Skip to main content

The Evolution of Auditory Cortex: The Core Areas

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

An alternative title might be “What, if Anything, is AI?” AI, of course, is primary auditory cortex, an area of cortex that likely all mammals have. Thus, this seems a naive or a puzzling question. Yet, an important issue is hidden in this question. And this type of question was formulated long ago: “What, if anything, is a rabbit?” (Wood 1957). Classification was the issue, and it concluded that rabbits had been mistakenly classified as rodents. That view has prevailed, and rabbits are now considered Lagomorphs. Some time ago, I asked “What, if anything, is S1?” (Kaas 1983). I felt that the term S1 was being used inconsistently to refer to four areas (areas 3a, 3b, 1 and 2) in human and other anthropoid primates, while only one of these areas was considered to be S1 (area 3b) in most mammals. Again, this pertains to the issue of proper identification. All mammals appear to have a region of auditory cortex, but the descriptions of how it is organized vary across species, and even between studies on the same species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A:

anterior auditory area

AAF:

anterior auditory field

AchE:

acetylcholinesterase

AI:

primary auditory cortex

AII:

second auditory cortex; nonprimary auditory cortex

CM:

caudal medial field

CO:

cytochrome oxidase

DC:

caudodorsal field

DZ:

dorsal zone

fMRI:

functional magnetic resonance imaging

MG:

medial geniculate body

MGm:

medial division of the medial geniculate body

MGd:

dorsal division of the medial geniculate body

MGv:

ventral division of the medial geniculate body

P:

posterior auditory area

PAF:

posterior auditory field

PL:

posterior lateral field

PPF:

pseudosylvian field

PSF:

posterior suprasylvian field

R:

rostral area

RT:

rostrotemporal area

SI:

primary somatic sensory cortex

SSF:

suprasylvian fringe

UF:

ultrasonic field

VP:

ventral posterior area

References

  • Aitkin LM, Merzenich MM, Irvine DRF, Clarey JC, and Nelson JE (1986) Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus). Journal of Comparative Neurology 252:175–185.

    Article  CAS  PubMed  Google Scholar 

  • Asher RJ, Meng J, Wible JR, McKenna MC, Rougier GW, Dashzeveg D, and Novacek MJ (2005) Stem lagomorpha and the antiquity of Glires. Science 307:1091–1094.

    Article  CAS  PubMed  Google Scholar 

  • Bajo UM, Nodal FR, Bizley JK, Moore DR, and King AJ (2007) The ferret auditory cortex: descending projections to the inferior colliculus. Cerebral Cortex 17:475–491.

    Article  PubMed  Google Scholar 

  • Batzri-Izraeli R, Kelly JB, Glendenning KK, Masterton RB, and Wollberg Z (1990) Auditory cortex of the long-eared hedgehog (Hemiechinus auritus). Brain Behavior and Evolution 36:237–248.

    Article  CAS  Google Scholar 

  • Batzri-Izraeli R and Wollberg Z (1992) Auditory cortex of the long-eared hedgehog (Hemiechinus auritus): II. Tuning properties. Brain Behavior and Evolution 39:143–152.

    Article  CAS  Google Scholar 

  • Beck PD, Pospichal MW, and Kaas JH (1996) Topography, architecture, and connections of somatosensory cortex in opossums: evidence for five somatosensory areas. Journal of Comparative Neurology 366:109–133.

    Article  CAS  PubMed  Google Scholar 

  • Bendor D and Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436:1161–1165.

    Article  CAS  PubMed  Google Scholar 

  • Bizley JK, Nodal FR, Nelken I, and King AJ (2005) Functional organization of ferret auditory cortex. Cerebral Cortex 15:1637–1653.

    Article  PubMed  Google Scholar 

  • Brandner S and Redies H (1990) The projection of the medial geniculate body to field AI: organization in the isofrequency dimension. Journal of Neuroscience 10:50–61.

    CAS  PubMed  Google Scholar 

  • Braun S and Scheich H (1997) Influence of experience on the representation of the "mothering call" in frontoparietal and auditory cortex of pups of the rodent Octodon degus: FDG mapping. Journal of Comparative Physiology A 181:697–709.

    Article  CAS  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrhinde. J.A. Barth, Leipzig.

    Google Scholar 

  • Bruce LL (2007) Evolution of the nervous system in reptiles. In: Kaas JH (ed). Evolution of Nervous Systems, volume 3. Elsevier, London, pp. 125–156.

    Google Scholar 

  • Brugge JF (1982) Auditory areas in primates. In: Woolsey CN (ed). Cortical Sensory Organization volume 3, Multiple Auditory Areas. Humana Press, Clifton, pp. 59–70.

    Google Scholar 

  • Budinger E, Heil P, and Scheich H (2000a) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. European Journal of Neuroscience 12:2425–2451.

    Article  CAS  PubMed  Google Scholar 

  • Budinger E, Heil P, and Scheich H (2000b). Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures. European Journal of Neuroscience 12:2452–2474.

    Article  CAS  PubMed  Google Scholar 

  • Calford MB, Graydon ML, Huerta MF, Kaas JH, and Pettigrew JD (1985) A variant of the mammalian somatotopic map in a bat. Nature 313:477–479.

    Article  CAS  PubMed  Google Scholar 

  • Casseday JH, Diamond IT, and Harting JK (1976) Auditory pathways to the cortex in Tupaia glis. Journal of Comparative Neurology 166:303–340.

    Article  CAS  PubMed  Google Scholar 

  • Casseday JH, Kobler JB, Isbey SF, and Covey E (1989) Central acoustic tract in an echolocating bat: an extralemniscal auditory pathway to the thalamus. Journal of Comparative Neurology 287:247–259.

    Article  CAS  PubMed  Google Scholar 

  • Caviness VS (1975) Architectonic map of neocortex of the normal mouse. Journal of Comparative Neurology 164:247–264.

    Article  PubMed  Google Scholar 

  • Cheung SW, Bedenbaugh PH, Nagarajan SS, and Schreiner CE (2001) Functional organization of squirrel monkey primary auditory cortex: responses to pure tones. Journal of Neurophysiology 85:1732–1749.

    CAS  PubMed  Google Scholar 

  • Cheung SW (2005) Frequency map variations in squirrel monkey primary auditory cortex. Laryngoscope 115:1136–1144.

    Article  PubMed  Google Scholar 

  • Clerici WJ and Coleman JR (1990) Anatomy of the rat medial geniculate body: I. cytoarchitecture, myeloarchitecture, and neocortical connectivity. Journal of Comparative Neurology 297:14–31.

    Article  CAS  PubMed  Google Scholar 

  • Colbert EH and Morales M (1991) Evolution of the Vertebrates. Wiley-Liss, New York.

    Google Scholar 

  • Dear SP, Fritz J, Haresign T, Ferragamo M, and Simmons JA (1993) Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. Journal of Neurophysiology 70:1988–2009.

    CAS  PubMed  Google Scholar 

  • Donishi T, Kimura A, Okamoto K, and Tamai Y (2006) "Ventral" area in the rat auditory cortex: a major auditory field connected with the dorsal division of the medial geniculate body. Neuroscience 141:1553–1567.

    Article  CAS  PubMed  Google Scholar 

  • Doron NN, LeDoux JE, and Semple MN (2002) Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. Journal of Comparative Neurology 453:345–360.

    Article  PubMed  Google Scholar 

  • Eggermont JJ (1998) Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. Journal of Neurophysiology 80:2743–2764.

    CAS  PubMed  Google Scholar 

  • Esser K-H and Eiermann A (1999) Tonotopic organization and parcellation of auditory cortex in the FM-bat Carollia perspicillata. European Journal of Neuroscience 11:3669–3682.

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick DC, Suga N, and Olsen JF (1998) Distribution of response types across entire hemispheres of the mustached bat's auditory cortex. Journal of Comparative Neurology 391:353–365.

    CAS  PubMed  Google Scholar 

  • Fu KM, Johnston TA, Shah AS, Arnold LL, Smiley JF, Hackett TA, Garraghty PE, and Schroeder CE (2003) Auditory cortical neurons respond to somatosensory stimulation. Journal of Neuroscience 23:7510–7515.

    CAS  PubMed  Google Scholar 

  • Galaburda A and Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. Journal of Comparative Neurology 190:597–610.

    Article  CAS  PubMed  Google Scholar 

  • Galaburda AM and Pandya DN (1983) The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. Journal of Comparative Neurology 221:169–184.

    Article  CAS  PubMed  Google Scholar 

  • Gates GR and Aitkin LM (1982) Auditory cortex in the marsupial possum Trichosurus vulpecula. Hearing Research 7:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Godey B, Atencio CA, Bonham BH, Schreiner CE, and Cheung SW (2005) Functional organization of squirrel monkey primary auditory cortex: responses to frequency-modulation sweeps. Journal of Neurophysiology 94:1299–1311.

    Article  PubMed  Google Scholar 

  • Goldschmidt J, Zuschratter W, and Scheich H (2004) High-resolution mapping of neuronal activity by thallium autometallography. NeuroImage 23:639–647.

    Article  Google Scholar 

  • Hackett TA (2002) The comparative anatomy of the primate auditory cortex. In: Ghazanfar AA (ed). Primate Audition: Ethology and Neurobiology. CRC Press, Boca Raton, pp. 199–219.

    Google Scholar 

  • Hackett TA, Preuss TM, and Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. Journal of Comparative Neurology 441:197–222.

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, and Kaas JH (1998a) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology 394:475–495.

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, and Kaas JH (1998b) Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology 400:271–286.

    Article  CAS  PubMed  Google Scholar 

  • Harel N, Mori N, Sawada S, Mount RJ and Harrison RV (2000) Three distinct auditory areas of cortex (AI, AII, and AAF) defined by optical imaging of intrinsic signals. NeuroImage 11:302–312.

    Article  CAS  PubMed  Google Scholar 

  • Harrison RV, Kakigi A, Hirakawa H, Harel N, and Mount RJ (1996) Tonotopic mapping in auditory cortex of the chinchilla. Hearing Research 100:157–163.

    Article  CAS  PubMed  Google Scholar 

  • He J and Hashikawa T (1998) Connections of the dorsal zone of cat auditory cortex. Journal of Comparative Neurology 400:334–348.

    Article  Google Scholar 

  • Hellweg FC, Koch R, and Vollrath M (1977) Representation of the cochlea in the neocortex of guinea pigs. Experimental Brain Research 29:467–474.

    Article  CAS  Google Scholar 

  • Hofstetter KM and Ehret G (1992) The auditory cortex of the mouse: connections of the ultrasonic field. Journal of Comparative Neurology 323:370–386.

    Article  CAS  PubMed  Google Scholar 

  • Horikawa J, Hess A, Nasu M, Hosokawa Y, Scheich H, and Taniguchi I (2001) Optical imaging of neural activity in multiple auditory cortical fields of guinea pigs. NeuroReport 12:3335–3339.

    Article  CAS  PubMed  Google Scholar 

  • Horikawa J, Ito SI, Hosokawa Y, Homma T, and Murata K (1988) Tonotopic representation in the rat auditory cortex. Proceedings of the Japanese Academy of Sciences 64:260–267.

    Article  Google Scholar 

  • Hosokawa Y, Sugimoto S, Kubota M, Taniguchi I, and Horikawa J (2004) Optical imaging of binaural interaction in multiple fields of the guinea pig auditory cortex. Auditory and Vestibular System 15:1093–1097.

    Google Scholar 

  • Huang CL and Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. Journal of Comparative Neurology 427:302–331.

    Article  CAS  PubMed  Google Scholar 

  • Huffman KJ, Nelson J, Clarey J, and Krubitzer L (1999) The organization of somatosensory cortex in three species of marsupials: neural correlates of morphological specializations. Journal of Comparative Neurology 403:5–32.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi K, Priebe NJ, Crum PAC, Bedenbaugh PH, Cheung SW, and Schreiner CE (2004) Modular functional organization of cat anterior auditory field. Journal of Neurophysiology 92:444–457.

    Article  PubMed  Google Scholar 

  • Imaizumi K and Schreiner CE (2007) Spatial interaction between spectral integration and frequency gradient in primary auditory cortex. Journal of Neurophysiology 98:2933–2942.

    Article  PubMed  Google Scholar 

  • Imig TJ and Morel A (1985) Tonotopic organization in ventral nucleus of medial geniculate body in the cat. Journal of Neurophysiology 53:309–340.

    CAS  PubMed  Google Scholar 

  • Imig TJ and Reale RA (1980) Patterns of cortico-cortical connections related to tonotopic maps in cat auditory cortex. Journal of Comparative Neurology 192:293–332.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ, Ruggero MA, Kitzes LM, Javel E, and Brugge JF (1977) Organization of auditory cortex in the owl monkey (Aotus trivirgatus). Journal of Comparative Neurology 171:111–128.

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2006) The Thalamus. Cambridge University Press, New York.

    Google Scholar 

  • Kaas JH (1982) The segregation of function in the nervous system: why do sensory systems have so many subdivisions? In: Neff WP (ed). Contributions to Sensory Physiology. Academic Press, New York, pp. 201–240.

    Google Scholar 

  • Kaas JH (1983) What, if anything, is S1? Organization of first somatosensory area of cortex. Somatosensory areas of Cortex. Physiological Reviews 63:206–231.

    Google Scholar 

  • Kaas JH (2005) The future of mapping sensory cortex in primates: three of many remaining issues. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 360:653–664.

    Article  Google Scholar 

  • Kaas JH (2007) Reconstructing the organization of the forebrain of the first mammals. In: Kaas JH (ed). Evolution of Nervous Systems, volume 3, Elsevier, London, pp. 27–48.

    Google Scholar 

  • Kaas JH and Hackett TA. (2000) Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Science of the United States of America 97:11793–11799.

    Article  CAS  Google Scholar 

  • Kaas JH and Hackett TA (2005) Subdivisions and connections of the auditory cortex in primates: a working model. In: Konig R, Heil P, Budinger E, Scheich H (eds). The Auditory Cortex: A Synthesis of Human and Animal Research. Lawrence Erlbaum Associates, London, pp. 7–25.

    Google Scholar 

  • Kaas JH, Hall WC, and Diamond IT (1972) Visual cortex of the grey squirrel (Sciureus carolinensis): architectonic subdivisions and connections from the visual thalamus. Journal of Comparative Neurology 145:273–305.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH and Morel A (1993) Connections of visual areas of the upper temporal lobe of owl monkeys: the MT crescent and dorsal and ventral subdivisions of FST. Journal of Neuroscience 13:534–546.

    CAS  PubMed  Google Scholar 

  • Kajikawa Y, de la Mothe L, Blumell S, and Hackett TA (2005) A comparison of neuron response properties in areas A1 and CM of the marmoset monkey auditory cortex: tones and broadband noise. Journal of Neurophysiology 93:22–34.

    Article  PubMed  Google Scholar 

  • Kalatsky VA, Polley DB, Merzenich MM, Schreiner CE, and Stryker MP (2005) Fine functional organization of auditory cortex revealed by Fourier optical imaging. Proceedings of the National Academy of Science of the United States of America 102:13325–13330.

    Article  CAS  Google Scholar 

  • Kanwal JS, Gordon M, Peng JP, and Heinz-Esser K (2000) Auditory responses from the frontal cortex in the mustached bat, Pteronotus parnellii. NeuroReport 11:367–372.

    Article  CAS  PubMed  Google Scholar 

  • Kayser D and Legouix JP (1963) Tonotopic projections on the guinea pig auditory cortex. Comptes Rendues Sciences du Societé Biologie et Philosophe 157:2161–2164.

    CAS  Google Scholar 

  • Kelly JB, Judge PW, and Phillips DP (1986) Representation of the cochlea in primary auditory cortex of the ferret (Mustela putorius). Hearing Research 24:111–115.

    Article  CAS  PubMed  Google Scholar 

  • Kilgard MP and Merzenich MM (1999) Distributed representation of spectral and temporal information in rat primary auditory cortex. Hearing Research 134:16–28.

    Article  CAS  PubMed  Google Scholar 

  • Knight PL (1977) Representation of the cochlea within the anterior auditory field (AAF) of the cat. Brain Research 130:447–467.

    Article  CAS  PubMed  Google Scholar 

  • Kosaki H, Hashikawa T, He J, and Jones EG (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. Journal of Comparative Neurology 386:304–316.

    Article  CAS  PubMed  Google Scholar 

  • Kosmal A (2000) Organization of connections underlying the processing of auditory information in the dog. Progress in Neuro-Psychopharmacology and Biological Psychiatry 24:825–854.

    Article  CAS  PubMed  Google Scholar 

  • Kowalski N, Versnel H, and Shamma SA (1995) Comparison of responses in the anterior and primary auditory fields of the ferret cortex. Journal of Neurophysiology 73:1513–1523.

    CAS  PubMed  Google Scholar 

  • Krubitzer LA, Sesma MA, and Kaas JH (1986) Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels. Journal of Comparative Neurology 250:403–430.

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Imaizumi K, Schreiner CE, and Winer JA (2004) Concurrent tonotopic processing streams in auditory cortex. Cerebral Cortex 14:441–451.

    Article  PubMed  Google Scholar 

  • Lee CC and Winer JA (2005) Principles governing auditory cortex connections. Cerebral Cortex 15:1804–1811.

    Article  PubMed  Google Scholar 

  • Lee CC and Winer JA (2008a) Connections of cat auditory cortex: I. Thalamocortical system. Journal of Comparative Neurology 507:1879–1900.

    Article  PubMed  Google Scholar 

  • Lee CC and Winer, JA (2008b) Connections of cat auditory cortex: III. Corticocortical system. Journal of Comparative Neurology 507:1920–1943.

    Article  PubMed  Google Scholar 

  • Luethke LE, Krubitzer LA, and Kaas JH (1988) Cortical connections of electrophysiologically and architectonically defined subdivisions of auditory cortex in squirrels. Journal of Comparative Neurology 268:181–203.

    Article  CAS  PubMed  Google Scholar 

  • Luethke LE, Krubitzer LA, and Kaas JH (1989) Connections of primary auditory cortex in the New World monkey, (Saguinus). Journal of Comparative Neurology 285:487–513.

    Article  CAS  PubMed  Google Scholar 

  • Malhotra S and Lomber SG (2007) Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat. Journal of Neurophysiology 97:26–43.

    Article  PubMed  Google Scholar 

  • Malinowska M and Kosmal A (2003) Connections of the posterior thalamic region with the auditory ectosylvian cortex in the dog. Journal of Comparative Neurology 467:185–206.

    Article  PubMed  Google Scholar 

  • McMullen NT and Glaser EM (1982) Tonotopic organization of rabbit auditory cortex. Experimental Biology 75:208–220.

    CAS  Google Scholar 

  • McMullen NT, Smelser CB, and de Venecia RK (1994) A quantitative analysis of parvalbumin neurons in rabbit auditory neocortex. Journal of Comparative Neurology 349:493–511.

    Article  CAS  PubMed  Google Scholar 

  • Mendelson JR, Schreiner CE, and Sutter ML (1997) Functional topography of cat primary auditory cortex; response latencies. Journal of Comparative Physiology A 181:615–633.

    Article  CAS  Google Scholar 

  • Medina L (2007) Do birds and reptiles possess homologues of mammalian visual, somatosensory and motor cortices? In: Kaas JH (ed). The Evolution of Nervous Systems, volume 2. Elsevier, London, pp. 163–194.

    Google Scholar 

  • Merzenich MM and Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Research 50:275–296.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Kaas JH, and Roth GL (1976) Auditory cortex in the grey squirrel: tonotopic organization and architectonic fields. Journal of Comparative Neurology 166:387–401.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Knight PL, and Roth GL (1973) Cochleotopic organization of primary auditory cortex in the cat. Brain Research 63:343–346.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Knight PL, and Roth GL (1975) Representation of cochlea within primary auditory cortex in the cat. Journal Neurophysiology 38:231–249.

    CAS  Google Scholar 

  • Morel A, Garraghty PE, and Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. Journal of Comparative Neurology 335:437–459.

    Article  CAS  PubMed  Google Scholar 

  • Morel A and Imig TJ (1987) Thalamic projections to fields A, AI, P, and VP in the cat auditory cortex. Journal of Comparative Neurology 265:119–144.

    Article  CAS  PubMed  Google Scholar 

  • Morel A and Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. Journal of Comparative Neurology 318:27–63.

    Article  CAS  PubMed  Google Scholar 

  • de la Mothe LA, Blumell S, Kajikawa Y, and Hackett TA (2006a) Cortical connections of the auditory cortex in marmoset monkeys: core and medial belt regions. Journal of Comparative Neurology 496:27–71.

    Article  PubMed  Google Scholar 

  • Murphy WJ, Pevzner PA, and O’Brien JO (2004) Mammalian phytogenomics comes of age. Trends in Genetics 20:631–639.

    Google Scholar 

  • Nelken I, Bizley JK, Nodal FR, Ahmed B, Schnupp JWH, and King AJ (2004) Large-scale organization of ferret auditory cortex revealed using continuous acquisition of intrinsic optical signals. Journal of Neurophysiology 92:2574–2588.

    Article  PubMed  Google Scholar 

  • Nishimura M, Shirasawa H, Kaizo H, and Song WJ (2007) New field with tonotopic organization in guinea pig auditory cortex. Journal of Neurophysiology 97:927–932.

    Article  PubMed  Google Scholar 

  • Northcutt RG and Kaas JH (1995) The emergence and evolution of mammalian neocortex. Trends in Neuroscience 18:373–379.

    Article  CAS  Google Scholar 

  • Olavarria J and Van Sluyters R (1985) Organization and postnatal development of callosal connections in the visual cortex of the rat. Journal of Comparative Neurology 239:1–26.

    Article  CAS  PubMed  Google Scholar 

  • Pallas SL, Roe AW, and Sur M (1990) Visual projections induced into the auditory pathway of ferrets. I. Novel inputs to primary auditory cortex (AI) from the LP/pulvinar complex and the topography of the MGN-AI projection. Journal of Comparative Neurology 298:50–68.

    Article  CAS  PubMed  Google Scholar 

  • Pallas SL and Sur M (1993) Visual projections induced into the auditory pathway of ferrets: II. Corticocortical connections of primary auditory cortex. Journal of Comparative Neurology 337:317–333.

    Article  CAS  PubMed  Google Scholar 

  • Pandya PK, Rathbun, DL, Moucha R, Engineer ND, and Kilgard MP (2008) Spectral and temporal processing I rat posterior auditory cortex. Cerebral Cortex 18:301–314.

    Article  PubMed  Google Scholar 

  • Pearson JM, Crocker WD, and Fitzpatrick DC (2007) Connections of functional areas in the mustached bat's auditory cortex with the auditory thalamus. Journal of Comparative Neurology 500:401–418.

    Article  PubMed  Google Scholar 

  • Philibert B, Beitel RE, Nagarajan SS, Bonham BH, Schreiner CE, and Cheung SW (2005) Functional organization and hemispheric comparison of primary auditory cortex in the common marmoset (Callithrix jacchus). Journal of Comparative Neurology 487:391–406.

    Article  PubMed  Google Scholar 

  • Phillips DP, Judge PW, and Kelly JB (1988) Primary auditory cortex in the ferret (Mustela putorius): neural response properties and topographic organization. Brain Research 443:281–294.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP and Orman SS (1984) Responses of single neurons in posterior field of cat auditory cortex to tonal stimulation. Journal of Neurophysiology 51:147–163.

    CAS  PubMed  Google Scholar 

  • Pienkowski M and Harrison RV (2005a). Tone frequency maps and receptive fields in the developing chinchilla auditory cortex. Journal of Neurophysiology 93:454–466.

    Article  PubMed  Google Scholar 

  • Pienkowski M and Harrison RV (2005b) Tone responses in core versus belt auditory cortex in the developing chinchilla. Journal of Comparative Neurology 492:101–109.

    Article  PubMed  Google Scholar 

  • Polley DB, Read HL, Storace DA and Merzenich MM (2007) Multiparametric auditory receptive field organization across five cortical fields in the albino rat. Journal of Neurophysiology 97:3621–3638.

    Article  PubMed  Google Scholar 

  • Radtke-Schuller S (2001) Neuroarchitecture of the auditory cortex in the rufous horseshoe bat (Rhinolophus rouxi). Anatomy & Embryology (Berlin) 204:81–100.

    Article  CAS  Google Scholar 

  • Radtke-Schuller S (2004) Cytoarchitecture of the medial geniculate body and thalamic projections to the auditory cortex in the rufous horseshoe bat (Rhinolophus rouxi). I. Temporal fields. Anatomy & Embryology (Berlin) 209:59–76.

    Article  Google Scholar 

  • Radtke-Schuller S and Schuller G (1995) Auditory cortex of the rufous horseshoe bat: 1. Physiological response properties to acoustic stimuli and vocalizations and the topographical distribution of neurons. European Journal of Neuroscience 7:570–591.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Tian B, and Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Tian B, Pons TP and Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. Journal of Comparative Neurology 382:89–103.

    Article  CAS  PubMed  Google Scholar 

  • Read HL, Winer JA, and Schreiner CE (2002) Functional architecture of auditory cortex. Current Opinion in Neurobiology 12:433–440.

    Article  CAS  PubMed  Google Scholar 

  • Reale RA and Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. Journal of Comparative Neurology 192:265–291.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH, Schreiner CE, Sutter ML, Beitel RE, and Merzenich MM (1999) Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. Journal of Comparative Neurology 415:460–481.

    Article  CAS  PubMed  Google Scholar 

  • Redies H, Sieben U, and Creutzfeldt OD (1989) Functional subdivisions in the auditory cortex of the guinea pig. Journal of Comparative Neurology 282:473–488.

    Article  CAS  PubMed  Google Scholar 

  • Roger M and Arnault P (1989) Anatomical study of the connections of the primary auditory area in the rat. Journal of Comparative Neurology 287:339–356.

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM and LeDoux JE (1993) Organization of rodent auditory cortex: anterograde transport of PHA-L from MGv to temporal neocortex. Cerebral Cortex 3:499–514.

    Article  CAS  PubMed  Google Scholar 

  • Rose JE (1949) The cellular structure of the auditory area of the cat. Journal of Comparative Neurology 91:409–439.

    Article  CAS  PubMed  Google Scholar 

  • Rose JE and Woolsey CN (1949a) Organization of the mammalian thalamus and its relationships to the cerebral cortex. Electroencephalography and Clinical Neurophysiology 1:391–404.

    CAS  PubMed  Google Scholar 

  • Rose JE and Woolsey CN (1949b) The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. Journal of Comparative Neurology 91:441–466.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Simm GM, Villa AEP, de Ribaupierre Y, and de Ribaupierre F (1991) Auditory corticocortical interconnections in the cat: evidence for parallel and hierarchical arrangement of the auditory cortical areas. Experimental Brain Research 86:483–505.

    Article  CAS  Google Scholar 

  • Rutkowski RG, Miasnikov AA, and Weinberger NM (2003) Characterisation of multiple physiological fields within the anatomical core of rat auditory cortex. Hearing Research 181:116–130.

    Article  PubMed  Google Scholar 

  • Ryugo DK and Killackey HP (1974) Differential telencephalic projections of the medial and ventral divisions of the medial geniculate body of the rat. Brain Research 82:173–177.

    Article  CAS  PubMed  Google Scholar 

  • Sally SL and Kelly JB (1988) Organization of auditory cortex in the albino rat: sound frequency. Journal of Neurophysiology 59:1627–1638.

    CAS  PubMed  Google Scholar 

  • Scheich H and Zuschratter W (1995) Mapping of stimulus features and meaning in gerbil auditory cortex with 2-deoxyglucose and c-Fos antibodies. Behavioral Brain Research 66:195–205.

    Article  CAS  Google Scholar 

  • Schreiner CE and Cynader MS (1984) Basic functional organization of second auditory cortical field (AII) of the cat. Journal of Neurophysiology 51:1284–1305.

    CAS  PubMed  Google Scholar 

  • Schroeder CE, Lindsley RW, Specht C, Marcovici A, Smiley JF, and Javitt DC (2001) Somatosensory input to auditory association cortex in the macaque monkey. Journal of Neurophysiology 85:1322–1327.

    CAS  PubMed  Google Scholar 

  • Shamma SA, Fleshman JW, Wiser PR, and Versnel H (1993) Organization of response areas in ferret primary auditory cortex. Journal of Neurophysiology 69:367–383.

    CAS  PubMed  Google Scholar 

  • Stecker GC, Harrington IA, Macpherson EA, and Middlebrooks JC (2005) Spatial sensitivity in the dorsal zone (area DZ) of cat auditory cortex. Journal of Neurophysiology 94:1267–1280.

    Article  PubMed  Google Scholar 

  • Sterbing-D'Angelo S (2007) Evolution of sound localization in mammals. In: Kaas JH (ed). Evolution of Nervous Systems, volume 3, Elsevier, London, pp. 253–260.

    Google Scholar 

  • Stiebler I, Neulist R, Fichtel I, and Ehret G (1997) The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation. Journal of Comparative Neurology 181:559–571.

    CAS  Google Scholar 

  • Striedter GF (1997) The telencephalon of tetrapods in evolution. Brain Behavior and Evolution 49:179–213.

    Article  Google Scholar 

  • Suga N (1990) Cortical computational maps for auditory imaging. Neurological Networks 3:3–21.

    Article  Google Scholar 

  • Suga N (1994) Multi-function theory for cortical processing of auditory information: implications of single-unit and lesion data for future research. Journal of Comparative Physiology A 175:135–144.

    Article  CAS  Google Scholar 

  • Sweet RA, Dorph-Petersen KA, and Lewis DA (2005) Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus. Journal of Comparative Neurology 491:270–289.

    Article  PubMed  Google Scholar 

  • Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, and Dale AM (2004) Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. Journal of Neurophysiology 91:1282–1296.

    Article  PubMed  Google Scholar 

  • Taniguchi I, Horikawa J, Hosokawa Y, and Nasu M (1997) Optical imaging of neural activity in auditory cortex induced by intracochlear electrical stimulation. Acta Otolaryngologica 32:83–88.

    Article  Google Scholar 

  • Thomas H, Tillein J, Heil P, and Scheich H (1993) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields. European Journal of Neuroscience 5:882–897.

    Article  CAS  PubMed  Google Scholar 

  • Tootell RBH, Hamilton SL, and Silverman MS (1985) Topography of cytochrome oxidase activity in Owl Monkey cortex. Journal of Neuroscience 10:2786–2800.

    Google Scholar 

  • Tunturi AR (1962) Frequency arrangement in anterior ectosylvian auditory cortex of dog. American Journal of Physiology 203:185–193.

    Google Scholar 

  • Tunturi AR (1970) The pathway from the medial geniculate body to the ectosylvian auditory cortex in the dog. Journal of Comparative Neurology 138:131–136.

    Article  CAS  PubMed  Google Scholar 

  • Ulinski PS (2007) Visual cortex of turtles. In: Kaas JH (ed). Evolution of Nervous Systems, volume 2. Elsevier, London, pp. 195–203.

    Google Scholar 

  • Velenovsky DS, Cetas JS, Price RO, Sinex DG, and McMullen NT (2003) Functional subregions in primary auditory cortex defined by thalamocortical terminal arbors: an electrophysiological and anterograde labeling study. Journal of Neuroscience 23:308–316.

    CAS  PubMed  Google Scholar 

  • de Venecia RK, Smelser CB, and McMullen NT (1998) Parvalbumin is expressed in a reciprocal circuit linking the medial geniculate body and auditory neocortex in the rabbit. Journal of Comparative Neurology 400:349–362.

    Article  PubMed  Google Scholar 

  • Wallace MN and Bajwa S (1991) Patchy intrinsic connections of the ferret primary auditory cortex. NeuroReport 2:417–420.

    Article  CAS  PubMed  Google Scholar 

  • Wallace MN, Kitzes LM, and Jones EG (1991) Chemoarchitectonic organization of the cat primary auditory cortex. Experimental Brain Research 86:518–526.

    CAS  Google Scholar 

  • Wallace MN, Roeda P, and Harper MS (1997) Deoxyglucose uptake in the ferret auditory cortex. Experimental Brain Research 117:488–500.

    Article  CAS  Google Scholar 

  • Wallace MN, Rutkowski RG, and Palmer AR (2000) Identification and localization of auditory areas in guinea pig cortex. Experimental Brain Research 132:445–456.

    Article  CAS  Google Scholar 

  • Winer JA (1984) Anatomy of layer IV in cat primary auditory cortex (AI). Journal of Comparative Neurology 222:535–567.

    Article  Google Scholar 

  • Winer JA, Diamond IT, and Raczkowski D (1977) Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. Journal of Comparative Neurology 176:387–417.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Lee CC (2007) The distributed auditory cortex. Hearing Research 229:3–13.

    Article  PubMed  Google Scholar 

  • Wise LZ, Pettigrew JD, and Calford MB (1986) Somatosensory cortical representation in the Australian ghost bat. Macroderma gigus. Journal Comparative Neurology 248:257–262.

    Article  CAS  Google Scholar 

  • Wood AE (1957) What, if anything, is a rabbit? Evolution 11:417–425.

    Article  Google Scholar 

  • Wong D and Shannon SL (1988) Functional zones in the auditory cortex of the echolocating bat, Myotis lucifugus. Brain Research 453:349–352.

    Article  CAS  PubMed  Google Scholar 

  • Woolsey CN (1971) Tonotopical organization of the auditory system. In: Sachs MB (ed). Physiology of the Auditory System. National Educational Consultants, Baltimore, pp. 271–282.

    Google Scholar 

  • Woolsey CN, Carlton TG, Kaas JH, and Earls FJ (1971) Projection of visual field on superior colliculus of ground squirrel (Citellus tridecemlineatus). Vision Research 11:115–127.

    Article  CAS  PubMed  Google Scholar 

  • Woolsey CN and Walzl EM (1942) Topical projection of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Bulletin of Johns Hopkins Hospital 71:315–344.

    Google Scholar 

  • Zook JM (2007) Somatosensory adaptations of flying mammals. In: Kaas JH (ed). Evolution of Nervous Systems, volume 3. Elsevier, London pp. 215–226.

    Google Scholar 

Download references

Acknowledgement

Troy Hackett, Correy Camalier, and Peiyan Wong provided helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon H. Kaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kaas, J.H. (2011). The Evolution of Auditory Cortex: The Core Areas. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_19

Download citation

Publish with us

Policies and ethics