Skip to main content

Normal Cardiac Output, Oxygen Delivery And Oxygen Extraction

  • Conference paper
Oxygen Transport to Tissue XXVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 599))

Abstract

The total amount of blood flow circulating through the heart, lungs and all the tissues of the body represents the cardiac output. Most individual tissues determine their own flow in proportion to their metabolic rate. The skin is a notable exception where the priority is thermal rather than metabolic. Renal blood flow and metabolic rate are related but plasma flow determines metabolic rate rather than metabolic rate determining blood flow. 1 Brain, heart, skeletal muscle and the splanchnic area all vary their blood flows according to local tissue metabolic rate. Summation of peripheral blood flows constitutes venous return and hence cardiac output. Cardiac output is therefore, largely, determined by the metabolic rate of the peripheral tissues; the heart ‘from a flow standpoint, plays a “permissive” role and does not regulate its own output’. 2 This peripheral tissue, largely metabolic, determination of cardiac output has been known for many years. 3,4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.Valtin, Renal Function: Mechanisms Preserving Fluid and Solute Balance in Health and Disease. Ch 6 Renal Hemodynamics and Oxygen Consumption. (Little, Brown and Company, Boston, 1973), pp 177-196.

    Google Scholar 

  2. A. J. Carlson and V. Johnson, The Machinery of the body, Third edition. (The University of Chicago Press, Chicago,1948).

    Google Scholar 

  3. H. D. Green, C. E. Rapela and M. C. Conrad, Resistance (conductance) and capacitance phenomena in terminal vascular beds. In, Handbook of Physiology, Circulation, (Am. Physiol. Soc., Washington D.C, sect. 2, vol. II, chapter. 28, 1963), pp. 935-960.

    Google Scholar 

  4. A. C. Guyton, C. E. Jones and T. G. Coleman, Circulatory Physiology: Cardiac Output and its Regulation, (W. B. Saunders Company, Philadelphia, 1973).

    Google Scholar 

  5. C. B. Wolff. Cardiac output, oxygen consumption and muscle oxygen delivery in submaximal exercise: normal and low O 2 states, Adv. Exp. Med. Biol. 510: 279-284 (2003).

    PubMed  Google Scholar 

  6. A. C. Guyton, Integrated dynamics of the circulation and body fluids. Ch 6, In, Pathologic Physiology: Mechanisms of Disease, edited by W. A. Sodeman and T. M. Sodeman, (W. B. Saunders Co., Philadelphia and London, 1979), pp 169-197

    Google Scholar 

  7. D. E. Donald and J. T. Shepherd, Initial cardiovascular adjustment to exercise in dogs with chronic cardiac denervation, Am J. Physiol. 207(6), 1325-1329 (1964).

    PubMed  CAS  Google Scholar 

  8. L. B. Rowell, Human Circulation: Regulation During Physical Stress (OUP Oxford,. 1986).

    Google Scholar 

  9. L. B. Rowell, Human Cardiovascular Control (OUP Oxford., 1993).

    Google Scholar 

  10. M. D. Koskolou, R. C. Roach, J. A. Calbet, G. Rådegran, and B. Saltin, Cardiovascular responses to dynamic exercise with acute anemia in humans, Am. J. Physiol. 273, H1787-H1793 (1997).

    PubMed  CAS  Google Scholar 

  11. R. C. Roach, M. D. Koskolou, J. A. L. Calbet, and B. Saltin, Arterial O 2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans, Am. J. Physiol. 276, H438-H445 (1999).

    PubMed  CAS  Google Scholar 

  12. J. W. Severinghaus, H. Chiodi, E. I. Eger,B. Brandstater, and T. F. Hornbein, Cerebral blood flow in man at high altitude, Circulation Res. 19, 274-282 (1966).

    PubMed  CAS  Google Scholar 

  13. C. B. Wolff, Cerebral blood flow and oxygen delivery at high altitude, High Altitude Medicine and Biology 1(1), 33-38 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. C. B. Wolff, P. Barry and D. J. Collier, Cardiovascular and respiratory adjustments at altitude sustain cerebral oxygen delivery – Severinghaus revisited, Comp. Bioch. and Physiol. Part A 132, 221-229 (2002).

    Article  Google Scholar 

  15. C. H. E. Imray, A. W. Wright, C. Chan, A. R. Bradwell and the Birmingham Medical Research and Expeditionary Society (BMRES), 3% carbon dioxide increases cerebral oxygen delivery when breathing hypoxic gas mixtures, High Altitude Med. Biol. 3(1), p106 A31 2002 (abstract).

    Google Scholar 

  16. C. H. E. Imray, S. Walsh, T. Clarke, H. Hoar, T. C. Harvey, C. W. M. Chan, P. J. G. Forster and the BMRES, 3% Carbon dioxide increases cerebral oxygen delivery at 150m & 3549m, High Altitude Med. Biol. 3( 1), p 106 A32 ( 2002) (abstract).

    Google Scholar 

  17. C. H. E. Imray, H. Hoar, A. D. Wright, A. R. Bradwell C. Chan, and the BMRES, Cerebral oxygen delivery falls with voluntary forced hyperventilation at altitude, High Altitude Med. Biol. 3(1), p106 A33 (2002) (abstract).

    Google Scholar 

  18. C. B. Wolff, and C. H. E. Imray, Partitioning of arterial and venous volumes in the brain under hypoxic conditions, Adv. Exp. Med. Biol. 540,19-23 (2004).

    Google Scholar 

  19. C. B. Wolff, N. Richardson, O. Kemp, A. Kuttler, R. McMorrow, N. Hart and C. H. E. Imray, Near infra-red spectroscopy and arterial oxygen extraction at altitude, Adv. Exp. Med. Biol., 599, 183-187.

    Google Scholar 

  20. R. R. Martinez, S. Setty, P. Zong, J.D.Tune and H.F.Downey, Nitric oxide contributes to right coronary vasodilatation during systemic hypoxia, Am. J. Physiol. 288(3), H1139-H1146 (2005).

    CAS  Google Scholar 

  21. B. Folkow and E. Neil, Circulation (Oxford University Press, London, Toronto, 1971).

    Google Scholar 

  22. J. A. Guzman, A. E. Rosado and J. A. Kruse, Dopamine-1 receptor stimulation impairs intestinal oxygen utilization during critical hypoperfusion, Am. J. Physiol. 284, H668-H675 (2003).

    CAS  Google Scholar 

  23. A. Krogh, The Anatomy and Physiology of Capillaries (Hafner Publishing Co., New York, 1959).

    Google Scholar 

  24. M. McCabe and D. J. Maguire, The measurement of the diffusion coefficient of oxygen through small volumes of viscous solution: implications for the flux of oxygen through tissues, Adv. Exp. Med. Biol. 316, 467-473 (1992).

    PubMed  CAS  Google Scholar 

  25. B. R. Duling and R. M. Berne, Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow, Circulation Res. 27, 669-678 (1970).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Wolff, C.B. (2008). Normal Cardiac Output, Oxygen Delivery And Oxygen Extraction. In: Maguire, D.J., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXVIII. Advances in Experimental Medicine and Biology, vol 599. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71764-7_23

Download citation

Publish with us

Policies and ethics