Skip to main content

Near infrared spectroscopy in brain injury: today’s perspective

  • Conference paper
Intracranial Pressure and Brain Monitoring XII

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 95))

Summary

The technique of near infrared spectroscopy (NIRS) is based on the principle of light attenuation by the chromophores oxyhaemoglobin (HbO2), deoxyhaemoglobin (Hb) and cytochrome oxidase. Changes in the detected light levels can therefore represent changes in concentrations of these chromophores.

Clinical use of NIRS in the brain has been well established in neonates where transillumination is possible. While it has become a useful research tool for monitoring the adult brain, clinical application has been hampered by the fact that it must be applied in reflectance mode. This has resulted in a number of concerns, most significantly the issue of signal contamination by the extracranial tissue layers. Algorithms have been applied to try to overcome this problem, and techniques such as time resolved, phase resolved and spatially resolved spectroscopy have been developed.

There has been renewed interest in NIRS as an easy to use, noninvasive technique for measuring tissue oxygenation in the adult brain. Recent technical advances have led to the development of compact, portable instruments that detect changes in optical attenuation of several wavelengths of light.

Near infrared spectroscopy is an evolving technology that holds significant potential for technical advancement. In particular, NIRS shows future promise as a clinical tool for bedside cerebral blood flow measurements and as a cerebral imaging modality for mapping structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Rawi PG, Smielewski P, Kirkpatrick PJ (2001) Evaluation of a near infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head. Stroke 32: 2492–2500

    PubMed  CAS  Google Scholar 

  2. Al-Rawi PG, Smielewski P, Kirkpatrick PJ (2002) Threshold for cerebral ischaemia defined by Tissue Oxygen Index (TOI) using near infrared spectroscopy Ref Type: Conference Proceeding

    Google Scholar 

  3. Aldrich CJ, D’Antona D, Wyatt JS, Spencer JAD, Peebles DM, Reynolds EOR (1994) Fetal cerebral oxygenation measured by near infrared spectroscopy shortly before birth and acid-base status at birth. Obstetrics Gynaecol 84: 861–866

    CAS  Google Scholar 

  4. Arridge SR, Schweiger M (1997) Image reconstruction in optical tomography. Phil Trans R Soc Lond B 352: 717–726

    Article  CAS  Google Scholar 

  5. Benaron DA, Hintz SR, Villringer A, Boas D, Kleinschmidt A, Frahm J, Hirth C, Obrig H, van Houten JC, Kermit EL, Cheong WF, Stevenson DK (2000) Noninvasive functional imaging of human brain using light. J Cereb Blood Flow Metab 20: 469–477

    PubMed  CAS  Google Scholar 

  6. Boushel R, Langberg H, Olesen J, Nowak M, Simonsen L, Bülow J, Kjaer M (2000) Regional blood flow during exercise in humans measured by near infrared spectroscopy and indocyanine green. J Appl Physiol 89: 1868–1878

    PubMed  CAS  Google Scholar 

  7. Brazy JE, Lewis DV, Mitnik MH, Jöbsis FF (1985) Non invasive monitoring of cerebral oxygenation in preterm infants: preliminary observations. Paediatrics 75: 217–225

    CAS  Google Scholar 

  8. Brown R, Wright G, Royston DA (1993) A comparison of two systems for assessing cerebral venous oxyhaemoglobin saturation during cardiopulmonary bypass in humans. Anaesthesia 48: 697–700 Ref Type: Journal (Full)

    PubMed  CAS  Google Scholar 

  9. Cope M, Delpy DT (1988) System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comp 26: 289–294

    CAS  Google Scholar 

  10. Danen RM, Wang Y, Li XD, Thayer WS, Yodh AG (1985) Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light. Photochemistry and Photobiology 67: 33–40

    Article  Google Scholar 

  11. Delpy DT, Cope M (1997) Quantification in tissue near-infrared spectroscopy. Phil Trans R Soc Lond B 352: 649–659

    Article  CAS  Google Scholar 

  12. Dullenkopf A, Frey B, Baenziger O, Gerber A, Weiss M (2003) Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter. Paediatric Anaesthesia 13: 384–391

    Article  PubMed  Google Scholar 

  13. Edwards AD, Wyatt JS, Richardson CE, Delpy DT, Cope M, Reynolds EOR (1988) Cotside measurements of cerebral blood flow in ill newborn infants by near infrared spectroscopy. Lancet ii, 770–771 Ref Type: Journal (Full)

    Article  Google Scholar 

  14. Elwell CE, Cope M, Edwards AD, Wyatt JS, Delpy DT, Reynolds EOR (1994) Quantification of adult cerebral haemodynamics by near-infrared spectroscopy. App Physiol 77: 2753–2760

    CAS  Google Scholar 

  15. Elwell CE, Matcher SJ, Tyszczuk L, Meek JH, Delpy DT (1997) Measurement of cerebral venous saturation in adults using near infrared spectroscopy. Adv Exp Med Biol 411: 453–460

    PubMed  CAS  Google Scholar 

  16. Fantini S, Franceschini MA, Maier JS, Walker SA, Barbieri B, Gratton E (1995) Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry. Opt Eng 34: 32–42

    Article  CAS  Google Scholar 

  17. Ferrari M, De Marchis C, Giannini I (1986) Cerebral blood volume and haemoglobin oxygen saturation monitoring in the neonatal brain by near infrared spectroscopy. Adv Exp Med Biol 200: 203–211

    PubMed  CAS  Google Scholar 

  18. Franceschini MA, Toronov V, Filiaci ME, Gratton E, Fantini S (2000) On line optical imaging of the human brain with 160 ms temporal resolution. Optics Express 6: 49–57

    Article  PubMed  CAS  Google Scholar 

  19. Germon TJ, Evans DH, Barnett N, Wall P, Manara AR, Nelson RJ (1999) Cerebral near infrared spectroscopy: emitter-detector separation must be increased. Br J Anaesth 82: 831–837

    PubMed  CAS  Google Scholar 

  20. Germon TJ, Young AER, Manara AR, et al (1995) Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygen monitored by near infrared spectroscopy. J Neurol Neurosurg Psychiatry 58: 477–479

    Article  PubMed  CAS  Google Scholar 

  21. Gora F, Shinde S, Elwell CE, Goldstone JC, Cope M, Delpy DT, Smith M (2002) Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study. J Neurosurg Anaesthesiol 14: 218–222

    Article  Google Scholar 

  22. Harris DN, Cowans FM, Wertheim DA (1994) Near infrared spectroscopy in the temporal region: strong influence of external carotid artery. Adv Exp Med Biol 345: 825–828

    PubMed  CAS  Google Scholar 

  23. Hazeki O, Tamura M (1988) Quantitative analysis of haemoglobin oxygenation state of brain in situ by near-infrared spectrophotometry. J App Physiol 64: 796–802

    CAS  Google Scholar 

  24. Hebden JC (2003) Advances in optical imaging of the newborn infant brain. Psychophysiology 40: 501–510

    Article  PubMed  Google Scholar 

  25. Hebden JC, Gibson A, Austin T, Yusof RMd, Everdell N, Delpy DT, Arridge SR, Meek JH, Wyatt JS (2004) Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography. Phys Med Biol 49: 1117–1130

    Article  PubMed  Google Scholar 

  26. Hintz SR, Cheong WF, van Houten JP, Stevenson DK, Benaron DA (1999) Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging. Pediat Res 45: 54–59

    PubMed  CAS  Google Scholar 

  27. Hopton P, Walsh TS, Lee A (1999) Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination. J Appl Physiol 87: 1981–1987

    PubMed  CAS  Google Scholar 

  28. Jöbsis FF (1977) Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198: 1264–1267

    PubMed  Google Scholar 

  29. Keller E, Nadler A, Alkhadi H, Kollias S, Yonekawa Y (2002) Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near infrared spectroscopy and indocyanine green dye dilution. Unknown

    Google Scholar 

  30. Kirkpatrick PJ, Smielewski P, Al-Rawi P, Czosnyka M (1998) Resolving extra-and intracranial signal changes during adult near infrared spectroscopy. Neurol Res 20: S19–S22

    Article  PubMed  Google Scholar 

  31. Kirkpatrick PJ, Lam JMK, Al-Rawi PG, Smielewski P, Czosnyka M (1998) Defining thresholds for critical ischaemia by using near-infrared spectroscopy in the adult brain. J Neurosurg 89: 389–394

    Article  PubMed  CAS  Google Scholar 

  32. Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD (1995) Near infrared spectroscopy use in patients with head injury. J Neurosurg 83: 963–970

    PubMed  CAS  Google Scholar 

  33. Komiyama T, Quaresima V, Shigematsu H, Ferrari M (2001) Comparison of two spatially resolved near-infrared photometers in the detection of tissue oxygen saturation: poor reliability at very low oxygen saturation. Clin Sci 101: 715–718

    Article  PubMed  CAS  Google Scholar 

  34. Kusaka T, Kawada K, Okubo K, Nagano K, Namba M, Okada H, Imai T, Isobe K, Itoh S (2004) Noninvasive optical imaging in the visual cortex in young infants. Human Brain Mapping 22: 122–132

    Article  PubMed  Google Scholar 

  35. Kytta J, Ohman J, Tanskanen P, Randell T (1999) Extracranial contribution to cerebral oximetry in brain dead patients: a report of six cases. J Neurosug Anaesthesiol 11: 252–254

    Article  CAS  Google Scholar 

  36. Lam JMK, Kirkpatrick PJ, Al-Rawi P, Smielewski P, Pickard JD (1996) Internal and external carotid contribution to near infrared spectroscopy (NIRS) during carotid endarterectomy (CE). Journal of Neurology, Neurosurgery and Psychiatry 61(5): 553 Ref Type: Abstract

    Google Scholar 

  37. Leung TS, Aladangady N, Elwell CE, Delpy DT, Costeloe K (2004) A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates. Pediatr Res 55: 134–141

    Article  PubMed  CAS  Google Scholar 

  38. Litscher G, Schwarz G (1997) Transcranial cerebral oximetry — is it clinically useless at this moment to interpret absolute values obtained by the INVOS 3100 cerebral oximeter? Biomed Tech (Berl) 42: 74–77

    Article  CAS  Google Scholar 

  39. Matcher SJ, Kirkpatrick PJ, Nahid K, Cope M, Delpy DT (1993) Absolute quantification methods in tissue near infrared spectroscopy. Proc SPIE 2389: 486–495

    Article  Google Scholar 

  40. McKeating EG, Monjardino JR, Signorini DF, Souter MJ, Andrews PJD (1997) A comparison of the INVOS 3100 and the Critikon 2020 near-infrared spectrophotometer as monitors of cerebral oxygenation. Anaesthesia 52: 136–140 Ref Type: Journal (Full)

    Article  PubMed  CAS  Google Scholar 

  41. Miwa M, Ueda Y, Chance B (1995) Development of time resolved spectroscopy system for quantitative non-invasive tissue measurement. Proc SPIE 2389: 142–149

    Article  Google Scholar 

  42. Nollert G, Jonas RA, Reichart B (2000) Optimising cerebral oxygenation during cardiac surgery: a review of experimental and clinical investigations with near infrared spectrophotometry. Thorac Cardiovasc Surg 48: 247–253

    Article  PubMed  CAS  Google Scholar 

  43. Obrig H, Villringer A (2003) Beyond the visible; Imaging the human brain with light. J Cereb Blood Flow Metab 23: 1–18

    Article  PubMed  Google Scholar 

  44. Oda M, Yamashita Y, Nishimura G, Tamura M (1996) A simple and novel algorithm for time resolved multiwavelength oximetry. Physics Med Biol 40: 2093–2108

    Google Scholar 

  45. Okada E, Firbank M, Schweiger M, et al (1997) Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Appl Opt 36: 21–31

    Article  PubMed  CAS  Google Scholar 

  46. Patel J, Marks K, Roberts I, Azzopardi D, Edwards AD (1998) Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green. Pediatr Res 43: 34–39

    PubMed  CAS  Google Scholar 

  47. Roberts I, Fallon P, Kirkham FJ, Lloyd-Thomas A, Cooper C, Maynard R, Elliot M, Edwards AD (1993) Estimation of cerebral blood flow with near infrared spectroscopy and indocyanine green. Lancet 342: 1425

    Article  PubMed  CAS  Google Scholar 

  48. Schroeter ML, Bucheler MM, Muller K, Uludag K, Obrig H, Lohmann G, Tittgemeyer M, Villringer A, Yves von Cramon D (2004) Towards a standard analysis for functional near-infrared imaging. NeuroImage 21: 283–290

    Article  PubMed  Google Scholar 

  49. Schwarz G, Litscher G, Kleinert R, Jobstmann R (1996) Cerebral oximetry in dead subjects. J Neurosurg Anesthesiol 8(3): 189–193 Ref Type: Journal (Full)

    PubMed  CAS  Google Scholar 

  50. Skov L, Pryds O, Griesen G (1991) Estimating cerebral blood flow in newborn infants: comparison of near infrared spectroscopy and 133Xe clearence. Pediatr Res 30: 570–573

    PubMed  CAS  Google Scholar 

  51. Springett R, Sakata Y, Delpy DT (2001) Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green. Phys Med Biol 46: 2209–2225

    Article  PubMed  CAS  Google Scholar 

  52. Suzuki S, Takasaki S, Ozaki T, Kobayashi Y (1999) A tissue oxygenation monitor using NIR spatially resolved spectroscopy. Proc SPIE 3597: 582–592

    Article  CAS  Google Scholar 

  53. Tamura M, Hoshi Y, Okada F (1997) Localised near-infrared spectroscopy and functional optical imaging of brain activity. Phil Trans R Soc Lond B 352: 737–742

    Article  CAS  Google Scholar 

  54. Terborg C, Bramer S, Harscher S, Simon M, Witte OW (2004) Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green. J Neurol Neurosurg Psychiatry 75: 38–42

    PubMed  CAS  Google Scholar 

  55. van Houten JP, Benaron DA, Spilman S, et al (1996) Imaging brain injury using time-resolved near infrared light scanning. Pediat Res 39: 470–476

    PubMed  Google Scholar 

  56. Vernieri F, Tibuzzi F, Pasqualetti P, Rosato N, Passarelli F, Rossini PM, Silvestrini M (2004) Transcranial Doppler and near-infrared spectroscopy can evaluate the haemodynamic effect of carotid artery occlusion. Stroke 35: 64–70

    Article  PubMed  Google Scholar 

  57. Villringer A, Planck J, Stodieck S, Boetzel K, Schleinkofer L, Dirnagl U (1994) Non invasive assessment of cerebral haemodynamics and tissue oxygenation during activation of brain function in human adults using near infrared spectroscopy. Adv Exp Med Biol 345: 559–565

    PubMed  CAS  Google Scholar 

  58. Watanabe E, Nagahori Y, Mayanagi Y (2002) Focus diagnosis of epilepsy using near-infrared spectroscopy. Epilepsia 43: 50–55

    Article  PubMed  Google Scholar 

  59. Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EOR (1988) Characterisation of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta 933: 184–192

    Article  PubMed  CAS  Google Scholar 

  60. Wyatt JS, Cope M, Delpy DT, Richardson CE, Edwards AD, Wray S, Reynolds EOR (1990) Quantification of cerebral blood volume in newborn infants by near infrared spectroscopy. J Appl Physiol 68: 1086–1091

    PubMed  CAS  Google Scholar 

  61. Yoshitani K, Kawaguchi M, Tatsumi K, Kitaguchi K, Furuya H (2002) A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrometers. Anesth Analg 94: 586–590

    Article  PubMed  CAS  Google Scholar 

  62. Young AER, Germon TJ, Barnett NJ, Manara AR, Nelson RJ (2000) Behaviour of near-infrared light in the adult human head: implications for clinical near-infrared spectroscopy. Br J Anaesth 84: 38–42

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Al-Rawi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this paper

Cite this paper

Al-Rawi, P.G. (2005). Near infrared spectroscopy in brain injury: today’s perspective. In: Poon, W.S., et al. Intracranial Pressure and Brain Monitoring XII. Acta Neurochirurgica Supplementum, vol 95. Springer, Vienna. https://doi.org/10.1007/3-211-32318-X_93

Download citation

  • DOI: https://doi.org/10.1007/3-211-32318-X_93

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-24336-7

  • Online ISBN: 978-3-211-32318-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics