Skip to main content

Principles of Applied Pharmacokinetic–Pharmacodynamic Modeling

  • Chapter
  • First Online:
Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics

Abstract

An effective dosing strategy for anti-infectives requires a thorough understanding of the complex interactions between drug, microbe, and the host immune system. Pharmacokinetic and pharmacodynamic (PKPD) modeling has been utilized to describe these relationships to aid the dose selection and dose optimization of antimicrobial agents. The complexity of PKPD models for anti-infective has increased over time with increasing improvement in in vitro methodologies, which have progressed from limited PD (a single minimum inhibition concentration measurement) to full PD analysis (dynamic kill curve). Capturing the time course of microbial dynamics in a kill-curve system provides an opportunity for complex PKPD modeling that has been used to evaluate challenging topics such as antimicrobial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, Drusano GL (2007) Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 44(1):79–86

    Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625

    Article  CAS  PubMed  Google Scholar 

  • Barbour A, Schmidt S, Rand KH, Derendorf H (2009a) Ceftobiprole: a novel cephalosporin with activity against Gram-positive and Gram-negative pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents 34(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Barbour A, Schmidt S, Sabarinath SN, Grant M, Seubert C, Skee D et al (2009b) Soft-tissue penetration of ceftobiprole in healthy volunteers determined by in vivo microdialysis. Antimicrob Agents Chemother 53(7):2773–2776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bulitta JB, Ly NS, Yang JC, Forrest A, Jusko WJ, Tsuji BT (2009) Development and qualification of a pharmacodynamic model for the pronounced inoculum effect of ceftazidime against Pseudomonas aeruginosa. Antimicrob Agents Chemother 53(1):46–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bulitta JB, Yang JC, Yohonn L, Ly NS, Brown SV, D’Hondt RE et al (2010) Attenuation of colistin bactericidal activity by high inoculum of Pseudomonas aeruginosa characterized by a new mechanism-based population pharmacodynamic model. Antimicrob Agents Chemother 54(5): 2051–2062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campion JJ, McNamara PJ, Evans ME (2004) Evolution of ciprofloxacin-resistant Staphylococcus aureus in in vitro pharmacokinetic environments. Antimicrob Agents Chemother 48(12): 4733–4744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26(1):1–10, quiz 11–12

    Article  CAS  PubMed  Google Scholar 

  • Craig WA, Redington J, Ebert SC (1991) Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother 27(Suppl C):29–40

    Article  CAS  PubMed  Google Scholar 

  • Czock D, Keller F (2007) Mechanism-based pharmacokinetic-pharmacodynamic modeling of antimicrobial drug effects. J Pharmacokinet Pharmacodyn 34(6):727–751

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta A (2007) Usefulness of monitoring free (unbound) concentrations of therapeutic drugs in patient management. Clin Chim Acta 377(1–2):1–13

    Article  CAS  PubMed  Google Scholar 

  • de la Pena A, Grabe A, Rand KH, Rehak E, Gross J, Thyroff-Friesinger U et al (2004) PK-PD modelling of the effect of cefaclor on four different bacterial strains. Int J Antimicrob Agents 23(3):218–225

    Article  PubMed  Google Scholar 

  • Drusano GL (1990) Human pharmacodynamics of beta-lactams, aminoglycosides and their combination. Scand J Infect Dis Suppl 74:235–248

    CAS  PubMed  Google Scholar 

  • Drusano GL, D’Argenio DZ, Preston SL, Barone C, Symonds W, LaFon S et al (2000) Use of drug effect interaction modeling with Monte Carlo simulation to examine the impact of dosing interval on the projected antiviral activity of the combination of abacavir and amprenavir. Antimicrob Agents Chemother 44(6):1655–1659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garrett ER, Nolte H (1972) Kinetics and mechanisms of drug action on microorganisms. XIV. The action of fluorouracil, other uracils and derived nucleosides on the microbial kinetics of Escherichia coli. Chemotherapy 17(2):81–108

    Article  CAS  PubMed  Google Scholar 

  • Garrett ER, Miller GH, Brown MR (1966) Kinetics and mechanisms of action of antibiotics on microorganisms. V. Chloramphenicol and tetracycline affected Escherichia coli generation rates. J Pharm Sci 55(6):593–600

    Article  CAS  PubMed  Google Scholar 

  • Gershenfeld NA (1999) The nature of mathematical modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • Grasso S, Meinardi G, de Carneri I, Tamassia V (1978) New in vitro model to study the effect of antibiotic concentration and rate of elimination on antibacterial activity. Antimicrob Agents Chemother 13(4):570–576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffman A, Stepensky D (1999) Pharmacodynamic aspects of modes of drug administration for optimization of drug therapy. Crit Rev Ther Drug Carrier Syst 16(6):571–639

    Article  CAS  PubMed  Google Scholar 

  • Jumbe N, Louie A, Leary R, Liu W, Deziel MR, Tam VH et al (2003) Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J Clin Invest 112(2):275–285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leggett JE, Fantin B, Ebert S, Totsuka K, Vogelman B, Calame W et al (1989) Comparative antibiotic dose-effect relations at several dosing intervals in murine pneumonitis and thigh-infection models. J Infect Dis 159(2):281–292

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Rand KH, Obermann B, Derendorf H (2005) Pharmacokinetic-pharmacodynamic modelling of antibacterial activity of cefpodoxime and cefixime in in vitro kinetic models. Int J Antimicrob Agents 25(2):120–129

    Article  PubMed  Google Scholar 

  • Mielck JB, Garrett ER (1969) Kinetics and mechanisms of drug action on microorganisms. IX. Inhibitory action of lincomycin on Escherichia coli by microbial kinetics. Chemotherapy 14(6):337–355

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AF, Nielsen EI, Cars O, Friberg LE (2012) Pharmacokinetic-pharmacodynamic model for gentamicin and its adaptive resistance with predictions of dosing schedules in newborn infants. Antimicrob Agents Chemother 56(1):179–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moise PA, Schentag JJ (1998) Pharmacokinetic and pharmacodynamic modelling of antibiotic therapy. Curr Opin Infect Dis 11(6):673–680

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW, Vinks AA (2005) Pharmacokinetic/pharmacodynamic modelling of antibacterials in vitro and in vivo using bacterial growth and kill kinetics: the minimum inhibitory concentration versus stationary concentration. Clin Pharmacokinet 44(2):201–210

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW, Vinks AA, Punt NC (1997) Pharmacokinetic-pharmacodynamic modeling of activity of ceftazidime during continuous and intermittent infusion. Antimicrob Agents Chemother 41(4):733–738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mouton JW, Theuretzbacher U, Craig WA, Tulkens PM, Derendorf H, Cars O (2008) Tissue concentrations: do we ever learn? J Antimicrob Chemother 61(2):235–237

    Article  CAS  PubMed  Google Scholar 

  • Mueller M, de la Pena A, Derendorf H (2004) Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: kill curves versus MIC. Antimicrob Agents Chemother 48(2):369–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen EI, Viberg A, Lowdin E, Cars O, Karlsson MO, Sandstrom M (2007) Semimechanistic pharmacokinetic/pharmacodynamic model for assessment of activity of antibacterial agents from time-kill curve experiments. Antimicrob Agents Chemother 51(1):128–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Owens RC Jr, Bhavnani SM, Ambrose PG (2005) Assessment of pharmacokinetic-pharmacodynamic target attainment of gemifloxacin against Streptococcus pneumoniae. Diagn Microbiol Infect Dis 51(1):45–49

    Article  CAS  PubMed  Google Scholar 

  • Sanfilippo A, Morvillo E (1968) An experimental model for the study of the antibacterial activity of the sulfonamides. Chemotherapy 13(1):54–60

    Article  CAS  PubMed  Google Scholar 

  • Sanfilippo A, Schioppacassi G (1973) New approach to the evaluation of antibacterial activity of aminosidine. Chemotherapy 18(5):297–303

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Barbour A, Sahre M, Rand KH, Derendorf H (2008) PK/PD: new insights for antibacterial and antiviral applications. Curr Opin Pharmacol 8(5):549–556

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Sabarinath SN, Barbour A, Abbanat D, Manitpisitkul P, Sha S et al (2009) Pharmacokinetic-pharmacodynamic modeling of the in vitro activities of oxazolidinone antimicrobial agents against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53(12):5039–5045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schuck EL, Derendorf H (2005) Pharmacokinetic/pharmacodynamic evaluation of anti-infective agents. Expert Rev Anti Infect Ther 3(3):361–373

    Article  CAS  PubMed  Google Scholar 

  • Tam VH, Ledesma KR, Vo G, Kabbara S, Lim TP, Nikolaou M (2008) Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother 52(11):3987–3993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Treyaprasert W, Schmidt S, Rand KH, Suvanakoot U, Derendorf H (2007) Pharmacokinetic/pharmacodynamic modeling of in vitro activity of azithromycin against four different bacterial strains. Int J Antimicrob Agents 29(3):263–270

    Article  CAS  PubMed  Google Scholar 

  • Tsuji BT, Brown T, Parasrampuria R, Brazeau DA, Forrest A, Kelchlin PA et al (2012a) Front-loaded linezolid regimens result in increased killing and suppression of the accessory gene regulator system of Staphylococcus aureus. Antimicrob Agents Chemother 56(7):3712–3719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuji BT, Bulitta JB, Brown T, Forrest A, Kelchlin PA, Holden PN et al (2012b) Pharmacodynamics of early, high-dose linezolid against vancomycin-resistant enterococci with elevated MICs and pre-existing genetic mutations. J Antimicrob Chemother 67(9):2182–2190

    Article  CAS  PubMed  Google Scholar 

  • Turnidge JD (1998) The pharmacodynamics of beta-lactams. Clin Infect Dis 27(1):10–22

    Article  CAS  PubMed  Google Scholar 

  • Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig WA (1988) Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis 158(4):831–847

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Derendorf H (2010) Pharmacokinetic/pharmacodynamic model-based combination therapy approach to target antibiotic resistant populations emerged from ciprofloxacin exposure. Pharmazie 65(6):417–420

    CAS  PubMed  Google Scholar 

  • Yano Y, Oguma T, Nagata H, Sasaki S (1998) Application of logistic growth model to pharmacodynamic analysis of in vitro bactericidal kinetics. J Pharm Sci 87(10):1177–1183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Derendorf Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, B., Sy, S.K.B., Derendorf, H. (2014). Principles of Applied Pharmacokinetic–Pharmacodynamic Modeling. In: Vinks, A., Derendorf, H., Mouton, J. (eds) Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75613-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75613-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75612-7

  • Online ISBN: 978-0-387-75613-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics