Skip to main content

Monoamine Transporters in the Brain

Structure and Function

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Monoamine transporters mediate the uptake of serotonin (SERT), norepinephrine (NET), and dopamine (DAT). They are closely related, share many conserved sequence elements and thus overlapping specificities for binding of inhibitors and substrates. The transporter is thought to undergo a conformational cycle that allows for transmembrane translocation of the monoamine substrate and the cosubstrate ions Na+ and Cl. In addition, transporters are known to support currents that are substantially larger than those anticipated from the movement of charges during a translocation cycle. The recently solved structure of the distantly related bacterial leucine transporter (LeuTAa) offers insights that allow to reconcile the channel-like mode in which transporters can operate with the original alternate access model. Access to the substrate and cosubstrate permeation pathway is shielded by juxtamembrane residues, which can operate as gates. When simultaneously open, they allow for large ion fluxes which give rise to excess currents. SERT, NET, and DAT and the other (related) members of the Na+-dependent neurotransmitter family form constitutive oligomers. Oligomerization is a prerequisite for export of the proteins from the endoplasmic reticulum (ER) because it supports the recruitment of COPII components, most notably Sec24-family members. In addition, the action of amphetamines which induce reverse transport and thus monoamine efflux is proposed to be contingent on the oligomeric assembly of transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

COPII:

coat protein II

DAT:

dopamine transporter

ER:

endoplasmic reticulum

ERES:

ER exit sites

FRET:

Fluorescence resonance energy transfer

GABA:

γ‐amino butyric acid

GAT1:

GABA transporter 1

GEF:

guanine nucleotide exchange factor

5‐HT:

serotonin

LeuTAa :

leucine transporter

MDMA:

methylene‐dioxymethamphetamine

MTS:

methanethiosulfonate

MTSEA:

MTS ethylammonium

MTSET:

MTS‐ethyltrimethylammonium

MTSES:

MTS‐ethylsulfonate

NET:

norepinephrine transporter

PCA:

para‐chloroamphetamine

SERT:

serotonin transporter

SNAP25:

synaptosomal‐associated protein of 25 kDa

TM:

transmembrane domain

VAMP:

vesicle associated membrane protein

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, et al. 2003. Structure and mechanism of the lactose permease of Escherichia coli. Science 301: 610–615.

    CAS  PubMed  Google Scholar 

  • Accardi A, Miller C. 2004. Secondary active transport mediated by a prokaryotic homologue of ClC Cl-channels. Nature 427: 803–807.

    CAS  PubMed  Google Scholar 

  • Adams SV, DeFelice LJ. 2002. Flux coupling in the human serotonin transporter. Biophys J 83: 3268–3282.

    CAS  PubMed  Google Scholar 

  • Adams SV, DeFelice LJ. 2003. Ionic currents in the human serotonin transporter reveal inconsistencies in the alternating access hypothesis. Biophys J 85: 1548–1559.

    CAS  PubMed  Google Scholar 

  • Amara SG, Kuhar MJ. 1993. Neurotransmitter transporters: Recent progress. Annu Rev Neurosci 16: 73–93.

    CAS  PubMed  Google Scholar 

  • Androutsellis-Theotokis A, Ghassemi F, Rudnick G. 2001. A conformationally sensitive residue on the cytoplasmic surface of serotonin transporter. J Biol Chem 276: 45933–45938.

    CAS  PubMed  Google Scholar 

  • Androutsellis-Theotokis A, Goldberg NR, Ueda K, Beppu T, Beckman ML, et al. 2003. Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters. J Biol Chem 278: 12703–12709.

    CAS  PubMed  Google Scholar 

  • Androutsellis-Theotokis A, Rudnick G. 2002. Accessibility and conformational coupling in serotonin transporter predicted internal domains. J Neurosci 22: 8370–8378.

    CAS  PubMed  Google Scholar 

  • Axelrod J. 1971. Noradrenaline: Fate and control of its biosynthesis. Science 173: 598–606.

    CAS  PubMed  Google Scholar 

  • Axelrod J, Whitby LG, Hertting G. 1961. Effect of psychotropic drugs on the uptake of 3H-norepinephrine by tissues. Science 133: 383–384.

    CAS  PubMed  Google Scholar 

  • Beckman ML, Quick MW. 2001. Substrates and temperature differentiate ion flux from serotonin flux in a serotonin transporter. Neuropharmacology 40: 526–535.

    CAS  PubMed  Google Scholar 

  • Bendahan A, Kanner BI. 1993. Identification of domains of a cloned rat brain GABA transporter which are not required for its functional expression. FEBS Lett 318: 41–44.

    CAS  PubMed  Google Scholar 

  • Berfield JL, Wang LC, Reith ME. 1999. Which form of dopamine is the substrate for the human dopamine transporter: The cationic or the uncharged species? J Biol Chem 274: 4876–4882.

    CAS  PubMed  Google Scholar 

  • Birkmayer W, Hornykiewicz O. 1961. The l-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien Klin Wochenschr 73: 787–788.

    CAS  PubMed  Google Scholar 

  • Bönisch H, Trendelenburg U. 1989. The mechanism of action of indirectly acting sympathomimetic amines. Handbook of Experimental Pharmacology: Catecholamines. Trendelenburg U, Weiner N, editors. Berlin, Hamburg, New York: Springer; pp. 247–277.

    Google Scholar 

  • Browman KE, Kantor L, Richardson S, Badiani A, Robinson TE, et al. 1998. Injection of the protein kinase C inhibitor Ro31–8220 into the nucleus accumbens attenuates the acute response to amphetamine: Tissue and behavioral studies. Brain Res 814: 112–119.

    CAS  PubMed  Google Scholar 

  • Bruns D, Engert F, Lux H-D. 1993. A fast activating presynaptic reuptake current during serotonergic transmission in identified neurons of Hirudo. Neuron 10: 559–572.

    CAS  PubMed  Google Scholar 

  • Bruss M, Hammermann R, Brimijoin S, Bonisch H. 1995. Antipeptide antibodies confirm the topology of the human norepinephrine transporter. J Biol Chem 270: 9197–9201.

    CAS  PubMed  Google Scholar 

  • Busch W, Saier MH Jr. 2002. The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol 37: 287–337.

    CAS  PubMed  Google Scholar 

  • Cao Y, Li M, Mager S, Lester HA. 1998. Amino acid residues that control pH modulation of transport-associated current in mammalian serotonin transporters. J Neurosci 18: 7739–7749.

    CAS  PubMed  Google Scholar 

  • Cao Y, Mager S, Lester HA. 1997. H+ permeation and pH regulation at a mammalian serotonin transporter. J Neurosci 17: 2257–2266.

    CAS  PubMed  Google Scholar 

  • Carlsson A. 2001. A half-century of neurotransmitter research: Impact on neurology and psychiatry (Nobel lecture). Chembiochem 2: 484–493.

    CAS  PubMed  Google Scholar 

  • Carvelli L, McDonald PW, Blakely RD, DeFelice LJ. 2004. Dopamine transporters depolarize neurons by a channel mechanism. Proc Natl Acad Sci USA 101: 16046–16051.

    CAS  PubMed  Google Scholar 

  • Chen F, Larsen MB, Neubauer HA, Sanchez C, Plenge P, et al. 2005. Characterization of an allosteric citalopram-binding site at the serotonin transporter. J Neurochem 92: 21–28.

    CAS  PubMed  Google Scholar 

  • Chen JG, Liu CS, Rudnick G. 1997. External cysteine residues in the serotonin transporter. Biochemistry 36: 1479–1486.

    CAS  PubMed  Google Scholar 

  • Chen JG, Liu CS, Rudnick G. 1998. Determination of external loop topology in the serotonin transporter by site-directed chemical labeling. J Biol Chem 273: 12675–12681.

    CAS  PubMed  Google Scholar 

  • Chen N, Reith ME. 2000. Structure and function of the dopamine transporter. Eur J Pharmacol 405: 329–339.

    CAS  PubMed  Google Scholar 

  • Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, Ince E, et al. 1995. The dopamine transporter: Immunochemical characterization and localization in brain. J Neurosci 15: 1714–1723.

    CAS  PubMed  Google Scholar 

  • Cool DR, Leibach FH, Bhalla VK, Mahesh VB, Ganapathy V. 1991. Expression and cyclic AMP-dependent regulation of a high affinity serotonin transporter in the human placental choriocarcinoma cell line (JAR). J Biol Chem 266: 15750–15757.

    CAS  PubMed  Google Scholar 

  • Cornea RL, Autry JM, Chen Z, Jones LR. 2000. Reexamination of the role of the leucine/isoleucine zipper residues of phospholamban in inhibition of the Ca2+ pump of cardiac sarcoplasmic reticulum. J Biol Chem 275: 41487–41494.

    CAS  PubMed  Google Scholar 

  • Dale H. 1935. Reizübertragung durch chemische Mittel im peripheren Nervensystem. Urban & Schwarzenberg. Berlin: Wien; pp. 1–23.

    Google Scholar 

  • DeFelice LJ, Adams SV, Ypey DL. 2001. Single-file diffusion and neurotransmitter transporters: Hodgkin and Keynes model revisited. Biosystems 62: 57–66.

    CAS  PubMed  Google Scholar 

  • DeFelice LJ, Blakely RD. 1996. Pore models for transporters? Biophys J 70: 579–580.

    CAS  PubMed  Google Scholar 

  • DeFelice LJ, Galli A. 1998. Electrophysiological analysis of transporter function. Adv Pharmacol 42: 186–190.

    CAS  PubMed  Google Scholar 

  • Distelmaier F, Wiedemann P, Bruss M, Bonisch H. 2004. Functional importance of the C-terminus of the human norepinephrine transporter. J Neurochem 91: 537–546.

    CAS  PubMed  Google Scholar 

  • Eisenhofer G. 2001. The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 91: 35–62.

    CAS  PubMed  Google Scholar 

  • Ellgaard L, Helenius A. 2003. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4: 181–191.

    CAS  PubMed  Google Scholar 

  • Elling CE, Nielsen SM, Schwartz TW. 1995. Conversion of antagonist-binding site to metal-ion site in the tachykinin NK-1 receptor. Nature 374: 74–77.

    CAS  PubMed  Google Scholar 

  • Elling CE, Schwartz TW. 1996. Connectivity and orientation of the seven helical bundle in the tachykinin NK-1 receptor probed by zinc site engineering. EMBO J 15: 6213–6219.

    CAS  PubMed  Google Scholar 

  • Falkenburger BH, Barstow KL, Mintz IM. 2001. Dendrodendritic inhibition through reversal of dopamine transport. Science 293: 2465–2470.

    CAS  PubMed  Google Scholar 

  • Farhan H, Korkhov VM, Paulitschke V, Dorostkar MM, Scholze P, et al. 2004. Two discontinuous segments in the carboxy terminus are required for membrane targeting of the rat GABA transporter-1 (GAT1). J Biol Chem 279: 28553–28563.

    CAS  PubMed  Google Scholar 

  • Ferrer JV, Javitch JA. 1998. Cocaine alters the accessibility of endogenous cysteines in putative extracellular and intracellular loops of the human dopamine transporter. Proc Natl Acad Sci USA 95: 9238–9243.

    CAS  PubMed  Google Scholar 

  • Fog JU, Khoshbouei H, Holy M, Owens WA, Vaegter CB, Sen N, Nikandrova Y, Bowton E, McMahon DG, Colbran RJ, Daws LC, Sitte HH, Javitch JA, Galli A, Gether U. 2006. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51: 417-429.

    Google Scholar 

  • Forster R, Weiss M, Zimmermann T, Reynaud EG, Verissimo F, et al. 2006. Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr Biol 16: 173–179.

    CAS  PubMed  Google Scholar 

  • Freed C, Revay R, Vaughan RA, Kriek E, Grant S, et al. 1995. Dopamine transporter immunoreactivity in rat brain. J Comp Neurol 359: 340–349.

    CAS  PubMed  Google Scholar 

  • Galli A, Blakely RD, DeFelice LJ. 1996. Norepinephrine transporters have channel modes of conduction. Proc Natl Acad Sci USA 93: 8671–8676.

    CAS  PubMed  Google Scholar 

  • Galli A, Blakely RD, DeFelice LJ. 1998. Patch-clamp and amperometric recordings from norepinephrine transporters: Channel activity and voltage-dependent uptake. Proc Natl Acad Sci USA 95: 13260–13265.

    CAS  PubMed  Google Scholar 

  • Galli A, DeFelice LJ, Duke BJ, Moore KR, Blakely RD. 1995. Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J Exp Biol 198: 2197–2212.

    CAS  PubMed  Google Scholar 

  • Gether U. 2000. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21: 90–113.

    CAS  PubMed  Google Scholar 

  • Gether U, Norregaard L, Loland CJ. 2001. Delineating structure–function relationships in the dopamine transporter from natural and engineered Zn2+ binding sites. Life Sci 68: 2187–2198.

    CAS  PubMed  Google Scholar 

  • Giros B, el Mestikawy S, Bertrand L, Caron MG. 1991. Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295: 149–154.

    CAS  PubMed  Google Scholar 

  • Gnegy ME. 2003. The effect of phosphorylation on amphetamine-mediated outward transport. Eur J Pharmacol 479: 83–91.

    CAS  PubMed  Google Scholar 

  • Graham D, Esnaud H, Langer SZ. 1991. Characterization and purification of the neuronal sodium-ion-coupled 5-hydroxytryptamine transporter. Biochem Soc Trans 19: 99–102.

    CAS  PubMed  Google Scholar 

  • Graham D, Esnaud H, Langer SZ. 1992. Partial purification and characterization of the sodium-ion-coupled 5-hydroxytryptamine transporter of rat cerebral cortex. Biochem J 286 (Pt. 3): 801–805.

    CAS  PubMed  Google Scholar 

  • Granas C, Ferrer J, Loland CJ, Javitch JA, Gether U. 2003. N-terminal truncation of the dopamine transporter abolishes phorbol ester- and substance P receptor-stimulated phosphorylation without impairing transporter internalization. J Biol Chem 278: 4990–5000.

    PubMed  Google Scholar 

  • Gu HH, Ahn J, Caplan MJ, Blakely RD, Levey AI, et al. 1996a. Cell-specific sorting of biogenic amine transporters expressed in epithelial cells. J Biol Chem 271: 18100–18106.

    CAS  Google Scholar 

  • Gu HH, Wall S, Rudnick G. 1996b. Ion coupling stoichiometry for the norepinephrine transporter in membrane vesicles from stably transfected cells. J Biol Chem 271: 6911–6916.

    CAS  Google Scholar 

  • Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, et al. 1990. Cloning and expression of a rat brain GABA transporter. Science 249: 1303–1306.

    CAS  PubMed  Google Scholar 

  • Habert E, Graham D, Langer SZ. 1986. Solubilization and characterization of the 5-hydroxytryptamine transporter complex from rat cerebral cortical membranes. Eur J Pharmacol 122: 197–204.

    CAS  PubMed  Google Scholar 

  • Hahn MK, Robertson D, Blakely RD. 2003. A mutation in the human norepinephrine transporter gene (SLC6A2) associated with orthostatic intolerance disrupts surface expression of mutant and wild-type transporters. J Neurosci 23: 4470–4478.

    CAS  PubMed  Google Scholar 

  • Harata NC, Choi S, Pyle JL, Aravanis AM, Tsien RW. 2006. Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods. Neuron 49: 243–256.

    CAS  PubMed  Google Scholar 

  • Hastrup H, Karlin A, Javitch JA. 2001. Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment. Proc Natl Acad Sci USA 98: 10055–10060.

    CAS  PubMed  Google Scholar 

  • Hebert DN, Carruthers A. 1992. Glucose transporter oligomeric structure determines transporter function. Reversible redox-dependent interconversions of tetrameric and dimeric GLUT1. J Biol Chem 267: 23829–23838.

    CAS  PubMed  Google Scholar 

  • Heldin CH. 1995. Dimerization of cell surface receptors in signal transduction. Cell 80: 213–223.

    CAS  PubMed  Google Scholar 

  • Hilber B, Scholze P, Dorostkar MM, Sandtner W, Holy M, Boehm S, Singer EA, Sitte HH. 2005. Serotonin-transporter mediated efflux: A pharmacological analysis of amphetamines and non-amphetamines. Neuropharmacology 49: 811-819.

    CAS  PubMed  Google Scholar 

  • Hoffman BJ, Palkovits M, Pacak K, Hansson SR, Mezey E. 1998. Regulation of dopamine transporter mRNA levels in the central nervous system. Adv Pharmacol 42: 202–206.

    CAS  PubMed  Google Scholar 

  • Horiuchi M, Nicke A, Gomeza J, Aschrafi A, Schmalzing G, et al. 2001. Surface-localized glycine transporters 1 and 2 function as monomeric proteins in Xenopus oocytes. Proc Natl Acad Sci USA 98: 1448–1453.

    CAS  PubMed  Google Scholar 

  • Horschitz S, Hummerich R, Schloss P. 2003. Functional coupling of serotonin and noradrenaline transporters. J Neurochem 86: 958–965.

    CAS  PubMed  Google Scholar 

  • Huang Y, Lemieux MJ, Song J, Auer M, Wang DN. 2003. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301: 616–620.

    CAS  PubMed  Google Scholar 

  • Humphreys CJ, Wall SC, Rudnick G. 1994. Ligand binding to the serotonin transporter: Equilibria, kinetics, and ion dependence. Biochemistry 33: 9118–9125.

    CAS  PubMed  Google Scholar 

  • Ingram SL, Prasad BM, Amara SG. 2002. Dopamine transporter-mediated conductances increase excitability of midbrain dopamine neurons. Nat Neurosci 5: 971–978.

    CAS  PubMed  Google Scholar 

  • Iversen L. 2000. Neurotransmitter transporters: Fruitful targets for CNS drug discovery. Mol Psychiatry 5: 357–362.

    CAS  PubMed  Google Scholar 

  • Jardetzky O. 1966. Simple allosteric model for membrane pumps. Nature 211: 969–970.

    CAS  PubMed  Google Scholar 

  • Just H, Sitte HH, Schmid JA, Freissmuth M, Kudlacek O. 2004. Identification of an additional interaction domain in transmembrane domains 11 and 12 that supports oligomer formation in the human serotonin transporter. J Biol Chem 279: 6650–6657.

    CAS  PubMed  Google Scholar 

  • Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, et al. 2005. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci USA 102: 3495–3500.

    CAS  PubMed  Google Scholar 

  • Kamdar G, Penado KM, Rudnick G, Stephan MM. 2001. Functional role of critical stripe residues in transmembrane span 7 of the serotonin transporter. Effects of Na+, Li+, and methanethiosulfonate reagents. J Biol Chem 276: 4038–4045.

    CAS  PubMed  Google Scholar 

  • Kantor L, Gnegy ME. 1998. Protein kinase C inhibitors block amphetamine-mediated dopamine release in rat striatal slices. J Pharmacol Exp Ther 284: 592–598.

    CAS  PubMed  Google Scholar 

  • Kantor L, Hewlett GH, Park YH, Richardson-Burns SM, Mellon MJ, et al. 2001. Protein kinase C and intracellular calcium are required for amphetamine-mediated dopamine release via the norepinephrine transporter in undifferentiated PC12 cells. J Pharmacol Exp Ther 297: 1016–1024.

    CAS  PubMed  Google Scholar 

  • Karlin A, Akabas MH. 1998. Substituted-cysteine accessibility method. Methods Enzymol 293: 123–145.

    CAS  PubMed  Google Scholar 

  • Keyes SR, Rudnick G. 1982. Coupling of transmembrane proton gradients to platelet serotonin transport. J Biol Chem 257: 1172–1176.

    CAS  PubMed  Google Scholar 

  • Khoshbouei H, Sen N, Guptaroy B, Johnson L, Lund D, et al. 2004. N-terminal phosphorylation of the dopamine transporter is required for amphetamine-induced efflux. PLoS Biol 2: E78.

    PubMed  Google Scholar 

  • Kocabas AM, Rudnick G, Kilic F. 2003. Functional consequences of homo- but not hetero-oligomerization between transporters for the biogenic amine neurotransmitters. J Neurochem 85: 1513–1520.

    CAS  PubMed  Google Scholar 

  • Korkhov VM, Farhan H, Freissmuth M, Sitte HH. 2004. Oligomerization of the {gamma}-aminobutyric acid transporter-1 is driven by an interplay of polar and hydrophobic interactions in transmembrane helix II. J Biol Chem 279: 55728–55736.

    CAS  PubMed  Google Scholar 

  • Korkhov VM, Holy M, Freissmuth M, Sitte HH. 2006. The conserved glutamate (Glu136) in transmembrane domain 2 of the serotonin transporter is required for the conformational switch in the transport cycle. J Biol Chem 281: 13439–13448.

    CAS  PubMed  Google Scholar 

  • Kuhar MJ, Ritz MC, Boja JW. 1991. The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14: 299–302.

    CAS  PubMed  Google Scholar 

  • Launay JM, Geoffroy C, Mutel V, Buckle M, Cesura A, et al. 1992. One-step purification of the serotonin transporter located at the human platelet plasma membrane. J Biol Chem 267: 11344–11351.

    CAS  PubMed  Google Scholar 

  • Lester HA, Cao Y, Mager S. 1996. Listening to neurotransmitter transporters. Neuron 17: 807–810.

    CAS  PubMed  Google Scholar 

  • Lester HA, Mager S, Quick MW, Corey JL. 1994. Permeation properties of neurotransmitter transporters. Annu Rev Pharmacol Toxicol 34: 219–249.

    CAS  PubMed  Google Scholar 

  • Levi G, Raiteri M. 1993. Carrier-mediated release of neurotransmitters. Trends Neurosci 16: 415–419.

    CAS  PubMed  Google Scholar 

  • Liu Y, Peter D, Roghani A, Schuldiner S, Prive GG, et al. 1992. A cDNA that suppresses MPP + toxicity encodes a vesicular amine transporter. Cell 70: 539–551.

    CAS  PubMed  Google Scholar 

  • Loland CJ, Norregaard L, Gether U. 1999. Defining proximity relationships in the tertiary structure of the dopamine transporter. Identification of a conserved glutamic acid as a third coordinate in the endogenous Zn(2+)-binding site. J Biol Chem 274: 36928–36934.

    CAS  PubMed  Google Scholar 

  • Lopez-Corcuera B, Alcantara R, Vazquez J, Aragon C. 1993. Hydrodynamic properties and immunological identification of the sodium- and chloride-coupled glycine transporter. J Biol Chem 268: 2239–2243.

    CAS  PubMed  Google Scholar 

  • MacKenzie KR, Engelman DM. 1998. Structure-based prediction of the stability of transmembrane helix-helix interactions: The sequence dependence of glycophorin A dimerization. Proc Natl Acad Sci USA 95: 3583–3590.

    CAS  PubMed  Google Scholar 

  • MacKinnon R. 2003. Potassium channels. FEBS Lett 555: 62–65.

    CAS  PubMed  Google Scholar 

  • Mager S, Min C, Henry DJ, Chavkin C, Hoffman BJ, et al. 1994. Conducting states of a mammalian serotonin transporter. Neuron 12: 845–859.

    CAS  PubMed  Google Scholar 

  • Meinild AK, Sitte HH, Gether U. 2004. Zinc potentiates an uncoupled anion conductance associated with the dopamine transporter. J Biol Chem 279: 49671–49679.

    CAS  PubMed  Google Scholar 

  • Mezey E, Eisenhofer G, Hansson S, Hunyady B, Hoffman BJ. 1998. Dopamine produced by the stomach may act as a paracrine/autocrine hormone in the rat. Neuroendocrinology 67: 336–348.

    CAS  PubMed  Google Scholar 

  • Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S, et al. 2003. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114: 497–509.

    CAS  PubMed  Google Scholar 

  • Miranda M, Sorkina T, Grammatopoulos TN, Zawada WM, Sorkin A. 2004. Multiple molecular determinants in the carboxyl terminus regulate dopamine transporter export from endoplasmic reticulum. J Biol Chem 279: 30760–30770.

    CAS  PubMed  Google Scholar 

  • Mossessova E, Bickford LC, Goldberg J. 2003. SNARE selectivity of the COPII coat. Cell 114: 483–495.

    CAS  PubMed  Google Scholar 

  • Nelson PJ, Rudnick G. 1979. Coupling between platelet 5-hydroxytryptamine and potassium transport. J Biol Chem 254: 10084–10089.

    CAS  PubMed  Google Scholar 

  • Nelson PJ, Rudnick G. 1982. The role of chloride ion in platelet serotonin transport. J Biol Chem 257: 6151–6155.

    CAS  PubMed  Google Scholar 

  • Nirenberg MJ, Chan J, Pohorille A, Vaughan RA, Uhl GR, et al. 1997a. The dopamine transporter: Comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens. J Neurosci 17: 6899–6907.

    CAS  Google Scholar 

  • Nirenberg MJ, Chan J, Vaughan RA, Uhl GR, Kuhar MJ, et al. 1997b. Immunogold localization of the dopamine transporter: An ultrastructural study of the rat ventral tegmental area. J Neurosci 17: 5255–5262.

    CAS  Google Scholar 

  • Norregaard L, Frederiksen D, Nielsen EO, Gether U. 1998. Delineation of an endogenous zinc-binding site in the human dopamine transporter. EMBO J 17: 4266–4273.

    CAS  PubMed  Google Scholar 

  • Norregaard L, Visiers I, Loland CJ, Ballesteros J, Weinstein H, et al. 2000. Structural probing of a microdomain in the dopamine transporter by engineering of artificial Zn2+ binding sites. Biochemistry 39: 15836–15846.

    CAS  PubMed  Google Scholar 

  • Orci L, Ravazzola M, Meda P, Holcomb C, Moore HP, et al. 1991. Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. Proc Natl Acad Sci USA 88: 8611–8615.

    CAS  PubMed  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG. 1991. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350: 350–354.

    CAS  PubMed  Google Scholar 

  • Perego C, Bulbarelli A, Longhi R, Caimi M, Villa A, et al. 1997. Sorting of two polytopic proteins, the gamma-aminobutyric acid and betaine transporters, in polarized epithelial cells. J Biol Chem 272: 6584–6592.

    CAS  PubMed  Google Scholar 

  • Petersen CI, DeFelice LJ. 1999. Ionic interactions in the Drosophila serotonin transporter identify it as a serotonin channel. Nat Neurosci 2: 605–610.

    CAS  PubMed  Google Scholar 

  • Popot JL, Engelman DM. 1990. Membrane protein folding and oligomerization: The two-stage model. Biochemistry 29: 4031–4037.

    CAS  PubMed  Google Scholar 

  • Popot JL, Engelman DM. 2000. Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 69: 881–922.

    CAS  PubMed  Google Scholar 

  • Pothos EN, Sulzer D. 1998. Modulation of quantal dopamine release by psychostimulants. Adv Pharmacol 42: 198–202.

    CAS  PubMed  Google Scholar 

  • Qian Y, Galli A, Ramamoorthy S, Risso S, DeFelice LJ, et al. 1997. Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression. J Neurosci 17: 45–57.

    CAS  PubMed  Google Scholar 

  • Qian Y, Melikian HE, Rye DB, Levey AI, Blakely RD. 1995. Identification and characterization of antidepressant-sensitive serotonin transporter proteins using site-specific antibodies. J Neurosci 15: 1261–1274.

    CAS  PubMed  Google Scholar 

  • Quick MW. 2003. Regulating the conducting states of a mammalian serotonin transporter. Neuron 40: 537–549.

    CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Blakely RD. 1999. Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285: 763–766.

    CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang FT, et al. 1993a. Antidepressant- and cocaine-sensitive human serotonin transporter: Molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA 90: 2542–2546.

    CAS  Google Scholar 

  • Ramamoorthy S, Cool DR, Leibach FH, Mahesh VB, Ganapathy V. 1992. Reconstitution of the human placental 5-hydroxytryptamine transporter in a catalytically active form after detergent solubilization. Biochem J 286 (Pt. 1): 89–95.

    CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Leibach FH, Mahesh VB, Ganapathy V. 1993b. Partial purification and characterization of the human placental serotonin transporter. Placenta 14: 449–461.

    CAS  Google Scholar 

  • Rasmussen SG, Carroll FI, Maresch MJ, Jensen AD, Tate CG, et al. 2001. Biophysical characterization of the cocaine binding pocket in the serotonin transporter using a fluorescent cocaine analogue as a molecular reporter. J Biol Chem 276: 4717–4723.

    CAS  PubMed  Google Scholar 

  • Reddy LG, Jones LR, Thomas DD. 1999. Depolymerization of phospholamban in the presence of calcium pump: A fluorescence energy transfer study. Biochemistry 38: 3954–3962.

    CAS  PubMed  Google Scholar 

  • Reith ME, Berfield JL, Wang LC, Ferrer JV, Javitch JA. 2001. The uptake inhibitors cocaine and benztropine differentially alter the conformation of the human dopamine transporter. J Biol Chem 276: 29012–29018.

    CAS  PubMed  Google Scholar 

  • Rudnick G. 2002. Mechanism of biogenic amine neurotransmitter transporters. Neurotransmitter Transporters: Structure, Function, and Regulation. Reith MEA, editor. Totowa, NJ: Humana Press Inc.; pp. 25–52.

    Google Scholar 

  • Rudnick G. 2006. Structure/function relationship in serotonin transporter. Neurotransmitter Transporters. Sitte HH, Freissmuth M, editors. Berlin, Heidelberg: Springer-Verlag; pp. 59–73.

    Google Scholar 

  • Rudnick G, Clark J. 1993. From synapse to vesicle: The reuptake and storage of biogenic amine neurotransmitters. Biochim Biophys Acta 1144: 249–263.

    CAS  PubMed  Google Scholar 

  • Rudnick G, Kirk KL, Fishkes H, Schuldiner S. 1989. Zwitterionic and anionic forms of a serotonin analog as transport substrates. J Biol Chem 264: 14865–14868.

    CAS  PubMed  Google Scholar 

  • Sanchez C, Bergqvist PB, Brennum LT, Gupta S, Hogg S, et al. 2003. Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology (Berl) 167: 353–362.

    CAS  Google Scholar 

  • Sato K, Nakano A. 2004. Reconstitution of coat protein complex II (COPII) vesicle formation from cargo-reconstituted proteoliposomes reveals the potential role of GTP hydrolysis by Sar1p in protein sorting. J Biol Chem 279: 1330–1335.

    CAS  PubMed  Google Scholar 

  • Sato K, Nakano A. 2005. Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat Struct Mol Biol 12: 167–174.

    CAS  PubMed  Google Scholar 

  • Schmid JA, Just H, Sitte HH. 2001a. Impact of oligomerization on the function of the human serotonin transporter. Biochem Soc Trans 29: 732–736.

    CAS  Google Scholar 

  • Schmid JA, Scholze P, Kudlacek O, Freissmuth M, Singer EA, et al. 2001b. Oligomerization of the human serotonin transporter and of the rat GABA transporter 1 visualized by fluorescence resonance energy transfer microscopy in living cells. J Biol Chem 276: 3805–3810.

    CAS  Google Scholar 

  • Scholze P, Freissmuth M, Sitte HH. 2002. Mutations within an intramembrane leucine heptad repeat disrupt oligomer formation of the rat GABA transporter 1. J Biol Chem 277: 43682–43690.

    CAS  PubMed  Google Scholar 

  • Schroeter S, Apparsundaram S, Wiley RG, Miner LH, Sesack SR., et al. 2000. Immunolocalization of the cocaine- and antidepressant-sensitive l-norepinephrine transporter. J Comp Neurol 420: 211–232.

    CAS  PubMed  Google Scholar 

  • Schroeter S, Levey AI, Blakely RD. 1997. Polarized expression of the antidepressant-sensitive serotonin transporter in epinephrine-synthesizing chromaffin cells of the rat adrenal gland. Mol Cell Neurosci 9: 170-184.

    CAS  PubMed  Google Scholar 

  • Seidel S, Singer EA, Just H, Farhan H, Scholze P, et al. 2005. Amphetamines take two to tango: An oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67: 140–151.

    CAS  PubMed  Google Scholar 

  • Seiden LS, Sabol KE, Ricaurte GA. 1993. Amphetamine: Effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33: 639–677.

    CAS  PubMed  Google Scholar 

  • Sen N, Shi L, Beuming T, Weinstein H, Javitch JA. 2005. A pincer-like configuration of TM2 in the human dopamine transporter is responsible for indirect effects on cocaine binding. Neuropharmacology 49: 780–790.

    CAS  PubMed  Google Scholar 

  • Shannon JR, Flattem NL, Jordan J, Jacob G, Black BK, et al. 2000. Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N Engl J Med 342: 541–549.

    CAS  PubMed  Google Scholar 

  • Sitte HH, Farhan H, Javitch JA. 2004. Sodium-dependent neurotransmitter transporters: Oligomerization as a determinant of transporter function and trafficking. Mol Intervent 4: 38–47.

    CAS  Google Scholar 

  • Sitte HH, Freissmuth M. 2003. Oligomer formation by Na + Cl–coupled neurotransmitter transporters. Eur J Pharmacol 479: 229–236.

    CAS  PubMed  Google Scholar 

  • Sitte HH, Hiptmair B, Zwach J, Pifl C, Singer EA, et al. 2001. Quantitative analysis of inward and outward transport rates in cells stably expressing the cloned human serotonin transporter: Inconsistencies with the hypothesis of facilitated exchange diffusion. Mol Pharmacol 59: 1129–1137.

    CAS  PubMed  Google Scholar 

  • Sitte HH, Huck S, Reither H, Boehm S, Singer EA, et al. 1998. Carrier-mediated release, transport rates, and charge transfer induced by amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. J Neurochem 71: 1289–1297.

    CAS  PubMed  Google Scholar 

  • Sonders MS, Amara SG. 1996. Channels in transporters. Curr Opin Neurobiol 6: 294–302.

    CAS  PubMed  Google Scholar 

  • Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG. 1997. Multiple ionic conductances of the human dopamine transporter: The actions of dopamine and psychostimulants. J Neurosci 17: 960–974.

    CAS  PubMed  Google Scholar 

  • Sorkina T, Doolen S, Galperin E, Zahniser NR, Sorkin A. 2003. Oligomerization of dopamine transporters visualized in living cells by FRET microscopy. J Biol Chem 278: 28274–28283.

    CAS  PubMed  Google Scholar 

  • Stagg SM, Gurkan C, Fowler DM, LaPointe P, Foss TR, et al. 2006. Structure of the Sec13/31 COPII coat cage. Nature 439: 234–238.

    CAS  PubMed  Google Scholar 

  • Sugamori KS, Lee FJ, Pristupa ZB, Niznik HB. 1999. A cognate dopamine transporter-like activity endogenously expressed in a COS-7 kidney-derived cell line. FEBS Lett 451: 169–174.

    CAS  PubMed  Google Scholar 

  • Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, et al. 1995. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15: 4102–4108.

    CAS  PubMed  Google Scholar 

  • Sulzer D, Galli A. 2003. Dopamine transport currents are promoted from curiosity to physiology. Trends Neurosci 26: 173–176.

    CAS  PubMed  Google Scholar 

  • Sulzer D, Rayport S. 1990. Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: A mechanism of action. Neuron 5: 797–808.

    CAS  PubMed  Google Scholar 

  • Sulzer D, Rayport S. 2000. Dale's principle and glutamate corelease from ventral midbrain dopamine neurons. Amino Acids 19: 45–52.

    CAS  PubMed  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A. 2005. Mechanisms of neurotransmitter release by amphetamines: A review. Prog Neurobiol 75: 406–433.

    CAS  PubMed  Google Scholar 

  • Sur C, Betz H, Schloss P. 1996. Immunocytochemical detection of the serotonin transporter in rat brain. Neuroscience 73: 217–231.

    CAS  PubMed  Google Scholar 

  • Sur C, Betz H, Schloss P. 1998. Distinct effects of imipramine on 5-hydroxytryptamine uptake mediated by the recombinant rat serotonin transporter SERT1. J Neurochem 70: 2545–2553.

    CAS  PubMed  Google Scholar 

  • Swanson JM, Volkow ND. 2003. Serum and brain concentrations of methylphenidate: Implications for use and abuse. Neurosci Biobehav Rev 27: 615–621.

    CAS  PubMed  Google Scholar 

  • Talvenheimo J, Fishkes H, Nelson PJ, Rudnick G. 1983. The serotonin transporter-imipramine “receptor”. J Biol Chem 258: 6115–6119.

    CAS  PubMed  Google Scholar 

  • Talvenheimo J, Nelson PJ, Rudnick G. 1979. Mechanism of imipramine inhibition of platelet 5-hydroxytryptamine transport. J Biol Chem 254: 4631–4635.

    CAS  PubMed  Google Scholar 

  • Tate CG, Haase J, Baker C, Boorsma M, Magnani F, et al. 2003. Comparison of seven different heterologous protein expression systems for the production of the serotonin transporter. Biochim Biophys Acta 1610: 141–153.

    CAS  PubMed  Google Scholar 

  • Torres GE, Carneiro A, Seamans K, Fiorentini C, Sweeney A, et al. 2003. Oligomerization and trafficking of the human dopamine transporter. Mutational analysis identifies critical domains important for the functional expression of the transporter. J Biol Chem 278: 2731–2739.

    CAS  PubMed  Google Scholar 

  • Trendelenburg U, Langeloh A, Bönisch H. 1987. Mechanism of action of indirectly acting sympathomimetic amines. Blood Vessels 24: 261–270.

    CAS  PubMed  Google Scholar 

  • White SH, Wimley WC. 1999. Membrane protein folding and stability: Physical principles. Annu Rev Biophys Biomol Struct 28: 319–365.

    CAS  PubMed  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. 2005. Crystal structure of a bacterial homologue of Na + /Cl–dependent neurotransmitter transporters. Nature 437: 215–223.

    CAS  PubMed  Google Scholar 

  • Yernool D, Boudker O, Jin Y, Gouaux E. 2004. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431: 811–818.

    CAS  PubMed  Google Scholar 

  • Youvan DC, Silva CM, Bylina EJ, Coleman WJ, Dilworth MR, et al. 1997. Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on nickel chelating beads. Biotechnology et alia 3: 1–18.

    Google Scholar 

  • Zaczek R, Culp S, De SE. 1991. Interactions of [3H]amphetamine with rat brain synaptosomes. II. Active transport. J Pharmacol Exp Ther 257: 830–835.

    CAS  PubMed  Google Scholar 

  • Zhang DQ, Stone JF, Zhou T, Ohta H, McMahon DG. 2004. Characterization of genetically labeled catecholamine neurons in the mouse retina. Neuroreport 15: 1761–1765.

    CAS  PubMed  Google Scholar 

  • Zhou FX, Merianos HJ, Brunger AT, Engelman DM. 2001. Polar residues drive association of polyleucine transmembrane helices. Proc Natl Acad Sci USA 98: 2250–2255.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge support by the following granting institutions: grant P17076 and P18076 (to HHS) from the Austrian Science Foundation/FWF.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC.

About this entry

Cite this entry

Sitte, H.H., Freissmuth, M. (2007). Monoamine Transporters in the Brain. In: Lajtha, A., Reith, M.E.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30380-2_17

Download citation

Publish with us

Policies and ethics