Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aanen, D.K., Eggleton, P., Rouland-Lefevre, C., Guldberg-Froslev, T., Rosendahl, S. and Boomsma, J.J. (2002). The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences (USA) 99, 14887–14892.

    Article  CAS  Google Scholar 

  • Abe T, Bignell DE, Higashi M (eds) (2000) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Aloni K, Soyer J (1987) Cercle des materiaux de construction des termitières d’humivores en savane au Shaba meridional (Zaire). Rev Zool Afric 101:329–357

    Google Scholar 

  • Anderson JM (1993) Soil organisms as engineers: microsite modulation of macroscale processes. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman and and Hall, New York, pp 940–106

    Google Scholar 

  • Anderson A (1994) Studies on termite excretory nitrogen. In: Proceedings of the 5th workshop on tropical entomology. Townsville, July 1991, pp 249–253

    Google Scholar 

  • Anderson JM, Bignell DE (1980) Bacteria in the food, gut and faeces of the pill millipede Glomeris marginata. Soil Biol. Biochem 12:251–254

    Google Scholar 

  • Anderson JM, Wood TG (1984) Mound composition and soil modification by two soil-feeding termites (Termitidae, Termitinae) in a riparian Nigerian forest. Pedobiologia 26:77–82

    Google Scholar 

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods. 2nd edn, CAB International, Wallingford

    Google Scholar 

  • Anklin-Mühlemann R, Bignell DE, Veivers PC, Leuthold RH, Slaytor M. (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J Insect Physiol 41:929–940

    Google Scholar 

  • Arshad MA (1981) Physical and chemical properties of termite mounds of two species of Macrotermes (Isoptera, Termitidae) and the surrounding soils of the semiarid savanna of Kenya. Soil Sci 132:161–174

    Google Scholar 

  • Badawi A, Faragalla AA, Dabbour A (1982) The role of termites in changing certain chemical characteristics of soil. Sociobiol 7:135–155

    Google Scholar 

  • Badertscher S, Gerber C, Leuthold RH (1983) Polyethism in food supply and processing in termite colonies of Macrotermes subhyalinus (Isoptera). Behav Ecol Sociobiol 12:115–119

    Article  Google Scholar 

  • Barois I (1987) Interactions entre les vers de terre (Oligochaeta) tropicaux géophage et la microflore pour l’exploitation de la matière organique du sol. Thèse. Université Paris VI, France

    Google Scholar 

  • Barois I, Lavelle P (1986) Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoclolex corethrurus (Glossoscoledidae, Oligochaeta). Soil Biol Biochem 18:539–541

    Article  Google Scholar 

  • Barros E, Curmi P, Hallaire V Chauvel A, Lavelle P (2001) The role of macrofauma in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma 100:193–213

    Article  Google Scholar 

  • Bignell DE (1984) The arthropod gut as an environment for microorganisms. In: Anderson JM, Rayner ADM, Walton DWH (eds) Invertebrate-microbial interactions. Cambridge University Press, pp 205–227

    Google Scholar 

  • Bignell DE (1989) Relative assimilations of 14C-labelled microbial tissues and 14C-plant fibre ingested with leaf litter by the millipede Glomeris marginata under experimental conditions. Soil Biol Biochem 21:819–827

    Article  Google Scholar 

  • Bignell DE (1994) Soil-feeding and gut morphology in higher termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, pp 131–159

    Google Scholar 

  • Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses. Kluwer Academic Publishers, Dordrecht, pp 189–208

    Google Scholar 

  • Bignell DE, Eggleton P (1995) On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Ins Soc 42:57–69

    Article  Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp. 363–387

    Google Scholar 

  • Bignell DE, Holt JA (2002) Termites. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker Inc, New York pp 1305–1307

    Google Scholar 

  • Bignell DE, Oskarsson H Anderson JM (1980) Distribution and abundance of bacteria in the gut of a soil-feeding termite Procubitermes aburiensis (Termitidae, Termitinae). J Gen Microbiol 117:393–403

    PubMed  CAS  Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM, Ineson, P, Wood TG (1983) Structure, microbial associations and functions of the so-called “mixed segment” of the gut in two soil-feeding termites, Procubitermes aburiensis Sjöstedt and Cubitermes severus Silvestri (Termitidae, Termitinae). J Zool (Lond))201:445–480

    Article  Google Scholar 

  • Bignell DE, Eggleton P, Nunes L, Thomas K L (1997) Termites as mediators of carbon fluxes in tropical forest: budgets for carbon dioxide andmethane emissions. In: Watt AD, Stork NE, Hunter MD (eds) Forests and insects. Chapman and Hall, London, pp 109–134

    Google Scholar 

  • Bignell DE, Tondoh J, Dibog L, Huang SP, Moreira F, Nwaga D, Pashanasi B, Susilo F-X, Swift M (2004) Below ground diversity assessment: the ASB rapid, functional group approach. In: Ericksen PJ, Sanchez PA, Juo A (eds) Alternatives to slash-and-burn: a global synthesis. American Society of Agronomy Special Publication, Madison, Wisconsin. In press

    Google Scholar 

  • Bitsch C, Noirot C (2002) Gut characters and phylogeny of the higher termites (Isoptera: Termitidae). A cladistic analysis. Ann Soc Entomol Fr 38:201–210

    Google Scholar 

  • Black HIJ, Okwakol MJN (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of termites. Appl Soil Ecol 6:37–53

    Article  Google Scholar 

  • Bodine MC, Ueckert DN (1975) Effect of desert termites on herbage and litter in a shortgrass ecosystem. J Range Manag 28:353–358

    Article  Google Scholar 

  • Bonell M, Coventry RJ, Holt JA (1986) Erosion of termite mounds under natural rainfall in semi-arid tropical northeastern Australia. Catena 13:11–28

    Article  Google Scholar 

  • Brauman A (2000) Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: a review. Eur J Soil Biol 36:117–125

    Article  Google Scholar 

  • Brauman A, Bignell DE, Tayasu I (2000) Soil-feeding termites: biology, microbial associations and digestive mechanisms. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 233–259

    Google Scholar 

  • Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Ann Rev Microbiol 36:323–343

    Article  CAS  Google Scholar 

  • Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 209–231

    Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Ann Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  • Brian MV (1978) (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge

    Google Scholar 

  • Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biochem 16:16–21

    CAS  Google Scholar 

  • Brune A, Friedrich (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opinion Microbiol 3:263–269

    CAS  Google Scholar 

  • Brune A, Kühl M (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera:Termitidae) determined with microelectrodes. J Insect Physiol. 42:1121–1127

    Article  CAS  Google Scholar 

  • Brune A, Miambi E, Breznak JA (1995) Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropenoids and other monoaromatic compounds by termites. Appl Environ Microbiol 61:2681–2687

    CAS  PubMed  Google Scholar 

  • Brussaard L, Juma NG (1996) Organisms and humus in soils. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 329–359

    Google Scholar 

  • Burghouts T, Ernsting E, Korthals G, de Vries T (1992) Litterfall, leaf litter decomposition and litter invertebrates in primary and selectively logged dipterocarp forest in Sabah. Phil Trans R Soc Lond B335:407–416

    Google Scholar 

  • Buxton RD (1981) Termites and the turnover of dead wood in an arid tropical environment. Oecologia 51:371–384

    Google Scholar 

  • Chauvel A, Grimaldi M, Barros E, Blanchart E, Desjardins T, Sarrazin M, Lavelle P (1999) Pasture degradation by an Amazonian earthworm. Nature 389:32–33

    Google Scholar 

  • Collins NM (1979) A comparison of the soil macrofauna of three lowland forest types in Sarawak. Sarawak Mus J 27:267–281

    Google Scholar 

  • Collins NM (1981) The role of termites in the decomposition of wood and leaf litter in the southern Guinea savanna of Nigeria. Oecologia 51:389–399

    Article  Google Scholar 

  • Congdon RA, Holt JA, Sinclair DF (1993) The role of mound-building termites in the nitrogen economy of semi-arid ecosystems. In: Prestidge RA (ed) Proceedings of the 6th Australian conference on grassland invertebrate ecology. Agresearch, Hamilton. New Zealand, pp 100–106

    Google Scholar 

  • Davies RG, Eggleton P, Jones DT, Gathorne-Hardy F, Hernadez LM (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30:847–877

    Article  Google Scholar 

  • Decaëns T, Galvin JH, Amezquita E (2001) Propriétés des structures produites par les ingénieurs écologiques à la surface du sol d’une savane colombienne. C R Acad Sci Life Sci 324:465–478

    Google Scholar 

  • Dejean A, Ruelle JE (1995) Importance of Cubitermes termitaries as shelter for alien recipient termite societies. Ins Soc 42:129–136

    Article  Google Scholar 

  • Desmukh I (1989) How important are termites in the production ecology of African savannas? Sociobiol 15:155–168

    Google Scholar 

  • De Souza, OFF, Brown VK (1994) Effects of habitat fragmentation on Amazonian termite communities. J Trop Ecol 10:197–206

    Google Scholar 

  • Donovan SE, Jones DT, Sands WA, Eggleton P (2000) The morphological phylogenetics of termites (Isoptera). Biol J Linn Soc 70:467–513

    Article  Google Scholar 

  • Donovan SE, Eggleton P, Bignell DE (2001a) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366

    Article  Google Scholar 

  • Donovan SE, Eggleton P, Dubbin WE, Batchelor M, Dibog L (2001b) The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidar) on soil proberties: termites may be an important source of soil microhabital heterogeneity in tropical forests. Pedobiologia 45:1–11

    Article  Google Scholar 

  • Eggleton P (2000) Global patterns of termite diversity. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 25–51

    Google Scholar 

  • Eggleton P, Bignell DE (1995) Monitoring the response of tropical insects to changes in in the environment:troubles with termites. In: Harrington R, Stork NE (eds) Insects in a changing environment. Academic Press, London, pp 473–497

    Google Scholar 

  • Eggleton P, Bignell DE (1997) Secondary occupation of epigeal termite (Isoptera) mounds by other termites in the Mbalmayo Forest reserve, southern Cameroon, and its biological significance. J Afr Zool 111:489–498

    Google Scholar 

  • Eggleton P, Tayasu I (2001) Feeding groups, lifetypes and the global ecology of termites. Ecol Res 16:941–960

    Article  Google Scholar 

  • Eggleton P, Bignell DE, Sands WA, Waite B, Wood TG, Lawton JH (1995) The diversity of termites (Isoptera) under differing levels of forest disturbance in the Mbalmayo Forest Reserve, Southern Cameroon. J Tropic Ecol 11:85–98

    Google Scholar 

  • Eggleton P, Bignell DE, Sands WA, Mawdsley NA, Lawton JH, Wood TG, Bignell NC (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, Southern Cameroon. Phil Trans R Soc Lond B351:51–68

    Google Scholar 

  • Eggleton P, Davies RG, Bignell DE (1998) Body size and energy use in termites (Isoptera): the responses of soil-feeders and wood-feeders differ in a tropical forest assemblage. Oikos 81:525–530

    Google Scholar 

  • Eggleton P, Bignell DE, Hauser S, Dibog L, Norgrove L, Madong B (2002) Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agric Ecosyst Environ 90:189–202

    Google Scholar 

  • Elkins NZ, Sabol GV, Ward TJ, Whitford WG (1986) The influence of subteranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem. Oecologia 68:521–528

    Article  Google Scholar 

  • Feijoo A, Knapp EB, Lavelle P, Moreno AG (2001) Quantifying soil macrofauna in a Colombian watershed. In: Jiménez JJ, Thomas RJ (eds) Nature’s plow: soil macroinvertebrate communities in the neotropical savannas of Colombia. CIAT, Cali, Colombia

    Google Scholar 

  • Folster H (1964) The pedisediments of the southern Sudanese pediplane. Pedologie 14:64–68

    Google Scholar 

  • Fujita A, Abe T (2002) Amino acid concentration and distribution of lysozyme and protease activities in the guts of higher termites. Physiol Entomol 27:76–78.

    Article  CAS  Google Scholar 

  • Garnier-Sillam E (1987) Biologie et rôle des termites dans les processus d’humification dans les sols forestiers tropicaux au Congo. Doctoral thesis, Université Paris XII, Val de Marne

    Google Scholar 

  • Garnier-Sillam (1991) Comparative physico-chemical properties of soil-feeding Thoracotermes macrothorax and fungus-growing Macrotermes mülleri mounds. Biogeochemistry 48:7–13

    Google Scholar 

  • Garnier-Sillam E, Harry M (1995) Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structural stability. Ins Soc 42:167–185

    Article  Google Scholar 

  • Garnier-Sillam E, Toutain F (1995) Distribution of polysaccharides within the humic compounds of soils subjected to a humivorous termite Thoracotermes macrothorax Sjöstedt. Pedobiologia 39:462–469

    CAS  Google Scholar 

  • Garnier-Sillam E, Toutain F, Renoux J (1988) Comparison de l’influence de deux termitières (humivore et champignonniste) sur la stabilité structurale des sols forestiers tropicaux. Pedobiologia 32:89–97

    Google Scholar 

  • Gillison AN, Jones DT, Susilo F-X, Bignell DE (2003) Vegetation indicates diversity of macroinvertebrates: a case study with termites sampled across a land-use intensification gradient in lowland Sumatra. Org Divers Evol 3:111–126

    Google Scholar 

  • Gillman LR, Jeffries MK, Richards GN (1972) Non-soil constituents of termite (Coptotermes acinaciformis) mounds. Austr J Bio Sci 25:1005–1013

    CAS  Google Scholar 

  • Grassé P-P (1986) Termitologia, vol 3. Masson, Paris

    Google Scholar 

  • Hassall M, Rushton SP (1984) Feeding behaviour of terrestrial isopods in relation to plant defences and microbial activity. In: Sutton SL, Holdich D (eds) The biology of terrestrial arthropods. Academic Press, London, pp 487–505

    Google Scholar 

  • Higashi M, Yamamura N, Abe T (2000) Theories on the sociality of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp. 169–187

    Google Scholar 

  • Holt JA (1987) Carbon mineralization in northeastern Australia: the role of termites. J Trop Ecol 3:255–263

    Google Scholar 

  • Holt JA (1988) Microbial activity in the mounds of some Australian termites. Appl Soil Ecol 9:183–187

    Google Scholar 

  • Holt JA, Lepage M (2000) Termites and soil properties. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp. 389–407

    Google Scholar 

  • Holt JA, Coventry RJ, Sinclair DF (1980) Some aspects of the biology and pedological significance of mound-building termites in a red and yellow earth landscape near Charters Towers, North Queensland. Austr J Soil Res 18:97–109

    Google Scholar 

  • Holt JA, Bristow KL, McIvor KG (1996) The effects of grazing pressure on soil and litter animals and some hydraulic properties of two soils in semi-arid tropical Australia. Austr J Soil Res 34:69–79

    Google Scholar 

  • Hopkins DW, Chudek JA, Bignell DE, Webster EA, Frouz J, Lawson T (1998) Application of 13C NMR to investigate the transformations and biodegradation of organic materials by some soil and litter-dwelling insects. Biodegradation 9:423–431.

    Article  PubMed  CAS  Google Scholar 

  • Hyodo F, Azuma J-I, Abe T (1999) A new pattern of lignin degradation in the fungus comb of Macrotermes carbonarius (Isoptera, Termitidae, Macrotermitinae). Sociobiol 34:591–596

    Google Scholar 

  • Hyodo F, Inoue T, Azuma J-I, Tayasu I, Abe T (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32:653–658

    Article  CAS  Google Scholar 

  • Hyodo F, Tayasu I, Inoue T, Azuma J-I, Kudo T, Abe T (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Functional Ecol 17:186–193

    Google Scholar 

  • Ineson P, Anderson JM (1985) Aerobically isolated bacteria associated with the gut and faeces of litter-feeding macroarthroods Oniscus asellus and Glomeris marginata. Soil Biol Biochem 17:843–849

    Article  Google Scholar 

  • Inoue T, Murashima K, Azuma J-I, Sugimoto, A, Slaytor M (1997) Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J Insect Physiol 43: 235–242

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Kitade O, Yoshimura T, Yamaoka I (2000) Symbiotic associations with protists. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 275–288

    Google Scholar 

  • Ji R, Kappler A, Brune A (2000) Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biol Biochem 32:1281–1291

    Article  CAS  Google Scholar 

  • Jones JA (1990) Termites, soil fertility and carbon cycling in dry tropical Africa — a hypothesis. J Trop Ecol 6:291–305

    Article  Google Scholar 

  • Jones SC, Nutting WL (1989) Foraging ecology of subterranean termites in the Sonoran Desert. In: Schmidt JO (ed) Special biotic relationships in the arid Southwest. New Mexico Press, Alburquerque, pp 79–106

    Google Scholar 

  • Jones DT, Eggleton P (2000) Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. J Appl Ecol 37:191–203

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69: 373–386

    Google Scholar 

  • Jouquet P, Lepage M, Velde B (2002) Termite soil preferences and particle selections strategies related to ecological requirements. Ins Soc 49:1–7

    Article  Google Scholar 

  • Kambhampati, S, Eggleton P (2000) Taxonomy and phylogeny of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 1–23

    Google Scholar 

  • Kappler A, Brune A (1999) Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites. Appl Soil Ecol 13:219–229

    Article  Google Scholar 

  • König H, Fröhlich J, Berchtold, M, Wenzel, M (2002) Diversity and microhabitats of the hindgut flora of termites. Recent Res Devel Microbiol 6:125–156

    Google Scholar 

  • Kooyman CHR, Onck RFM (1987) The interactions between termite activity, agricultural practices and soil characteristics in Kisii district, Kenya. Agric Univ Wageningen Papers 87-3

    Google Scholar 

  • Lal R (1987) Tropical ecology and physical edaphology. John Wiley and Sons, Chichester

    Google Scholar 

  • Lepage, M. (1983) Foraging of Macrotermes spp. (Isoptera:Macrotermitinae) in the tropics. Social Insects in the tropics 1, 205–217.

    Google Scholar 

  • Lavelle P (1986) Diversity of soil fauna and ecosystem function. Biol Internat 33:3–16

    Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Scientific Publications, Amsterdam

    Google Scholar 

  • Lavelle P, Lattaud C, Trigo D, Barois I (1994) Mutualism and biodiversity in soils. Plant Soil 170:23–33

    Google Scholar 

  • Lavelle P, Bignell DE, Lepage M (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689

    Article  PubMed  CAS  Google Scholar 

  • Lee KE, Foster RC (1991) Soil fauna and soil structure. Austr J Soil Res 29:745–775

    Google Scholar 

  • Lee KE, Wood TG (1971) Termites and soils. Academic Press, London

    Google Scholar 

  • Lepage M (1973) Recherches écologiques sur une savanne sahélienne du Ferlo Septentrional Sénégal. Termites: repartition, biomasse et récolte de nourriture. Ann Univ Abidjan E6:139–145

    Google Scholar 

  • Lepage M (1974) Les termites d’une savanne Sahélienne (Ferlo Septentrional, Sénégal): peuplement, consommation, rôle dans l’écosystème. Doctoral thesis, Université de Dijon, Dijon

    Google Scholar 

  • Lepage M, Darlington JPEC (2000) Population dynamics of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 333–361

    Google Scholar 

  • Lepage M, Morel G, Resplandino C (1974) Découverte de galeries de termites atteignant la nappe phréatique profonde dans le nord du Sénégal. C R Acad Sci Paris 278:1855–1859

    Google Scholar 

  • Lilburn, TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JT, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    Article  PubMed  CAS  Google Scholar 

  • Lobry de Bruyn L, Conacher AJ (1990) The role of termites and ants in soil modification: a review. Austr J Soil Res 28:55–93

    Google Scholar 

  • MacDonald JA, Jeeva D, Eggleton P, Davies R, Bignell DE, Fowler D, Lawton, JH, Maryati M (1999) The effect of termite biomass and anthropogenic disturbance on the CH4 budgets of tropical forests in Cameroon and Malaysia. Global Change Biol 5:869–880

    Article  Google Scholar 

  • Mackay WP, Whitford WG (1988) Spatial variability of termite gallery production in Chihuahuan desert plant communities. Sociobiol 14:281–289

    Google Scholar 

  • Mando A (1997) Effect of termites and mulch on the physical rehabilitation of structurally crusted soils in the Sahel. Land Degrad Develop 8:269–278

    Google Scholar 

  • Mando A, Miedema R (1997) Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Appl Soil Ecol 6:241–249

    Article  Google Scholar 

  • Mando A, Stroosnijder L, Brussaard L (1996) Effects of termites on infiltration into crusted soil. Geoderma 74:107–113

    Article  Google Scholar 

  • Martius C (1994a) Diversity and ecology of termites in Amazonian forests. Pedobiologia 38:407–428

    Google Scholar 

  • Martius C (1994b) Termite nests as structural elements of the Amazon floodplain forest. Andrias 13:137–150

    Google Scholar 

  • Martius C (1997) The termites. In: Junk W (ed) The central Amazon floodplain. Springer-Verlag, Berlin, 361–371

    Google Scholar 

  • Matsumoto T, Abe T (1979) The role of termites in an equatorial rain forest ecosystem of West Malaysia. II Litter consumption on the forest floor. Oecologia 22:153–178

    Google Scholar 

  • Mora P, Lattaud C, Rouland C (1998) Recherche d’enzymes intervenant dans la dégradation de la lignine chez plusieurs espèces de termites à régimes alimentaire différent. Actes Colloques UEIES 11:77–80

    Google Scholar 

  • Nalepa CA, Bandi C (2000) Characterizing the ancestors: paedomorphosis and termite evolution. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 53–75

    Google Scholar 

  • Nalepa CA, Bignell DE, Bandi C (2001) Detritivory, coprophagy and the evolution of digestive mutualisms in Dictyoptera. Insectes Sociaux 48:194–201

    Google Scholar 

  • Noirot C (1992) From wood-to humus-feeding: an important trend in termite evolution. In: Billen J (ed) Biology and evolution of social insects. Leuven University Press, Leuven, pp 107–119

    Google Scholar 

  • Noirot C (1995) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. I Lower termites. Ann Soc Entomol France 31:197–226

    Google Scholar 

  • Noirot C (2001) The gut of termites (Isoptera) comparative anatomy, systematics, phylogeny. II.-Higher termites (Termitidae) Ann Soc Entomol Fr 37:431–471

    Google Scholar 

  • Noirot C, Darlington JPEC (2000) Termite nests: architecture, regulation and defence. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 121–139

    Google Scholar 

  • O’Brien RW, Slaytor M (1982) Role of microorganisms in the metabolism of termites. Austr J Biol Sci 35:239–262

    CAS  Google Scholar 

  • Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Kudo T (1998) Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Micrbiol Lett 164:389–395

    CAS  Google Scholar 

  • Ohkuma M, Noda S, Horikoshi K, Kudo T (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134:45–50

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Noda S, Usami R, Horikoshi K, Kudo T (1996) Diversity of nitrogen fixing genes in the symbiotic intestinal microflora of the termites Reticulitermes speratus. Appl Environ Microbiol 62:2747–2752

    CAS  PubMed  Google Scholar 

  • Peakin GJ, Josens G (1978) Respiration and energy flow. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 111–163

    Google Scholar 

  • Quedraogo P, Lepage M (1997) Rôle des termitières de Macrotermes subhyalinus dans une brousse tigrée (Yatenga, Burkina Faso). In: d’Herbès M, Ambouta JMK, Peltier R (eds) Fonctionnement et gestation des écosystèmes forestiers contractés sahéliens. John Libby Eurotext, Paris, pp 91–94

    Google Scholar 

  • Pearce M (1997) Termites, biology and pest management. CAB International, Wallingford

    Google Scholar 

  • Rouland-Lefèvre C (2000) Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 289–306

    Google Scholar 

  • Rouland-Lefèvre C, Bignell DE (2001) Cultivation of symbiotic fungi by termites of the subfamily Macrotermtinae. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic Publishers, Dordrecht, pp. 731–756

    Google Scholar 

  • Rouland C, Lenoir-Labé F (1998) Microflore intestinale symbiotique des insectes xylophages: mythe ou réalité? Cahiers Agricult 7:37–47

    Google Scholar 

  • Rouland C, Chararas C, Renoux J (1986) Etudes comparées des osidases de trois espèces de termites Africain à regime alimentaire différent. C R Acad Sci Paris Ser III 9: 341–345

    Google Scholar 

  • Rouland C, Chivas A, Renoux J, Petek F (1988) Synergistic activities of the enzymes involved in cellulose degradation purified from Macrotermes mülleri and from its symbiotic fungus Termitomyces sp. Comp Biochem Physiol 91B:459–465

    CAS  Google Scholar 

  • Rouland C, Chararas C, Renoux J (1989) Les osidases digestives dans l’intestin moyen, l’intestin postérieur et les glands salivaire du termite humivore Crenetermes albotarsalis. C R Acad Sci Paris Ser III 308:281–285

    CAS  Google Scholar 

  • Rouland C, Lenoir F, Renoux J (1991) The role of the symbiotic fungus in the digestive metabolism of several species of fungus-growing termites. Comp Biochem Physiol 99A, 657–663

    CAS  Google Scholar 

  • Sanderson MG (1996) Biomass of termites and their emissions of methane and carbon dioxide. Global Biogeochem Cycles 10:543–557

    Article  CAS  Google Scholar 

  • Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp) Appl Environ Microbiol 65:4490–4496

    PubMed  CAS  Google Scholar 

  • Schulz MW, Slaytor M, Hogan ME, O’Brien RW (1986) Components of cellulase from the higher termite, Nasutitermes walkeri (Hill). Insect Biochem 16:929–932

    CAS  Google Scholar 

  • Slaytor M (1992) Cellulose digestion in termites and cockroaches; what role do symbionts play? Comp Biochem Physiol 103B:775–784

    CAS  Google Scholar 

  • Slaytor M (2000) Energy metabolism in the termite and its gut microbiota. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 307–332

    Google Scholar 

  • Slaytor M, Veivers PC, Lo N (1997) Aerobic and anaerobic metabolism in the higher termite Nasutitermes walkeri (Hill) Insect Biochem Mol Biol 27:291–303

    CAS  Google Scholar 

  • Soyer L (1987) Röle des termites dans le formation du complexe de la stone-line. Geo Eco Crop 11:97–108

    Google Scholar 

  • Spain AV, Reddell P (1986) δ 13C values of selected termites (Isoptera) and termite-modified materials. Soil Biol Biochem 28:1585–1593

    Google Scholar 

  • Stoops G (1989) Relict properties of soils in humid tropical regions with special reference to central Africa. Catena Suppl 16:95–106

    Google Scholar 

  • Stork NE, Eggleton P (1992) Invertebrates as determinants and indicators of soil quality. Am J Alt Agric 7:23–32

    Google Scholar 

  • Sugimoto A, Inoue T, Kirtibur N, Abe T (1998) Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane. Global Biogechem Cycles 12:595–605

    CAS  Google Scholar 

  • Sugimoto A, Bignell DE, MacDonald JA (2000) Global impact of termites on the carbon cycle and atmospheric trace gases. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 409–435

    Google Scholar 

  • Swift M, Bignell D (2001) Standard methods for the assessment of soil biodiversity and land-use practice. International Centre for Research in Agroforestry, South East Asian Regional Research Programme. ASB-Lecture Note 6B, Bogor, Indonesia.

    Google Scholar 

  • Szlàvecz K, Pobozsny M (1992) Coprophagy in isopods and diplopods: a case for indirect interaction. Anim Zool 196:1–11

    Google Scholar 

  • Tardy Y, Roquin C (1992) Geochemistry and evolution of lateritic landscapes. In: Martini IP, Chesworth W (eds) Weathering, soils and palaeosols. Elsevier, London, pp 407–443

    Google Scholar 

  • Tayasu I, Abe T, Eggleton P, Bignell DE (1997) Nitrogen and carbon isotope ratios in termites (Isoptera): an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecol Ent 22:343–351

    Google Scholar 

  • Tholen A, Brune A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp). Appl Environ Microbiol 65:4497–4505

    PubMed  CAS  Google Scholar 

  • Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449

    Article  PubMed  CAS  Google Scholar 

  • Thorne BL, Grimaldi DA, Krishna K (2000) Early fossil history of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 77–93

    Google Scholar 

  • Tokuda G, Lo N, Watanabe H, Slaytor M, Matsumoto T, Noda H (1999) Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim Biophys Acta 1447:146–159

    PubMed  CAS  Google Scholar 

  • Traniello JFA, Leuthold RH (2000) Behavior and ecology of foraging in termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 141–168

    Google Scholar 

  • Waller DA, La Fage JP (1987) Nuritional ecology of termites. In Slansky F, Rodriquez JG (eds) Nutritional ecology of insects, mites and spiders. John Wiley and Sons, New York, 487–532

    Google Scholar 

  • Watanabe H, Tokuda G (2001) Animal cellulases. CMLS Cell Mol Life Sci 58:1167–1178

    CAS  Google Scholar 

  • Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  PubMed  CAS  Google Scholar 

  • Wenzel M, Schönig I, Berchtold M, Kämpfer P, König H (2002) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol 92:32–40

    Article  PubMed  CAS  Google Scholar 

  • Whitford WG, Ludwig JA, Noble JC (1991) The importance of subterranean termites in semi-arid ecosystems in southeastern Australia. J Arid Environ 22:87–92

    Google Scholar 

  • Wild H (1975) Termites and the serpentines of the Great Dyke of Rhodesia. Trans Rhod Sci Assoc 57:1–11

    Google Scholar 

  • Wood TG (1976) The role of termites (Isoptera) in decomposition processes. In: Anderson JM, MacFadyen A (eds) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell Scientific, Oxford, pp 145–168

    Google Scholar 

  • Wood TG (1978) Food and feeding habits of termites. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 55–80

    Google Scholar 

  • Wood TG (1988) Termites and the soil environment. Biol Fert Soil 6:228–236

    Google Scholar 

  • Wood TG (1996) The agricultural importance of termites in the tropics. Agric Zool Rev 7:117–155

    Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 245–292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bignell, D.E. (2006). Termites as Soil Engineers and Soil Processors. In: König, H., Varma, A. (eds) Intestinal Microorganisms of Termites and Other Invertebrates. Soil Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28185-1_8

Download citation

Publish with us

Policies and ethics