Skip to main content

Atrazine Has Been Used Safely for 50 Years?

  • Chapter
  • First Online:
Wildlife Ecotoxicology

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 3))

Abstract

The herbicide atrazine is a potent endocrine disruptor, active in fish and amphibians in the low ppb range. Among other effects, atrazine impairs reproductive development and function including decreased testosterone levels, impaired testicular development, and low fertility/sperm production in male fish, amphibians, and in some reptiles. Atrazine also feminizes fish, amphibians and reptiles resulting in the development of oocytes in the testes and complete feminization. In addition to laboratory experiments, similar effects have been associated with animals in the wild. Although there is some question about how to compare the doses, adverse effects are also observed in laboratory rodents: including prostate disease, low sperm production, and decreased testosterone levels in males and mammary cancer, abortion, and impaired mammary development in females. These effects are all ­consistent with the induction of aromatase, the enzyme that converts testosterone into estrogen, a mechanism that has been demonstrated across vertebrate classes. Despite well over 150 publications from at least 50 independent laboratories ­showing adverse reproductive effects in all vertebrate classes examined, and recent epidemiological studies associating atrazine exposure with low sperm counts in men, breast and prostate cancer, and birth defects, the major manufacturer still maintains that “atrazine has been used safely for 50 years” and the US EPA still struggles with how to evaluate pesticides for endocrine disrupting effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman F (2007) The economics of atrazine. Int J Occup Environ Health 13:437–445

    Google Scholar 

  • Barr DB, Panuwet P, Nguyen JV, Udunka S, Needham LL (2007) Assessing exposure to atrazine and its metabolites using biomonitoring. Environ Health Perspect 115:1474–1478

    CAS  Google Scholar 

  • Bishop C, Mahony N, Struger J, Ng P, Petit K (1999) Anuran development, density, and diversity in relation to agricultural activity in the Holland River watershed, Ontario, Canda (1990–1992). Environ Monit Assess 57:21–43

    Article  CAS  Google Scholar 

  • Bishop C, McDaniel T, DeSolla S (2010) Atrazine: effects on amphibians and reptiles. In: Sparling DW, Linder GL, Krest S, Bishop CA (eds) The ecotoxicology of amphibians and reptiles. Society of Environmental Toxicology and Chemistry Press, Pensacola, FL, p 944

    Google Scholar 

  • Blaustein A, Kiesecker J (2002) Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett 5:597–608

    Article  Google Scholar 

  • Boone MD, Semlitsch RD, Little EE, Doyle MC (2007) Multiple stressors in amphibian communities: effects of chemical contamination, bullfrogs, and fish. Ecol Appl 17:291–301

    Article  Google Scholar 

  • Carey C, Bryant CJ (1995) Possible interactions among environmental toxicants, amphibian development and decline of amphibian populations. Environ Health Perspect 103:13–17

    Article  CAS  Google Scholar 

  • Carr J, Gentles A, Smith E, Goleman W, Urquidi L, Thuett K, Kendall R, Giesy J, Gross T, Solomon K et al (2003) Response of larval Xenopus laevis to atrazine: assessment of growth, metamorphosis, and gonadal and laryngeal morphology. Environ Toxicol Chem 22:396–405

    CAS  Google Scholar 

  • Cericato L, Neto JGM, Kreutz LC, Quevedo RM, da Rosa JGS, Koakoski G, Centenaro L, Pottker E, Marqueze A, Barcellos LJG (2009) Responsiveness of the interrenal tissue of Jundia (Rhamdia quelen) to an in vivo ACTH test following acute exposure to sublethal concentrations of agrichemicals. Comp Biochem Physiol C Toxicol Pharmacol 149:363–367

    Article  CAS  Google Scholar 

  • Chang C, Witschi E (1955) Genic control and hormonal reversal of sex differentiation in Xenopus. Proc Soc Exp Biol Med 93:140–144

    Google Scholar 

  • Coady KK, Murphy J, Villeneuve DL, Hecker MJ, Carr J, Solomon K, Van Der Kraak G, Smith E, Kendall RJ, Giesy JP (2005) Effects of atrazine on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and plasma sex steroid concentrations in Xenopus laevis. Ecotoxicol Environ Saf 62:160–173

    Article  CAS  Google Scholar 

  • Cooper RL, Stoker TE, McElroy WK (1999) Atrazine (ATR) disrupts hypothalamic catecholamines and pituitary function. Toxicologist 42:60–66

    Google Scholar 

  • Cooper RL, Stoker TE, Tyrey L, Goldman JM, McElroy WK (2000) Atrazine disrupts the hypothalamic control of pituitary-ovarian function. Toxicol Sci 53:297–307

    Article  CAS  Google Scholar 

  • Crain D, Guillette LJ, Rooney AA, Pickford D (1997) Alterations in steroidogenesis in alligators (Alligator mississippiensis) exposed naturally and experimentally to environmental contaminants. Environ Health Perspect 105:528–533

    Article  CAS  Google Scholar 

  • Cummings A, Rhodes B, Cooper R (2000) Effect of atrazine on implantation and early pregnancy in 4 strains of rats. Toxicol Sci 58:135–143

    Article  CAS  Google Scholar 

  • Du Preez L, Solomon K, Jooste A, Jansen G, van Rensburg P, Smith E, Carr RJ, Kendall GJP, Gross T, et al. (2002) Exposure characterization and responses to field exposures of Xenopus laevis to atrazine and related triazines in South African corn growing regions. In 23 rd Annual Meeting in North America, Soc. Environ. Toxicol. Chem. Salt Lake City, UT

    Google Scholar 

  • Du Preez LH, Rensburg PJJV, Jooste AM, Carr JA, Giesy JP, Gross TS, Kendall RJ, Smith EE, Kraak GVD, Solomon KR (2005a) Seasonal exposures to triazine and other pesticides in surface waters in the western Highveld corn-production region in South Africa. Environ Pollut 135:131–141

    Article  CAS  Google Scholar 

  • Du Preez LH, Solomon K, Carr J, Giesy J, Gross C, Kendall RJ, Smith E, Van Der Kraak G, Weldon C (2005b) Population structure characterization of the clawed frog (Xenopus laevis) in corn-growing versus non-corn-growing areas in South Africa. Afr J Herp 54:61–68

    Article  Google Scholar 

  • Du Preez LH, Kunene N, Everson GJ, Carr JA, Giesy JP, Gross TS, Hosmer AJ, Kendall RJ, Smith EE, Solomon KR et al (2008) Reproduction, larval growth, and reproductive development in African clawed frogs (Xenopus laevis) exposed to atrazine. Chemosphere 71:546–552

    Article  CAS  Google Scholar 

  • Eldridge J, Tennant M, Wetzel L, Breckenridge C, Stevens J (1994) Factors affecting mammary tumor incidence in chlorotriazine-treated female rats: Hormonal properties, dosage, and animal strain. Environ Health Perspect 102:29–36

    Article  CAS  Google Scholar 

  • Fan W, Yanase T, Morinaga H, Gondo S, Okabe T, Nomura M, Hayes TB, Takayanagi R, Nawata H (2007a) Herbicide atrazine activates SF-1 by direct affinity and concomitant co-activators recruitments to induce aromatase expression via promoter II. Biochem Biophys Res Commun 355:1012–1018

    Article  CAS  Google Scholar 

  • Fan W, Yanase T, Morinaga H, Gondo S, Okabe T, Nomura M, Komatsu T, Morohashi K-I, Hayes T, Takayanagi R et al (2007b) Atrazine-induced aromatase expression is SF-1- dependent: implications for endocrine disruption in wildlife and reproductive cancers in humans. Environ Health Perspect 115:720–727

    Article  CAS  Google Scholar 

  • Filipov N, Pinchuk L, Boyd B, Crittenden P (2005) Immunotoxic effects of short-term atrazine exposure in young male C57BL/6 mice. Toxicol Sci 86:324–332

    Article  CAS  Google Scholar 

  • Forson D, Storfer A (2006a) Atrazine increases Ranavirus susceptibility in the tiger salamander, Ambystoma tigrinum. Ecol Appl 16:2325–2332

    Article  Google Scholar 

  • Forson D, Storfer A (2006b) Effects of atrazine and iridovirus infection on survival and lifehistory traits of the long-toed salamander (Ambystoma macrodatylum). Environ Toxicol Chem 25:168–173

    Article  CAS  Google Scholar 

  • Fox G (1991) Practical causal inference for epidemiologists. J Toxicol Environ Health 33:359–373

    Article  CAS  Google Scholar 

  • Friedmann A (2002) Atrazine inhibition of testosterone production in rat males following peripubertal exposure. Reprod Toxicol 16:275–279

    Article  CAS  Google Scholar 

  • Gallien L (1953) Inversion totale du sexe chez Xenopus laevis Daud. À la suite d’un traitment gynogène par le benzoate of oestradiol, administré pendant la vie larvaire. C R Hebd Seances Acad Sci 237:1565–1566

    CAS  Google Scholar 

  • Hayes TB (1997a) Steroid-mimicking environmental contaminants: their potential role in amphibian declines. Herpetologia Bonnensis. SEH Bonn., 145–150

    Google Scholar 

  • Hayes TB (1997b) Steroids as modulators of thyroid hormone activity in amphibian development. Am Zool 37:185–195

    CAS  Google Scholar 

  • Hayes TB (1998) Sex determination and primary sex differentiation in amphibians. J Exp Zool 281:373–399

    Article  CAS  Google Scholar 

  • Hayes T (2000a) Hyperolius argus endocrine screen test. In: Official Gazette of the United States Patent and Trademark Office Patents, USA

    Google Scholar 

  • Hayes TB (2000b) Hyperolius argus endocrine screen test. In: Official Gazette of the United States Patent and Trademark Office Patents, USA

    Google Scholar 

  • Hayes TB (2004) There is no denying this: defusing the confusion about atrazine. Bioscience 54:1138–1149

    Article  Google Scholar 

  • Hayes TB (2005) Comment on “Gonadal development of larval male Xenopus laevis exposed to atrazine in outdoor microcosms”. Environ Sci Technol 39:7757–7758

    Article  CAS  Google Scholar 

  • Hayes TB (2009a) More feedback on whether atrazine is a potent endocrine disruptor chemical. Environ Sci Technol 43:6115

    Article  CAS  Google Scholar 

  • Hayes TB (2009b) The one stop shop: chemical causes and cures for cancer, President’s Cancer Panel – October 21, 2008. Rev Environ Health 24:297–307

    Article  Google Scholar 

  • Hayes TB, Menendez K (1999) The effect of sex steroids on primary and secondary sex differentiation in the sexually dichromatic reedfrog (Hyperolius argus: Hyperolidae) from the Arabuko Sokoke Forest of Kenya. Gen Comp Endocrinol 115:188–199

    Article  CAS  Google Scholar 

  • Hayes TB, Collins A, Lee M, Mendoza M, Noriega N, Stuart AA, Vonk A (2002a) Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci USA 99:5476–5480

    Article  CAS  Google Scholar 

  • Hayes TB, Haston K, Tsui M, Hoang A, Haeffele C, Vonk A (2002b) Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): Laboratory and field evidence. Environ Health Perspect 111:568–575

    Article  CAS  Google Scholar 

  • Hayes TB, Haston K, Tsui M, Hoang A, Haeffele C, Vonk A (2002c) Feminization of male frogs in the wild. Nature 419:895–896

    Article  CAS  Google Scholar 

  • Hayes TB, Case P, Chui S, Chung D, Haefele C, Haston K, Lee M, Mai V-P, Marjuoa Y, Parker J et al (2006a) Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact? Environ Health Perspect 114:40–50

    Article  Google Scholar 

  • Hayes TB, Stuart A, Mendoza G, Collins A, Noriega N, Vonk A, Johnston G, Liu R, Kpodzo D (2006b) Characterization of atrazine-induced gonadal malformations and effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (estradiol 17β): support for the demasculinization/feminization hypothesis. Environ Health Perspect 114:134–141

    Article  Google Scholar 

  • Hayes TB, Falso P, Gallipeau S, Stice MJ (2010a) The cause of global amphibian declines: a developmental endocrinologist’s perspective. J Exp Biol 213:921–933

    Article  CAS  Google Scholar 

  • Hayes TB, Khoury V, Narayan A, Nazir M, Park A, Brown T, Adame L, Chan E, Buchholz D, Stueve T et al (2010b) Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc Natl Acad Sci USA 107:4612–4617

    Article  CAS  Google Scholar 

  • Hecker MJ, Coady KK, Villeneuve DL, Murphy MB, Jones PD, Giesy JP (2003) Response of Xenopus laevis to atrazine exposure: assessment of the mechanism of action of atrazine

    Google Scholar 

  • Hecker MJ, Giesy JP, Jones P, Jooste AM, Carr J, Solomon KR, Smith EE, Van Der Kraak G, Kendall RJ, Du Preez LH (2004) Plasma sex steroid concentrations and gonadal aromatase activities in African clawed frogs (Xenopus laevis) from South Africa. Environ Toxicol Chem 23:1996–2007

    Article  CAS  Google Scholar 

  • Hecker M, Kim W, Park J-W, Murphy M, Villeneuve D, Coady K, Jones P, Solomon K, Van Der Kraak G, Carr J et al (2005) Plasma concentrations of estradiol and testosterone, gonadal aromatase activity and ultrastructure of the testis in Xenopus laevis exposed to estradiol or atrazine. Aquat Toxicol 72:383–396

    Article  CAS  Google Scholar 

  • Heneweer M, van den Berg M, Sanderson J (2004) A comparison of human H295R and rat R2C cell lines as in vitro screening tools for effects on aromatase. Toxicol Lett 146:183–194

    Article  CAS  Google Scholar 

  • Hosmer A, Kloas W, Lutz I, Springer T, Wolf J, Holden L (2007). Atrazine. Response of larval Xenopus laevis to atrazine exposure: assessment of metamorphosis and gonadal morphology. Final Report. Conducted by the Leibniz Institute of Freshwater Biology and Inland Fisheries (IGB), Wildlife International, Ltd., and Experimental Pathology laboratories, Inc. Sponsor: Syngenta Crop Protection. Unpublished. (MRID 471535–01)

    Google Scholar 

  • Jooste A, Du Preez L, Carr J, Giesy JP, Gross T, Kendall R, Smith E, Van Der Kraak G, Solomon K (2005a) Response to comment on “Gonadal development of larval male Xenopus laevis exposed to atrazine in outdoor microcosms”. Environ Sci Technol 39:5255–5261

    Article  CAS  Google Scholar 

  • Jooste AM, Du Preez LH, Carr J, Giesy JP, Gross C, Kendall RJ, Smith E, Van Der Kraak G, Solomon KR (2005b) Gonadal development of larval male Xenopus laevis exposed to atrazine in outdoor microcosms. Environ Sci Technol 39:5255–5261

    Article  CAS  Google Scholar 

  • Karrow N, McCay J, Brown R, Musgrove D, Guo T, Germolec D, White KJ (2005) Oral exposure to atrazine modulates cell-mediated immune function and decreases host resistance to the B16F10 tumor model in female B6C3F1 mice. Toxicology 209:15–28

    Article  CAS  Google Scholar 

  • Keller J, McClellan-Green P (2004) Effects of organochlorine compounds on cytochrome P450 aromatase activity in an immortal sea turtle cell line. Mar Environ Res 58:347–351

    Article  CAS  Google Scholar 

  • Kettles MA, Browning SR, Prince TS, Hostman SW (1997) Triazine exposure and breast cancer incidence: an ecologic study of Kentucky counties. Environ Health Perspect 105:1222–1227

    Article  CAS  Google Scholar 

  • Kiesecker J (2002) Synergism between trematode infection and pesticide exposure: a link to amphibian limb deformities in nature? Proc Natl Acad Sci USA 99:9900–9904

    Article  CAS  Google Scholar 

  • Kloas W, Lutz I, Springer T, Krueger H, Wolf J, Holden L, Hosmer A (2009a) Does atrazine influence larval development and sexual differentiation in Xenopus laevis? Toxicol Sci 107:376–384

    Article  CAS  Google Scholar 

  • Kloas W, Lutz I, Urbatzka R, Springer T, Krueger H, Wolf J, Holden L, Hosmer A (2009b) Does atrazine affect larval development and sexual differentiation of South African clawed frogs? Trends Comp Endocrinol Neurobiol 1163:437–440

    CAS  Google Scholar 

  • Kloas W, Lutz I, Urbatzka R, Springer T, Krueger H, Wolf J, Holden L, Hosmer A (2009c) Does atrazine affect larval development and sexual differentiation of South African clawed frogs? (vol 1163, 437, 2009). Natural Compounds and Their Role in Apoptotic Cell Signaling Pathways vol. 1171, 660

    Google Scholar 

  • Langerveld AJ, Celestine R, Zaya R, Mihalko D, Ide CF (2009) Chronic exposure to high levels of atrazine alters expression of genes that regulate immune and growth-related functions in developing Xenopus laevis tadpoles. Environ Res 109:379–389

    Article  CAS  Google Scholar 

  • Langlois V, Carew A, Pauli B, Wade M, Cooke G, Trudeau V (2010) Low levels of the herbicide atrazine alters sex ratios and reduces metamorphic success in Rana pipiens tadpoles raised in outdoor mesocosms. Environ Health Perspect 118:552–557

    Article  CAS  Google Scholar 

  • Lucas A, Jones A, Goodrow M, Saiz S, Blewett C, Seiber J, Hammock B (1993) Determination of atrazine metabolites in human urine: development of a biomarker of exposure. Chem Res Toxicol 6:107–116

    Article  CAS  Google Scholar 

  • Maclennan P, Delzell E, Sathiakumar N, Myers S, Cheng H, Grizzle W, Chen V, Wu X (2002) Cancer incidence among triazine herbicide manufacturing workers. J Occup Environ Med 44:1048–1058

    Article  Google Scholar 

  • Matsushita S, Yamashita J, Iwasawa T, Tomita T, Ikeda M (2006) Effects of in ovo exposure to imazalil and atrazine on sexual differentiation in chick gonads. Poult Sci 85:1641–1647

    CAS  Google Scholar 

  • McCoy KA, Bortnick LJ, Campbell CM, Hamlin HJ, Guillette LJ, St Mary CM (2008) Agriculture alters gonadal form and function in the toad Bufo marinus. Environ Health Perspect 116:1526–1532

    Article  Google Scholar 

  • McDaniel TV, Martin PA, Struger J, Sherry J, Marvin CH, McMaster ME, Clarence S, Tetreault G (2008) Potential endocrine disruption of sexual development in free ranging male northern leopard frogs (Rana pipiens) and green frogs (Rana clamitans) from areas of intensive row crop agriculture. Aquat Toxicol 90:82

    Article  CAS  Google Scholar 

  • Mckoy KA, Sepulveda MS, Gross TS (2002) Atrazine exposure and reproductive system abnormalities in field collected Bufo marinus. In Soc. Environ. Toxicol. Chem., 23 rd Annual Meeting in North America, Salt Lake City, UT

    Google Scholar 

  • Moore A, Waring C (1998) Mechanistic effects of a triazine pesticide on reproductive endocrine function in mature male Atlantic salmon (Salmo salar L.) parr. Pestic Biochem Physiol 62:41–50

    Article  CAS  Google Scholar 

  • Murphy MB, Hecker M, Coady KK, Tompsett AR, Jones PD, Du Preez LH, Everson GJ, Solomon KR, Carr JA, Smith EE et al (2006) Atrazine concentrations, gonadal gross morphology and histology in ranid frogs collected in Michigan agricultural areas. Aquat Toxicol 76:230–245

    Article  CAS  Google Scholar 

  • Narotsky M, Best DS, Guidici DL, Cooper RL (2001) Strain comparisons of atrazine-induced pregnancy loss in the rat. Reprod Toxicol 15:61–69

    Article  CAS  Google Scholar 

  • Nieves-Puigdoller K, Bjornsson BT, McCormick SD (2007) Effects of hexazinone and atrazine on the physiology and endocrinology of smolt development in Atlantic salmon. Aquat Toxicol 84:27–37

    Article  CAS  Google Scholar 

  • Noriega N, Hayes TB (2000) DDT congener effects on secondary sex coloration in the reed frog Hyperolius argus: a partial evaluation of the Hyperolius argus estrogen screen. Comp Biochem Physiol B Biochem Mol Biol 126B:231–237

    Article  CAS  Google Scholar 

  • Ochoa-Acuna H, Frankenberger J, Hahn L, Carbajo C (2009) Drinking-water herbicide exposure in Indiana and prevalence of small-for-gestational-age and preterm delivery. Environ Health Perspect 117:1619–1624

    CAS  Google Scholar 

  • Oka T, Tooi O, Mitsui N, Miyahara M, Ohnishi Y, Takase M, Kashiwagi A, Shinkai T, Santo N, Iguchi T (2008) Effect of atrazine on metamorphosis and sexual differentiation in Xenopus laevis. Aquat Toxicol 87:215–226

    Article  CAS  Google Scholar 

  • Okada E, Yoshimoto S, Ikeda N, Kanda H, Tamura K, Shiba T, Takamatsu N, Ito M (2009) Xenopus W-linked DM-W induces Foxl2 and Cyp19 expression during ovary formation. Sex Dev 3:38–42

    Article  CAS  Google Scholar 

  • Orton F, Carr J, Handy R (2006) Effects of nitrate and atrazine on larval development and sexual differentiation in the northern leopard frog Rana pipiens. Environ Toxicol Chem 25:65–71

    Article  CAS  Google Scholar 

  • Parshley T (2000) Report of an alleged adverse effect from atrazine: Atrazine technical, EPA, Reg. No. 100–529: Environmental Protection Agency

    Google Scholar 

  • Pintér A et al (1980) Long-term carcinogenecity bioassay of the herbicide atrazine in F344 rats. Neoplasma 37:533–544

    Google Scholar 

  • Preez LHD, Kunene N, Hanner R, Giesy JP, Solomon KR, Hosmer A, Kraak GJVD (2009) Population-specific incidence of testicular ovarian follicles in Xenopus laevis from South Africa: a potential issue in endocrine testing. Aquat Toxicol 95:10–16

    Article  CAS  Google Scholar 

  • Pruett S, Fan R, Zheng Q, Myers L, Hebert P (2003) Modeling and predicting immunological effects of chemical stressors: Characterization of a quantitative biomarker for immunological changes caused by atrazine and ethanol. Toxicol Sci 75:343–354

    Article  CAS  Google Scholar 

  • Rayner J, Wood C, Fenton S (2004) Exposure parameters necessary for delayed puberty and mammary gland development in Long–Evans rats exposed in utero to atrazine. Toxicol Appl Pharmacol 195:23–34

    Article  CAS  Google Scholar 

  • Rayner J, Enoch R, Fenton S (2005) Adverse effects of prenatal exposure to atrazine during a critical period of mammary gland growth. Toxicol Sci 87:255–266

    Article  CAS  Google Scholar 

  • Reeder A, Foley G, Nichols D, Hansen L, Wikoff B, Faeh S, Eisold J, Wheeler M, Warner R, Murphy J et al (1998) Forms and prevalence of intersexuality and effects of environmental contaminants on sexuality in cricket frogs (Acris crepitans). Environ Health Perspect 106:261–266

    Article  CAS  Google Scholar 

  • Relyea RA (2010) Amphibians are not ready for Roundup

    Google Scholar 

  • Rohr J, Crumrine P (2005) Effects of an herbicide and an insecticide on pond community structure and processes. Ecol Appl 15:1135–1147

    Article  Google Scholar 

  • Rohr JR, Mckoy KA (2010) A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ Health Perspect 118:20–32

    Article  CAS  Google Scholar 

  • Rohr J, Palmer B (2005) Aquatic herbicide exposure increases salamander desiccation risk eight months later in a terrestrial environment. Environ Toxicol Chem 24:1253–1258

    Article  CAS  Google Scholar 

  • Rohr J, Elskus A, Shepherd B, Crowley P, McCarthy T, Niedzwiecki J, Sager T, Sih A, Palmer B (2004) Multiple stressors and salamanders: Effects of an herbicide, food limitation, and hydroperiod. Ecol Appl 14:1028–1040

    Article  Google Scholar 

  • Rohr JR, Sager T, Sesterhenn TM, Palmer BD (2006) Exposure, postexposure, and density-mediated effects of atrazine on amphibians: breaking down net effects into their parts. Environ Health Perspect 114:46–50

    Article  CAS  Google Scholar 

  • Rohr JR, Schotthoefer AM, Raffel TR, Carrick HJ, Halstead N, Hoverman JT, Johnson CM, Johnson LB, Lieske C, Piwoni MD et al (2008) Agrochemicals increase trematode infections in a declining amphibian species. Nature 455:1235–1239

    Article  CAS  Google Scholar 

  • Rosenberg BG, Chen HL, Folmer J, Liu J, Papadopoulos V, Zirkin BR (2008) Gestational exposure to atrazine: effects on the postnatal development of male offspring. J Androl 29:304–311

    Article  CAS  Google Scholar 

  • Rowe A, Brundage K, Schafer R, Barnett J (2006) Immunomodulatory effects of maternal atrazine exposure on male Balb/c mice. Toxicol Appl Pharmacol 214:69–77

    Article  CAS  Google Scholar 

  • Rowe AM, Brundage KM, Barnett JB (2007) In vitro atrazine-expo sure inhibits human natural killer cell lytic granule release. Toxicol Appl Pharmacol 221:179–188

    Article  CAS  Google Scholar 

  • Rowe AM, Brundage KM, Barnett JB (2008) Developmental immunotoxicity of atrazine in rodents. Basic Clin Pharmacol Toxicol 102:139–145

    Article  CAS  Google Scholar 

  • Sanderson JT, Seinen W, Giesy JP, van den Berg M (2000) 2-chloro-triazine herbicides induce aromatase (CYP19) activity in H295R human adrenocortical carcinoma cells: A novel mechanism for estrogenicity? Toxicol Sci 54:121–127

    Article  CAS  Google Scholar 

  • Sanderson JT, Letcher RJ, Heneweer M, Giesy JP, van den Berg M (2001) Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes. Environ Health Perspect 109:1027–1031

    Article  CAS  Google Scholar 

  • Sanderson J, Boerma J, Lansbergen G, van den Berg M (2002) Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells. Toxicol Appl Pharmacol 182:44–54

    Article  CAS  Google Scholar 

  • Sass J (2003) Letter to the editor. J Occup Environ Med 45:1–2

    Google Scholar 

  • Solomon K, Baker D, Richards R, Dixon K, Klaine S, LaPoint T, Kendall R, Weisskopf C, Giddings J, Giesy J et al (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–76

    Article  CAS  Google Scholar 

  • Solomon KR, Carr JA, Du Preez LH, Giesy JP, Kendall RJ, Smith EE, Van Der Kraak GJ (2008) Effects of atrazine on fish, amphibians, and aquatic reptiles: a critical review. Crit Rev Toxicol 38:721–772

    Article  Google Scholar 

  • Spano L, Tyler C, van Aerle R, Devos P, Mandiki S, Silvestre F, Thome J-P, Kestemont P (2004) Effects of atrazine on sex steroid dynamics, plasma vitellogenin concentration and gonad development in adult goldfish (Carassius auratus). Aquat Toxicol 66:369–379

    Article  CAS  Google Scholar 

  • Stevens J, Breckenridge C, Wetzel L, Gillis JH, Luempert L III, Eldridge JC (1994) Hypothesis for mammary tumorigenesis in Sprague-Dawley rats exposed to certain triazine herbicides. J Toxicol Environ Health 43:139–154

    Article  CAS  Google Scholar 

  • Stoker TE, Robinette CL, Cooper RL (1999) Maternal exposure to atrazine during lactation suppresses suckling-induced prolactin release and results in prostatitis in the adult offspring. Toxicol Sci 52:68–79

    Article  CAS  Google Scholar 

  • Stoker T, Laws S, Guidici D, Cooper R (2000) The effect of atrazine on puberty in male Wistar rats: an evaluation in the protocol for the assessment of pubertal development and thyroid function. Toxicol Sci 58:50–59

    Article  CAS  Google Scholar 

  • Stoker C, Beldomenico PM, Bosquiazzo VL, Zayas MA, Rey F, Rodriguez H, Munoz-de-Toro M, Luque EH (2008) Developmental exposure to endocrine disruptor chemicals alters follicular dynamics and steroid levels in Caiman latirostris. Gen Comp Endocrinol 156:603–612

    Article  CAS  Google Scholar 

  • Suzawa M, Ingraham H (2008) The herbicide atrazine activates endocrine gene networks via non-steroidal NR5A nuclear receptors in fish and mammalian cells. PLoS One 3:2117

    Article  CAS  Google Scholar 

  • Swan S, Kruse R, Liu F, Barr D, Drobnis E, Redmon J, Wang C, Brazil C, Overstreet J (2003) Semen quality in relation to biomarkers of pesticide exposure. Environ Health Perspect 111:1478–1484

    Article  CAS  Google Scholar 

  • Tavera-Mendoza L, Ruby S, Brousseau P, Fournier M, Cyr D, Marcogliese D (2002a) Response of the amphibian tadpole (Xenopus laevis) to atrazine during sexual differentiation of the testis. Environ Toxicol Chem 21:527–531

    CAS  Google Scholar 

  • Tavera-Mendoza L, Ruby S, Brousseau P, Fournier M, Cyr D, Marcogliese D (2002b) Response of the amphibian tadpole Xenopus laevis to atrazine during sexual differentiation of the ovary. Environ Toxicol Chem 21:1264–1267

    CAS  Google Scholar 

  • Trentacoste S, Friedmann A, Youker R, Breckenridge C, Zirkin B (2001) Atrazine effects on testosterone levels and androgen-dependent reproductive organs in peripubertal male rats. J Androl 22:142–148

    CAS  Google Scholar 

  • Ueda M, Imai T, Takizawa T, Onodera H, Mitsumori K, Matsui T, Hirose M (2005) Possible enhancing effects of atrazine on growth of 7,12-dimethylbenz(a) anthracene induced mammary tumors in ovariectomized Sprague–Dawley rats. Cancer Sci 96:19–25

    Article  CAS  Google Scholar 

  • Villanueva CM, Durand G, Coutte MB, Chevrier C, Cordier S (2005) Atrazine in municipal drinking water and risk of low birth weight, preterm delivery, and small-for-gestational-age status. Occup Environ Med 62:400–405

    Article  CAS  Google Scholar 

  • Villapando I, Merchant-Larios H (1990) Determination of the sensitive stages for gonadal sex-reversal in Xenopus laevis tadpoles. Int J Dev Biol 34:281–285

    Google Scholar 

  • West LJ, Pierce CM, Thomas WD (1962) Lysergic acid diethylamide – its effects on a male Asiatic elephant. Science 138:1100–1103

    Article  CAS  Google Scholar 

  • Wetzel LT, Luempert LG III, Breckenridge CB, Tisdel MO, Stevens JT, Thakur AK, Extrom PJ, Eldridge JC (1994) Chronic effects of atrazine on estrus and mammary gland formation in female Sprague-Dawley and Fischer-344 rats. J Toxicol Environ Health 43:169–182

    Article  CAS  Google Scholar 

  • Winchester PD, Huskins J, Ying J (2009) Agrichemicals in surface water and birth defects in the United States. Acta Paediatr 98:664–669

    Article  CAS  Google Scholar 

  • Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, Matsuda Y, Takamatsu N, Shiba T, Ito M (2008) A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Natl Acad Sci USA 105:2469–2474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyrone B. Hayes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hayes, T.B. (2011). Atrazine Has Been Used Safely for 50 Years?. In: Elliott, J., Bishop, C., Morrissey, C. (eds) Wildlife Ecotoxicology. Emerging Topics in Ecotoxicology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89432-4_10

Download citation

Publish with us

Policies and ethics