Skip to main content

Splanchnic Perfusion and Oxygenation in Critical Illness

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2006))

Conclusion

Since splanchnic impairment of perfusion and oxygenation triggers and perpetuates critical illness, including sepsis and MOF, it is crucial to elucidate the splanchnic effects of common clinical interventions applied in intensive care medicine. Herein, findings of experimental studies may serve to reduce the complexity of splanchnic pathophysiology and generate promising concepts to be tested in the clinical setting. Maybe we have to become familiar with the thought that there is not a single variable guiding our therapy of splanchnic hypoperfusion. Just as we have learned not to judge systemic hemodynamics by a single variable, future splanchnic monitoring tools will enable us to extend our ability to recognize patterns indicative of splanchnic hypoperfusion. Despite major advances in splanchnic monitoring techniques, a combination of easy-to-use and minimally-invasive metabolic and perfusion measurements allowing us to recognize pathophysiologic patterns in splanchnic perfusion and metabolism is not in sight. Ultimately, this concept should enable us to base our therapy on systemic and splanchnic circulatory variables to improve outcomes for the critically ill.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fiddian-Green RG (1993) Associations between intramucosal acidosis in the gut and organ failure. Crit Care Med 21:S103–107

    Article  CAS  PubMed  Google Scholar 

  2. Dantzker DR (1993) The gastrointestinal tract. The canary of the body? JAMA 270:1247–1248

    Article  CAS  PubMed  Google Scholar 

  3. Gutierrez G, Brown SD (1995) Gastric tonometry: a new monitoring modality in the intensive care unit. J Intensive Care Med 10:34–44

    CAS  PubMed  Google Scholar 

  4. Zuurbier CJ, van Iterson M, Ince C (1999) Functional heterogeneity of oxygen supply-consumption ratio in the heart. Cardiovasc Res 44:488–497

    Article  CAS  PubMed  Google Scholar 

  5. Groner W, Winkelman JW, Harris AG, et al (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212

    Article  CAS  PubMed  Google Scholar 

  6. Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9(Suppl 4):S13–19

    Article  PubMed  Google Scholar 

  7. Boerma EC, Mathura KR, van der Voort PHJ, Spronk PE, Ince C (2005) Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care 9:R601–606

    Article  PubMed  Google Scholar 

  8. Sinaasappel M, van Iterson M, Ince C (1999) Microvascular oxygen pressure in the pig intestine during haemorrhagic shock and resuscitation. J Physiol 514:245–253

    Article  CAS  PubMed  Google Scholar 

  9. Sinaasappel M, Ince C, van der Sluijs JP, Bruining HA (1994) A new phosphorimeter for the measurement of oxygen pressures using Pd-porphine phosphorescence. Adv Exp Med Biol 361:75–81

    CAS  PubMed  Google Scholar 

  10. Gosain A, Rabkin J, Reymond JP, Jensen JA, Hunt TK, Upton RA (1991) Tissue oxygen tension and other indicators of blood loss or organ perfusion during graded hemorrhage. Surgery 109:523–532

    CAS  PubMed  Google Scholar 

  11. Hamilton-Davies C, Mythen MG, Salmon JB, Jacobson D, Shukla A, Webb AR (1997) Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Med 23:276–281

    Article  CAS  PubMed  Google Scholar 

  12. Edouard AR, Degremont AC, Duranteau J, Pussard E, Berdeaux A, Samii K (1994) Heterogeneous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med 20:414–420

    Article  CAS  PubMed  Google Scholar 

  13. Gutierrez G, Palizas F, Doglio G, et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199

    Article  CAS  PubMed  Google Scholar 

  14. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831

    Article  PubMed  Google Scholar 

  15. Ratnaraj J, Kabon B, Talcott MR, Sessler DI, Kurz A (2004) Supplemental oxygen and carbon dioxide each increase subcutaneous and intestinal intramural oxygenation. Anesth Analg 99:207–211

    Article  PubMed  Google Scholar 

  16. Greif R, Akca O, Horn EP, Kurz A, Sessler DI (2000) Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. Outcomes Research Group. N Engl J Med 342:161–167

    Article  CAS  PubMed  Google Scholar 

  17. van Bommel J, Trouwborst A, Schwarte L, Siegemund M, Ince C, Henny CP (2002) Intestinal and cerebral oxygenation during severe isovolemic hemodilution and subsequent hyperoxic ventilation in a pig model. Anesthesiology 97:660–670

    Article  PubMed  Google Scholar 

  18. Fournell A, Scheeren TW, Schwarte LA (1998) PEEP decreases oxygenation of the intestinal mucosa despite normalization of cardiac output. Adv Exp Med Biol 454:435–440

    CAS  PubMed  Google Scholar 

  19. Fournell A, Schwarte LA, Kindgen-Milles D, Muller E, Scheeren TW (2003) Assessment of microvascular oxygen saturation in gastric mucosa in volunteers breathing continuous positive airway pressure. Crit Care Med 31:1705–1710

    Article  PubMed  Google Scholar 

  20. Schwarte LA, Scheeren TW, Lorenz C, De Bruyne F, Fournell A (2004) Moderate increase in intraabdominal pressure attenuates gastric mucosal oxygen saturation in patients undergoing laparoscopy. Anesthesiology 100:1081–1087

    Article  PubMed  Google Scholar 

  21. Malbrain ML (1999) Abdominal pressure in the critically ill: measurement and clinical relevance. Intensive Care Med 25:1453–1458

    Article  CAS  PubMed  Google Scholar 

  22. Jensen JA, Goodson WH 3rd, Omachi RS, Lindenfeld SM, Hunt TK (1987) Subcutaneous tissue oxygen tension falls during hemodialysis. Surgery 101:416–421

    CAS  PubMed  Google Scholar 

  23. Van der Schueren G, Diltoer M, Laureys M, Huyghens L (1996) Intermittent hemodialysis in critically ill patients with multiple organ dysfunction syndrome is associated with intestinal intramucosal acidosis. Intensive Care Med 22:747–751

    Article  PubMed  Google Scholar 

  24. Schwarte LA, Fournell A, van Bommel J, Ince C (2005) Redistribution of intestinal microcirculatory oxygenation during acute hemodilution in pigs. J Appl Physiol 98:1070–1075

    Article  PubMed  Google Scholar 

  25. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  CAS  PubMed  Google Scholar 

  26. Dellinger RP, Carlet JM, Masur H, et al (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873

    Article  PubMed  Google Scholar 

  27. Parker DR, Carlisle K, Cowan FJ, Corrall RJ, Read AE (1995) Postprandial mesenteric blood flow in humans: relationship to endogenous gastrointestinal hormone secretion and energy content of food. Eur J Gastroenterol Hepatol 7:435–440

    CAS  PubMed  Google Scholar 

  28. Meier-Hellmann A, Reinhart K, Bredle DL, Sakka SG (2001) Therapeutic options for the treatment of impaired gut function. J Am Soc Nephrol 12Suppl 17:S65–69

    PubMed  Google Scholar 

  29. Neviere R, Chagnon JL, Vallet B, et al (1997) Dobutamine improves gastrointestinal mucosal blood flow in a porcine model of endotoxic shock. Crit Care Med 25:1371–1377

    Article  CAS  PubMed  Google Scholar 

  30. Hu S, Sheng ZY (2002) The effects of anisodamine and dobutamine on gut mucosal blood flow during gut ischemia/reperfusion. World J Gastroenterol 8:555–557

    CAS  PubMed  Google Scholar 

  31. Heino A, Hartikainen J, Merasto ME, et al (2000) Effects of dobutamine on splanchnic tissue perfusion during partial superior mesenteric artery occlusion. Crit Care Med 28:3484–3490

    Article  CAS  PubMed  Google Scholar 

  32. Renton MC, Snowden CP (2005) Dopexamine and its role in the protection of hepatosplanchnic and renal perfusion in high-risk surgical and critically ill patients. Br J Anaesth 94:459–467

    Article  CAS  PubMed  Google Scholar 

  33. Loick HM, Mollhoff T, Berendes E, Hammel D, Van Aken H (1997) Influence of enoximone on systemic and splanchnic oxygen utilization and endotoxin release following cardiopulmonary bypass. Intensive Care Med 23:267–275

    Article  CAS  PubMed  Google Scholar 

  34. Kern H, Schroder T, Kaulfuss M, Martin M, Kox WJ, Spies CD (2001) Enoximone in contrast to dobutamine improves hepatosplanchnic function in fluid-optimized septic shock patients. Crit Care Med 29:1519–1525

    Article  CAS  PubMed  Google Scholar 

  35. Iribe G, Yamada H, Matsunaga A, Yoshimura N (2000) Effects of the phosphodiesterase III inhibitors olprinone, milrinone, and amrinone on hepatosplanchnic oxygen metabolism. Crit Care Med 28:743–748

    Article  CAS  PubMed  Google Scholar 

  36. van Haren FM, Rozendaal FW, van der Hoeven JG (2003) The effect of vasopressin on gastric perfusion in catecholamine-dependent patients in septic shock. Chest 124:2256–2260

    Article  PubMed  Google Scholar 

  37. Boerma EC, van der Voort PH, Ince C (2005) Sublingual microcirculatory flow is impaired by the vasopressin-analogue terlipressin in a patient with catecholamine-resistant septic shock. Acta Anaesthesiol Scand 49:1387–1390

    Article  CAS  PubMed  Google Scholar 

  38. Pagel PS, Hettrick DA, Warltier DC (1996) Influence of levosimendan, pimobendan, and milrinone on the regional distribution of cardiac output in anaesthetized dogs. Br J Pharmacol 119:609–615

    CAS  PubMed  Google Scholar 

  39. Schwarte LA, Picker O, Bornstein SR, Fournell A, Scheeren TW (2005) Levosimendan is superior to milrinone and dobutamine in selectively increasing microvascular gastric mucosal oxygenation in dogs. Crit Care Med 33:135–142

    Article  CAS  PubMed  Google Scholar 

  40. Oldner A, Konrad D, Weitzberg E, Rudehill A, Rossi P, Wanecek M (2001) Effects of levosimendan, a novel inotropic calcium-sensitizing drug, in experimental septic shock. Crit Care Med 29:2185–2193

    Article  CAS  PubMed  Google Scholar 

  41. Morelli A, De Castro S, Teboul JL, et al (2005) Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med 31:638–644

    Article  PubMed  Google Scholar 

  42. Vagts DA, Iber T, Szabo B, et al (2003) Effects of epidural anaesthesia on intestinal oxygenation in pigs. Br J Anaesth 90:212–220

    Article  CAS  PubMed  Google Scholar 

  43. Adolphs J, Schmidt DK, Mousa SA, et al (2003) Thoracic epidural anesthesia attenuates hemorrhage-induced impairment of intestinal perfusion in rats. Anesthesiology 99:685–692

    Article  CAS  PubMed  Google Scholar 

  44. Schwarte LA, Picker O, Hohne C, Fournell A, Scheeren TW (2004) Effects of thoracic epidural anaesthesia on microvascular gastric mucosal oxygenation in physiological and compromised circulatory conditions in dogs. Br J Anaesth 93:552–559

    Article  CAS  PubMed  Google Scholar 

  45. Kapral S, Gollmann G, Bachmann D, et al (1999) The effects of thoracic epidural anesthesia on intraoperative visceral perfusion and metabolism. Anesth Analg 88:402–406

    Article  CAS  PubMed  Google Scholar 

  46. Vaisanen O, Parviainen I, Ruokonen E, et al (1998) Epidural analgesia with bupivacaine does not improve splanchnic tissue perfusion after aortic reconstruction surgery. Br J Anaesth 81:893–898

    CAS  PubMed  Google Scholar 

  47. Siegemund M, van Bommel J, Schwarte LA, et al (2005) Inducible nitric oxide synthase inhibition improves intestinal microcirculatory oxygenation and CO2 balance during endotoxemia in pigs. Intensive Care Med 31:985–992

    Article  PubMed  Google Scholar 

  48. Siegemund M, Racovitza I, Ince C (2002) The rationale for vasodilator therapy in sepsis. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 221–231

    Google Scholar 

  49. Buwalda M, Ince C (2002) Opening the microcirculation: can vasodilators be useful in sepsis? Intensive Care Med 28:1208–1217

    Article  PubMed  Google Scholar 

  50. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:1395–1396

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwarte, L.A., Stevens, M.F., Ince, C. (2006). Splanchnic Perfusion and Oxygenation in Critical Illness. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33396-7_58

Download citation

  • DOI: https://doi.org/10.1007/3-540-33396-7_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30155-4

  • Online ISBN: 978-3-540-33396-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics