 2000; 478(3):267–270.

    CAS  PubMed  Google Scholar 

  58. Tzagoloff A, Yue J, Jang J et al. A new member of a family of ATPases is essential for assembly of mitochondrial respiratory chain and ATP synthetase complexes in Saccharomyces cerevisiae. J Biol Chem 1994; 269(42):26144–26151.

    CAS  PubMed  Google Scholar 

  59. Tauer R, Mannhaupt G, Schnall R et al. Yta10p, a member of a novel ATPase family in yeast, is essential for mitochondrial function. FEBS Lett 1994; 353(2):197–200.

    CAS  PubMed  Google Scholar 

  60. Guélin E, Rep M, Grivell LA. Sequence of the AFG3 gene encoding a new member of the FtsH/Yme1/ Tma subfamily of the AAA-protein family. Yeast 1994; 10(10):1389–1394.

    PubMed  Google Scholar 

  61. Arlt H, Steglich G, Perryman R et al. The formation of respiratory chain complexes in mitochondria is under the proteolytic control of the m-AAA protease. EMBO J 1998; 17(16):4837–4847.

    CAS  PubMed  Google Scholar 

  62. Guélin E, Rep M, Grivell LA. Afg3p, a mitochondrial ATP-dependent metalloprotease, is involved in degradation of mitochondrially-encoded Coxl, Cox3, Cob, Su6, Su8 and Su9 subunits of the inner membrane complexes III, IV and V. FEBS Letters 1996; 381:42–46.

    Google Scholar 

  63. Van Dyck L, Neupert W, Langer T. The ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria. Genes Dev 1998; 12(10):1515–1524.

    CAS  PubMed  Google Scholar 

  64. Paul MF, Tzagoloff A. Mutations in RCA1 and AFG3 inhibit F1-ATPase assembly in Saccharomyces cerevisiae. FEBS Lett 1995; 373(1):66–70.

    CAS  PubMed  Google Scholar 

  65. Nolden M, Ehses S, Koppen M et al. The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 2005; 123(2):277–289.

    CAS  PubMed  Google Scholar 

  66. Maltecca F, Aghaie A, Schroeder DG et al. The mitochondrial protease AFG3L2 is essential for axonal development. J Neurosci 2008; 28(11):2827–2836.

    CAS  PubMed  Google Scholar 

  67. Rainey RN, Glavin JD, Chen HW et al. A new function in translocation for the mitochondrial i-AAA protease Yme1: import of polynucleotide phosphorylase into the intermembrane space. Mol Cell Biol 2006; 26(22):8488–8497.

    CAS  PubMed  Google Scholar 

  68. Tatsuta T, Augustin S, Nolden M et al. m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J 2007; 26(2):325–335.

    CAS  PubMed  Google Scholar 

  69. Lemaire C, Hamel P, Velours J et al. Absence of the mitochondrial AAA protease Yme1p restores F0-ATPase subunit accumulation in an oxa1 deletion mutant of Saccharomyces cerevisiae. J Biol Chem 2000; 275(31):23471–23475.

    CAS  PubMed  Google Scholar 

  70. Bier E, Jan LY, Jan YN. Rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster. Genes Dev 1990; 4(2):190–203.

    CAS  PubMed  Google Scholar 

  71. Herlan M, Vogel F, Bornhovd C et al. Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem 2003; 278(30):27781–27788.

    CAS  PubMed  Google Scholar 

  72. Esser K, Tursun B, Ingenhoven M et al. A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1. J Mol Biol 2002; 323(5):835–843.

    CAS  PubMed  Google Scholar 

  73. McQuibban GA, Saurya S, Freeman M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 2003; 423(6939):537–541.

    CAS  PubMed  Google Scholar 

  74. Ferreirinha F, Quattrini A, Pirozzi M et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 2004; 113(2):231–242.

    CAS  PubMed  Google Scholar 

  75. Gottesman S. Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 2003; 19:565–587.

    CAS  PubMed  Google Scholar 

  76. Kang SG, Ortega J, Singh SK et al. Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP. J Biol Chem 2002; 277(23):21095–21102.

    CAS  PubMed  Google Scholar 

  77. Yu AY, Houry WA. ClpP: a distinctive family of cylindrical energy-dependent serine proteases. FEBS Lett 2007; 581(19):3749–3757.

    CAS  PubMed  Google Scholar 

  78. Keiler KC, Waller PR, Sauer RT. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 1996; 271(5251):990–993.

    CAS  PubMed  Google Scholar 

  79. Haynes CM, Petrova K, Benedetti C et al. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 2007; 13(4):467–480.

    CAS  PubMed  Google Scholar 

  80. Aldridge JE, Horibe T, Hoogenraad NJ. Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS ONE 2007; 2(9):e874.

    PubMed  Google Scholar 

  81. Wang N, Gottesman S, Willingham MC et al. A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc Natl Acad Sci USA 1993; 90(23):11247–11251.

    CAS  PubMed  Google Scholar 

  82. Stahlberg H, Kutejova E, Suda K et al. Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc Natl Acad Sci USA 1999; 96(12):6787–6790.

    CAS  PubMed  Google Scholar 

  83. Rep M, van Dijl JM, Suda K et al. Promotion of mitochondrial membrane complex assembly by a proteolytically inactive yeast Lon. Science 1996; 274(5284):103–106.

    CAS  PubMed  Google Scholar 

  84. Liu T, Lu B, Lee I et al. DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J Biol Chem 2004; 279(14):13902–13910.

    CAS  PubMed  Google Scholar 

  85. Hori O, Ichinoda F, Tamatani T et al. Transmission of cell stress from endoplasmic reticulum to mitochondria: enhanced expression of Lon protease. J Cell Biol 2002; 157(7):1151–1160.

    CAS  PubMed  Google Scholar 

  86. Bogenhagen DF, Rousseau D, Burke S. The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 2008; 283(6):3665–3675.

    CAS  PubMed  Google Scholar 

  87. Fu GK, Markovitz DM. The human LON protease binds to mitochondrial promoters in a single-stranded, site-specific, strand-specific manner. Biochemistry 1998; 37(7):1905–1909.

    CAS  PubMed  Google Scholar 

  88. Suzuki CK, Suda K, Wang N et al. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 1994;264(5161):891.

    CAS  PubMed  Google Scholar 

  89. Bota DA, Ngo JK, Davies KJ. Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic Biol Med 2005; 38(5):665–677.

    CAS  PubMed  Google Scholar 

  90. Rigas S, Daras G, Laxa M et al. Role of Lon1 protease in postgerminative growth and maintenance of mitochondrial function in Arabidopsis thaliana. New Phytol 2009; 181(3):588–600.

    CAS  PubMed  Google Scholar 

  91. von Janowsky B, Knapp K, Major T et al. Structural properties of substrate proteins determine their proteolysis by the mitochondrial AAA+ protease Pim1. Biol Chem 2005; 386(12):1307–1317.

    Google Scholar 

  92. Lee I, Berdis AJ, Suzuki CK. Recent developments in the mechanistic enzymology of the ATP-dependent Lon protease from Escherichia coli: highlights from kinetic studies. Mol Biosyst 2006; 2(10):477–483.

    CAS  PubMed  Google Scholar 

  93. Ondrovicova G, Liu T, Singh K et al. Cleavage site selection within a folded substrate by the ATP-dependent lon protease. J Biol Chem 2005; 280(26):25103–25110.

    CAS  PubMed  Google Scholar 

  94. Bulteau AL, Szweda LI, Friguet B. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp Gerontol 2006; 41(7):653–657.

    CAS  PubMed  Google Scholar 

  95. Bota DA, Davies KJ. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 2002; 4(9):674–680.

    CAS  PubMed  Google Scholar 

  96. Luce K, Osiewacz HD. Increasing organism health span by enhancing mitochondrial protein quality control. Nat Cell Biol 2009; 11(7):852–858.

    CAS  PubMed  Google Scholar 

  97. Major T, von Janowsky B, Ruppert T et al. Proteomic analysis of mitochondrial protein turnover: identification of novel substrate proteins of the matrix protease pim1. Mol Cell Biol 2006; 26(3):762–776.

    CAS  PubMed  Google Scholar 

  98. Chen XJ, Wang X, Butow RA. Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA. Proc Natl Acad Sci USA 2007; 104(34):13738–13743.

    CAS  PubMed  Google Scholar 

  99. Tatsuta T, Langer T. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 2008;27(2):306–314.

    CAS  PubMed  Google Scholar 

  100. Griparic L, van der Bliek AM. The many shapes of mitochondrial membranes. Traffic 2001; 2(4):235–244.

    CAS  PubMed  Google Scholar 

  101. Alexander C, Votruba M, Pesch UE et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 2000; 26(2):211–215.

    CAS  PubMed  Google Scholar 

  102. Delettre C, Lenaers G, Griffoin JM et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 2000; 26(2):207–210.

    CAS  PubMed  Google Scholar 

  103. Wong ED, Wagner JA, Gorsich SW et al. The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J Cell Biol 2000; 151(2):341–352.

    CAS  PubMed  Google Scholar 

  104. Olichon A, Baricault L, Gas N et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 2003; 278(10):7743–7746.

    CAS  PubMed  Google Scholar 

  105. Gottlieb E. OPA1 and PARL keep a lid on apoptosis. Cell 2006; 126(1):27–29.

    CAS  PubMed  Google Scholar 

  106. Frezza C, Cipolat S, Martins de Brito O et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 2006; 126(1):177–189.

    CAS  PubMed  Google Scholar 

  107. Cipolat S, Rudka T, Hartmann D et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 2006; 126(1):163–175.

    CAS  PubMed  Google Scholar 

  108. Ishihara N, Fujita Y, Oka T et al. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 2006; 25(13):2966–2977.

    CAS  PubMed  Google Scholar 

  109. Duvezin-Caubet S, Koppen M, Wagener J et al. OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. Mol Biol Cell 2007; 18(9):3582–3590.

    CAS  PubMed  Google Scholar 

  110. Song Z, Chen H, Fiket M et al. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential and Yme1L. J Cell Biol 2007; 178(5):749–755.

    CAS  PubMed  Google Scholar 

  111. Griparic L, Kanazawa T, van der Bliek AM. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 2007; 178(5):757–764.

    CAS  PubMed  Google Scholar 

  112. Casari G, Rugarli E. Molecular basis of inherited spastic paraplegias. Curr Opin Genet Dev 2001; 11(3):336–342.

    CAS  PubMed  Google Scholar 

  113. Atorino L, Silvestri L, Koppen M et al. Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol 2003; 163(4):777–787.

    CAS  PubMed  Google Scholar 

  114. Martinelli P, La Mattina V, Bernacchia A et al. Genetic interaction between the m-AAA protease isoenzymes reveals novel roles in cerebellar degeneration. Hum Mol Genet 2009; 18(11):2001–2013.

    CAS  PubMed  Google Scholar 

  115. Pirozzi M, Quattrini A, Andolfi G et al. Intramuscular viral delivery of paraplegin rescues peripheral axonopathy in a model of hereditary spastic paraplegia. J Clin Invest 2006; 116(1):202–208.

    CAS  PubMed  Google Scholar 

  116. Chondrogianni N, Stratford FL, Trougakos IP et al. Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem 2003; 278(30):28026–28037.

    CAS  PubMed  Google Scholar 

  117. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11(3):298–300.

    CAS  PubMed  Google Scholar 

  118. Lee CK, Klopp RG, Weindruch R et al. Gene expression profile of aging and its retardation by caloric restriction. Science 1999; 285(5432):1390–1393.

    CAS  PubMed  Google Scholar 

  119. Bota DA, Van Remmen H, Davies KJ. Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett 2002; 532(1–2):103–106.

    CAS  PubMed  Google Scholar 

  120. Bakala H, Delaval E, Hamelin M et al. Changes in rat liver mitochondria with aging. Lon protease-like reactivity and N(epsilon)-carboxymethyllysine accumulation in the matrix. Eur J Biochem 2003; 270(10):2295–2302.

    CAS  PubMed  Google Scholar 

  121. Delaval E, Perichon M, Friguet B. Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart. Eur J Biochem 2004; 271(22):4559–4564.

    CAS  PubMed  Google Scholar 

  122. Scheckhuber CQ, Osiewacz HD. Podospora anserina: a model organism to study mechanisms of healthy ageing. Mol Genet Genomics 2008; 280(5):365–374.

    CAS  PubMed  Google Scholar 

  123. Osiewacz HD. Molecular analysis of aging processes in fungi. Mutat Res 1990; 237(1):1–8.

    CAS  PubMed  Google Scholar 

  124. Osiewacz HD. Aging in fungi: role of mitochondria in Podospora anserina. Mech Ageing Dev 2002; 123(7):755–764.

    CAS  PubMed  Google Scholar 

  125. Tavernarakis N. Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol 2008; 18(5):228–235.

    CAS  PubMed  Google Scholar 

  126. Nicholls DG. Mitochondrial membrane potential and aging. Aging Cell 2004; 3(1):35–40.

    CAS  PubMed  Google Scholar 

  127. Kutik S, Guiard B, Meyer HE et al. Cooperation of translocase complexes in mitochondrial protein import. J Cell Biol 2007; 179(4):585–591.

    CAS  PubMed  Google Scholar 

  128. Granot Z, Kobiler O, Melamed-Book N et al. Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: the unexpected effect of proteasome inhibitors. Mol Endocrinol 2007; 21(9):2164–2177.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz D. Osiewacz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Luce, K., Weil, A.C., Osiewacz, H.D. (2010). Mitochondrial Protein Quality Control Systems in Aging and Disease. In: Tavernarakis, N. (eds) Protein Metabolism and Homeostasis in Aging. Advances in Experimental Medicine and Biology, vol 694. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7002-2_9

Download citation

Publish with us

Policies and ethics