Skip to main content

Human–Animal Interface: The Case for Influenza Interspecies Transmission

  • Chapter
  • First Online:
Emerging and Re-emerging Viral Infections

Abstract

Since the 1990s, the threat of influenza viruses to veterinary and human public health has increased. This coincides with the larger global populations of poultry, pigs, and people and with changing ecological factors. These factors include the redistribution of the human population to cities, rapid mass transportation of people and infectious agents, increased global land use, climate change, and possible changes in viral ecology that perpetuate highly pathogenic influenza viruses in the aquatic bird reservoir. The emergence of H5N1, H7N9, and H9N2 subtypes of influenza A virus and the increased genetic exchange among influenza viruses in wild aquatic birds, domestic poultry, swine, and humans pose a continuing threat to humanity. Here we consider the fundamental and practical knowledge of influenza A viruses at the human–animal interfaces to facilitate the development of novel control strategies and modified agricultural practices that will reduce or prevent interspecies transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arranz R, Coloma R, Chichón FJ et al (2012) The structure of native influenza virion ribonucleoproteins. Science 338:1634–1637

    Article  CAS  PubMed  Google Scholar 

  • Barber MR, Aldridge JR Jr, Webster RG et al (2010) Association of RIG-I with innate immunity of ducks to influenza. Proc Natl Acad Sci U S A 107:5913–5918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum LG, Paulson JC (1991) The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity. Virology 180:10–15

    Article  CAS  PubMed  Google Scholar 

  • Belser JA, Gustin KM, Pearce MB et al (2013) Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature 501:556–559

    Article  CAS  PubMed  Google Scholar 

  • Blumenkrantz D, Roberts KL, Shelton H et al (2013) The short stalk length of highly pathogenic avian influenza H5N1 virus neuraminidase limits transmission of pandemic H1N1 virus in ferrets. J Virol 87:10539–105551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourouiba L, Wu J, Newman S et al (2010) Spatial dynamics of bar-headed geese migration in the context of H5N1. J R Soc Interface 7(52):1627–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman AS, Sreevatsan S, Killian ML et al (2012) Molecular evidence for interspecies transmission of H3N2pM/H3N2v influenza A viruses at an Ohio agricultural fair, July 2012. Emerg Microbes Infect 1:e33

    Article  PubMed  PubMed Central  Google Scholar 

  • Bussey KA, Bousse TL, Desmet EA et al (2010) PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J Virol 84:4395–4406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campitelli L, Donatelli I, Foni E et al (1997) Continued evolution of H1N1 and H3N2 influenza viruses in pigs in Italy. Virology 232:310–318

    Article  CAS  PubMed  Google Scholar 

  • Campitelli L, Mogavero E, De Marco MA et al (2004) Interspecies transmission of an H7N3 influenza virus from wild birds to intensively reared domestic poultry in Italy. Virology 323:24–36

    Article  CAS  PubMed  Google Scholar 

  • Capua I, Marangon S (2000) The avian influenza epidemic in Italy, 1999–2000: a review. Avian Pathol 29:289–294

    Article  CAS  PubMed  Google Scholar 

  • Castrucci MR, Kawaoka Y (1993) Biologic importance of neuraminidase stalk length in influenza A virus. J Virol 67:759–764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castrucci MR, Donatelli I, Sidoli L et al (1993) Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 193:503–506

    Article  CAS  PubMed  Google Scholar 

  • Cheng K, Yu Z, Chai H et al (2014) PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology 468–470:207–213

    Article  PubMed  CAS  Google Scholar 

  • Chutinimitkul S, Herfst S, Steel J et al (2010) Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. J Virol 84:11802–11813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conenello GM, Zamarin D, Perrone LA et al (2007) A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog 3:1414–1421

    Article  CAS  PubMed  Google Scholar 

  • Costa T, Chaves AJ, Valle R et al (2012) Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species. Vet Res 43:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Graaf M, Fouchier RA (2014) Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J 33:823–841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Marco MA, Delogu M, Sivay M et al (2014) Virological evaluation of avian influenza virus persistence in natural and anthropic ecosystems of Western Siberia (Novosibirsk Region, summer 2012). PLoS One 9(6):e100859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delogu M, De Marco MA, Di Trani L et al (2010) Can preening contribute to influenza A virus infection in wild waterbirds? PLoS One 5:e11315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delogu M, De Marco MA, Cotti C et al (2012) Human and animal integrated influenza surveillance : a novel sampling approach for an additional transmission way in the aquatic bird reservoir. Ital J Public Health 9:29–36

    Google Scholar 

  • Domínguez-Cherit G, Lapinsky SE, Macias AE et al (2009) Critically Ill patients with 2009 influenza A(H1N1) in Mexico. JAMA 302:1880–1887

    Article  PubMed  Google Scholar 

  • FAO (2015) Biosecurity guide for live poultry markets. FAO Animal Production and Health Guidelines No.17. Rome, Italy

    Google Scholar 

  • FAOstat. http://faostat3.fao.org/home/E. Last accessed on 16 Oct 2015

  • Ferguson NM, Galvani AP, Bush RM (2003) Ecological and immunological determinants of influenza evolution. Nature 422:428–433

    Article  CAS  PubMed  Google Scholar 

  • Fouchier RA, Guan Y (2013) Ecology and evolution of influenza viruses in wild and domestic birds. In: Webster RG, Monto AS, Braciale TJ, Lamb RA (eds) Textbook of Influenza, 2nd edn. Wiley, West Sussex, pp 175–189

    Google Scholar 

  • Fouchier RA, Schneeberger PM, Rozendaal FW (2004) Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101:1356–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournié G, Guitian J, Desvaux S et al (2013) Interventions for avian influenza A (H5N1) risk management in live bird market networks. Proc Natl Acad Sci U S A 110:9177–9182

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabriel G, Dauber B, Wolff T et al (2005) The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A 102:18590–18595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Zhang Y, Shinya K et al (2009) Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog 5:e1000709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao R, Cao B, Hu Y et al (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368:1888–1897

    Article  CAS  PubMed  Google Scholar 

  • Garten RJ, Davis CT, Russell CA et al (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser L, Stevens J, Zamarin D et al (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol 79:11533–11536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Shortridge KF, Krauss S et al (1999) Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A 96:9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatta M, Hatta Y, Kim JH et al (2007) Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog 3:1374–1379

    Article  CAS  PubMed  Google Scholar 

  • Herfst S, Schrauwen EJ, Linster M et al (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:1534–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horimoto T, Kawaoka Y (2005) Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol 3:591–600

    Article  CAS  PubMed  Google Scholar 

  • Horimoto T, Nakayama K, Smeekens SP et al (1994) Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol 68:6074–6078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoye BJ, Munster VJ, Nishiura H (2010) Surveillance of wild birds for avian influenza virus. Emerg Infect Dis 16:1827–1834

    Article  PubMed  PubMed Central  Google Scholar 

  • Imai M, Kawaoka Y (2012) The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr Opin Virol 2:160–167

    Article  CAS  PubMed  Google Scholar 

  • Imai M, Watanabe T, Hatta M et al (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Couceiro JN, Kelm S et al (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson D, Hossain MJ, Hickman D et al (2008) A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci U S A 105:4381–4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong J, Kang HM, Lee EK (2014) Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014. Vet Microbiol 173:249–257

    Article  PubMed  Google Scholar 

  • Jernigan DB, Cox NJ (2013) Human influenza: one health, one world. In: Webster RG, Monto AS, Braciale TJ, Lamb RA (eds) Textbook of Influenza, 2nd edn. Wiley, West Sussex, pp 3–19

    Google Scholar 

  • Jones JC, Baranovich T, Marathe BM et al (2014) Risk assessment of H2N2 influenza viruses from the avian reservoir. J Virol 88:1175–1188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kageyama T, Fujisaki S, Takashita E et al (2013) Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro Surveill 18:20453

    CAS  PubMed  Google Scholar 

  • Kawaoka Y, Krauss S, Webster RG (1989) Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol 63:4603–4608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilander A, Rykkvin R, Dudman SG et al (2010) Observed association between the HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe clinical outcome, Norway 2009–2010. Euro Surveill 15. pii: 19498

    Google Scholar 

  • Kimble B, Nieto GR, Perez DR (2010) Characterization of influenza virus sialic acid receptors in minor poultry species. Virol J 7:365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klenk HD, Garten W (1994) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2(2):39–43

    Article  CAS  PubMed  Google Scholar 

  • Klenk HD, Garten W, Matrosovich M (2013) Pathogenesis. In: Webster RG, Monto AS, Braciale TJ, Lamb RA (eds) Textbook of Influenza, 2nd edn. Wiley, West Sussex, pp 157–171

    Chapter  Google Scholar 

  • Krammer F, Palese P (2015) Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 14:167–182

    Article  CAS  PubMed  Google Scholar 

  • Krauss S, Walker D, Pryor SP et al (2004) Influenza A viruses of migrating wild aquatic birds in North America. Vector Borne Zoonotic Dis 4:177–189

    Article  PubMed  Google Scholar 

  • Kuiken T, Holmes EC, McCauley J et al (2006) Host species barriers to influenza virus infections. Science 312:394–397

    Article  CAS  PubMed  Google Scholar 

  • Lam TT, Wang J, Shen Y et al (2013) The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 502:241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam TT, Zhou B, Wang J et al (2015) Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature 522:102–105

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Torchetti MK, Winker K (2015) Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds. J Virol 89:6521–6524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Chen H, Jiao P (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79:12058–12064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zu Dohna H, Cardona CJ et al (2011) Emergence and genetic variation of neuraminidase stalk deletions in avian influenza viruses. PLoS One 6:e14722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mänz B, Schwemmle M, Brunotte L (2013) Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier. J Virol 87:7200–7209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matrosovich M, Tuzikov A, Bovin N et al (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74:8502–8512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina RA, García-Sastre A (2011) Influenza A viruses: new research developments. Nat Rev Microbiol 9:590–603

    Article  CAS  PubMed  Google Scholar 

  • Munster VJ, Baas C, Lexmond P et al (2007) Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 3:e61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakajima K, Desselberger U, Palese P (1978) Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature 274:334–339

    Article  CAS  PubMed  Google Scholar 

  • Nelson MI, Stratton J, Killian ML et al (2015) Continual reintroduction of human pandemic H1N1 influenza A viruses into Swine in the United States, 2009 to 2014. J Virol 89:6218–6226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann G, Kawaoka Y (2015) Transmission of influenza A viruses. Virology 479–480:234–246

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Macken CA, Karasin AI et al (2012) Egyptian H5N1 influenza viruses-cause for concern? PLoS Pathog 8:e1002932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noda T, Sagara H, Yen A et al (2006) Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 439:490–492

    Article  CAS  PubMed  Google Scholar 

  • Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, Dawood FS, Jain S et al (2009) Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 360:2605–2615

    Article  Google Scholar 

  • OIE World Animal Health System. http://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=18858. Last accessed 16 Oct 2015

  • Olsen B, Munster VJ, Wallensten A et al (2006) Global patterns of influenza a virus in wild birds. Science 312:384–388

    Article  CAS  PubMed  Google Scholar 

  • Palese P, Shaw ML (2007) Orthomyxoviradae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincot Williams & Wilkins, Philadelphia, pp 1647–1689

    Google Scholar 

  • Pasick J, Berhane Y, Joseph T et al (2015) Reassortant highly pathogenic influenza A H5N2 virus containing gene segments related to Eurasian H5N8 in British Columbia, Canada, 2014. Sci Rep 5:9484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peiris JS, Guan Y, Markwell D et al (2001) Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in Southeastern China: potential for genetic reassortment? J Virol 75:9679–9686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pensaert M, Ottis K, Vandeputte J et al (1981) Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential importance for man. Bull World Health Organ 59:75–78

    Google Scholar 

  • Perez DR, Lim W, Seiler JP et al (2003) Role of quail in the interspecies transmission of H9 influenza A viruses: molecular changes on HA that correspond to adaptation from ducks to chickens. J Virol 77:3148–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard M, Schrauwen EJ, de Graaf M et al (2013) Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature 501:560–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373

    Article  CAS  PubMed  Google Scholar 

  • Russell CJ (2014) Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology. Curr Top Microbiol Immunol 385:93–116

    PubMed  Google Scholar 

  • Scholtissek C (1990–1991) Pigs as ‘mixing vessels’ for the creation of new pandemic influenza A viruses. Med Princ Pract 2:65–71

    Google Scholar 

  • Scholtissek C, Rohde W, Von Hoyningen V et al (1978) On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87:13–20

    Article  CAS  PubMed  Google Scholar 

  • Seo SH, Hoffmann E, Webster RG (2002) Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8:950–954

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Zhang W, Wang F et al (2013) Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Science 342:243–247

    Article  CAS  PubMed  Google Scholar 

  • Shinya K, Ebina M, Yamada S et al (2006) Influenza virus receptors in the human airway. Nature 440:435–436

    Article  CAS  PubMed  Google Scholar 

  • Shortridge KF (1992) Pandemic influenza: a zoonosis? Semin Respir Infect 7:11–25

    CAS  PubMed  Google Scholar 

  • Shu LL, Lin YP, Wright SM et al (1994) Evidence for interspecies transmission and reassortment of influenza A viruses in pigs in southern China. Virology 202:825–833

    Article  CAS  PubMed  Google Scholar 

  • Simon G, Larsen LE, Dürrwald R et al (2014) European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013. PLoS One 9:e115815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith GJ, Vijaykrishna D, Bahl J et al (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–1125

    Article  CAS  PubMed  Google Scholar 

  • Sonnberg S, Webby RJ, Webster RG (2013) Natural history of highly pathogenic avian influenza H5N1. Virus Res 178:63–77

    Article  CAS  PubMed  Google Scholar 

  • Subbarao K, Katz J (2000) Avian influenza viruses infecting humans. Cell Mol Life Sci 57:1770–1784

    Article  CAS  PubMed  Google Scholar 

  • Subbarao EK, Kawaoka Y, Murphy BR (1993) Rescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a site-specific temperature-sensitive and attenuating mutation. J Virol 67:7223–7228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swayne DE, Kapczynski DR (2008) Vaccines, vaccination, and immunology for avian influenza viruses in poultry. In: Swayne DE (ed) Avian influenza. Blackwell Publishing, Ames, pp 407–451

    Chapter  Google Scholar 

  • Taft AS, Ozawa M, Fitch A et al (2015) Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nat Commun 6:7491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taubenberger JK, Morens DM (2006) 1918 influenza: the mother of all pandemics. Emerg Infect Dis 12:15–22

    Article  PubMed  PubMed Central  Google Scholar 

  • To KK, Tsang AK, Chan JF et al (2014) Emergence in China of human disease due to avian influenza A(H10N8)–cause for concern? J Infect 68:205–215

    Article  PubMed  Google Scholar 

  • Tong S, Li Y, Rivailler P, Conrardy C et al (2012) A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A 109:4269–4274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong S, Zhu X, Li Y et al (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9:e1003657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Twu KY, Kuo RL, Marklund J et al (2007) The H5N1 influenza virus NS genes selected after 1998 enhance virus replication in mammalian cells. J Virol 81:8112–8121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaillant L, La Ruche G, Tarantola A et al (2009) Epidemiology of fatal cases associated with pandemic H1N1 influenza 2009. Euro Surveill 14(33)

    Google Scholar 

  • Van Hoeven N, Pappas C, Belser JA et al (2009) Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proc Natl Acad Sci U S A 106:3366–3371

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan H, Perez DR (2006) Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology 346:278–286

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Lu B, Zhou H et al (2010) Glycosylation at 158 N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol 84:6570–6577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Yang L, Gao R et al (2014) Genetic tuning of the novel avian influenza A(H7N9) virus during interspecies transmission, China, 2013. Euro Surveill 19(25)

    Google Scholar 

  • Watanabe T, Watanabe S, Shinya K et al (2009) Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets. Proc Natl Acad Sci U S A 106:588–592

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kiso M, Fukuyama S et al (2013) Characterization of H7N9 influenza A viruses isolated from humans. Nature 501:551–555

    Google Scholar 

  • Watanabe Y, Ibrahim MS, Ellakany HF et al (2011) Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog 7:e1002068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webby RJ, Richt J (2013) Influenza in swine. In: Webster RG, Monto AS, Braciale TJ, Lamb RA (eds) Textbook of influenza, 2nd edn. Wileys, West Sussex, pp 190–202

    Chapter  Google Scholar 

  • Webby RJ, Swenson SL, Krauss SL (2000) Evolution of swine H3N2 influenza viruses in the United States. J Virol 74:8243–8251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster RG (2004) Wet markets–a continuing source of severe acute respiratory syndrome and influenza? Lancet 363:234–236

    Article  PubMed  Google Scholar 

  • Webster RG, Yakhno M, Hinshaw VS et al (1978) Intestinal influenza: replication and characterization of influenza viruses in ducks. Virology 84:268–278

    Article  CAS  PubMed  Google Scholar 

  • Webster RG, Bean WJ, Gorman OT et al (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • WHO Monthly Risk Assessment Summary Influenza at the Human-Animal Interface. Accessed 19 July 2016. http://www.who.int/influenza/human_animal_interface/HAI_Risk_Assessment/en/

  • Wright PF, Neumann G, Kawaoka Y (2007) Orthomyxoviruses. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincot Williams & Wilkins, Philadelphia, pp 1691–1740

    Google Scholar 

  • Wu P, Jiang H, Wu JT et al (2014) Poultry market closures and human infection with influenza A(H7N9) virus, China, 2013–2014. Emerg Infect Dis 20:1891–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada S, Suzuki Y, Suzuki T et al (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444:378–382

    Google Scholar 

  • Yamayoshi S, Yamada S, Fukuyama S (2014) Virulence-affecting amino acid changes in the PA protein of H7N9 influenza A viruses. J Virol 88:3127–3134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaraket H, Bridges OA, Duan S et al (2013) Increased acid stability of the hemagglutinin protein enhances H5N1 influenza virus growth in the upper respiratory tract but is insufficient for transmission in ferrets. J Virol 87:9911–9922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Tang Y, Liu X et al (2008) Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in Eastern China during a 5 year period (1998–2002). J Gen Virol 89:3102–3112

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang Q, Gao Y et al (2012) Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. J Virol 86:9666–9674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Shi J, Deng G et al (2013) H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science 341:410–414

    Article  CAS  PubMed  Google Scholar 

  • Zhou NN, Senne DA, Landgraf JS et al (1999) Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J Virol 73:8851–8856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Yu Z, Hu Y et al (2009) The special neuraminidase stalk-motif responsible for increased virulence and pathogenesis of H5N1 influenza A virus. PLoS One 4:e6277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou B, Pearce MB, Li Y (2013) Asparagine substitution at PB2 residue 701 enhances the replication, pathogenicity, and transmission of the 2009 pandemic H1N1 influenza A virus. PLoS One 8:e67616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Wang D, Kelvin DJ et al (2013) Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs. Science 341:183–186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded, in part, by Contract No. HHSN272201400006C from the National Institute of Allergy and Infectious Disease, U.S. National Institutes of Health, Department of Health and Human Services, the American Lebanese Syrian Associated Charities ALSAC, and by Contract No. RF-2010-2318269 from the Ministry of Health, Italy. We wish to thank James Knowles for manuscript preparation and Angela McArthur for scientific editing.

Conflict of Interest Statement

All authors declare that they have no competing interests to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Donatelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Donatelli, I., Castrucci, M.R., De Marco, M.A., Delogu, M., Webster, R.G. (2016). Human–Animal Interface: The Case for Influenza Interspecies Transmission. In: Rezza, G., Ippolito, G. (eds) Emerging and Re-emerging Viral Infections. Advances in Experimental Medicine and Biology(), vol 972. Springer, Cham. https://doi.org/10.1007/5584_2016_136

Download citation

Publish with us

Policies and ethics