Skip to main content

MRI in Muscle Channelopathies

  • Chapter
  • First Online:
Magnetic Resonance Imaging of the Skeletal Musculature

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2431 Accesses

Abstract

Myotonia is an involuntary-slowed relaxation after a forceful voluntary muscle contraction which is experienced by the patient as muscle stiffness. Electrical hyperexcitability of the muscle fiber membrane is the basis of myotonia. The stiffness recedes with repeated contractions, a phenomenon called warm-up. Patients in whom muscle stiffness worsens with repetition or with cooling suffer from paradoxical myotonia or so-called paramyotonia. This type of myotonia is associated with episodes of flaccid limb muscle weakness similar to periodic paralysis. Patients with periodic paralysis experience episodic weakness spells with varying intervals of normal muscle function. Electrical inexcitability of the muscle fiber membrane is the basis of periodic paralysis. Two dominant episodic types of weakness with or without myotonia are distinguished by the serum K+ level during the attacks of tetraplegia: hyper- and hypokalemic periodic paralysis. Independently of the severity and frequency of the paralytic episodes, many patients develop a chronic progressive myopathy in the forties, an age at which the attacks of weakness decrease. Although channelopathies such as myotonias and periodic paralyses are known for episodic symptoms, in most cases progressive focal or general muscular weakness is present. Routine protocols of proton (1H) magnetic resonance imaging (MRI) show normal muscle morphology or may demonstrate edematous or lipomatous changes, atrophy or hypertrophy; however, these morphologic changes are not very disease-specific. The following chapter introduces examples of conventional and modern functional imaging methods like 23Na MRI for evaluation of muscular channelopathies, in which an autosomal-dominant bequeathed defect of muscular Na+ channels leads to a pathologic Na+ influx that causes intermittent or permanent muscular paresis as well as muscular stiffness. 23Na MRI by which aspects of muscular pathogenesis such as muscular Na+ homeostasis can be visualized and monitored has effectively achieved value in the radiologic management of muscular Na+ channel diseases, since 23Na MRI is able to depict an intracellular muscular sodium accumulation simultaneous to development of muscular paresis. This sodium accumulation correlates well with the grade of paresis and is reproducible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1H-MRI:

Hydrogen magnetic resonance imaging

23Na-MRI:

Sodium magnetic resonance imaging

Cl− :

Chloride ion

ClC-1:

Chloride channel of skeletal muscle, member 1 of the chloride channel family ClC

CLCN1:

Gene encoding the muscular chloride channel, ClC-1

DMC:

Dominant myotonia congenita, Thomsen myotonia

EMG:

Electromyography

HyperPP:

Hyperkalemic periodic paralysis

HypoPP:

Hypokalemic periodic paralysis

K+ :

Potassium ion

MRI:

Magnetic resonance imaging

Na+ :

Sodium ion

Nav1.4:

Sodium channel of skeletal muscle, member 4 of the voltage-gated sodium channel family

PAM:

K+-aggravated myotonia, a Na+ channel myotonia

PC:

Paramyotonia congenita, Eulenburg disease

RMC:

Recessive myotonia congenita, Becker myotonia

SCNA4:

Gene encoding the muscular sodium channel, Nav1.4

References

  • Amarteifio E, Nagel AM, Weber MA, Jurkat-Rott K, Lehmann-Horn F (2012) Hyperkalemic periodic paralysis and permanent weakness: 3-T MR imaging depicts intracellular 23Na overload—initial results. Radiology 264:154–163

    Article  PubMed  Google Scholar 

  • Bryant SH (1969) Cable properties of external intercostal muscle fibres from myotonic and nonmyotonic goats. J Physiol (Lond) 204:539–550

    CAS  Google Scholar 

  • Engel AG (1970) Evolution and content of vacuoles in primary hypokalemic periodic paralysis. Mayo Clin Proc 45:774–814

    CAS  PubMed  Google Scholar 

  • Fontaine B, Vale Santos JM, Jurkat-Rott K et al (1994) Mapping of the hypokalaemic periodic paralysis (HypoPP) locus to chromosome 1q31-32 in three European families. Nat Genet 6:267–272

    Article  CAS  PubMed  Google Scholar 

  • Fontaine B, Khurana TS, Hoffman EP et al (1990) Hyperkalemic periodic paralysis and the adult muscle sodium channel alpha-subunit gene. Science 250:1000–1002

    Article  CAS  PubMed  Google Scholar 

  • Heine R, Pika U, Lehmann-Horn F (1993) A novel SCN4A mutation causing myotonia aggravated by cold and potassium. Hum Mol Genet 2:1349–1353

    Article  CAS  PubMed  Google Scholar 

  • Hoffman EP, Lehmann-Horn F, RĂ¼del R (1995) Overexcited or inactive: ion channels in muscle diseases. Cell 80:681–686

    Article  CAS  PubMed  Google Scholar 

  • Jurkat-Rott K, Lehmann-Horn F (2007) Genotype-phenotype correlation and therapeutic rationale in hyperkalemic periodic paralysis. Neurotherapeutics 4:216–224

    Article  CAS  PubMed  Google Scholar 

  • Jurkat-Rott K, MĂ¼ller-Höcker J, Pongratz D et al (2002) Chapter 5: diseases associated with ion channel and ion transporter defects: Chloride and sodium channel myotonias. In: Karpati G (ed) Structural and molecular basis of skeletal muscle diseases. ISN Neuropath Press, Basel, pp 90–94

    Google Scholar 

  • Jurkat-Rott K, Lehmann-Horn F, Elbaz A, Heine R, Gregg RG, Hogan K, Powers P, Lapie P, Vale-Santos JE, Weissenbach J, Fontaine B (1994) A calcium channel mutation causing hypokalemic periodic paralysis. Hum Mol Genet 3:1415–1419

    Article  CAS  PubMed  Google Scholar 

  • Jurkat-Rott K, Mitrovic N, Hang C et al (2000) Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc Natl Acad Sci USA 97:9549–9554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jurkat-Rott K, Groome J, Lehmann-Horn F (2012) Pathophysiological role of omega pore current in channelopathies. Front Pharmacol 3:112. Epub 2012 Jun 11

    Google Scholar 

  • Jurkat-Rott K, Lehmann-Horn F (2013) Chapter 11: Sarcolemmal ion channelopathies. In: Goebel HH, Sewry CA, Weller RO (eds) Muscle disease: pathology and genetics, 2nd edn. International Society of Neuropathology. John Wiley and Sons Ltd., Hoboken, New Jersey, pp 118–125

    Google Scholar 

  • Jurkat-Rott K, Weber MA, Fauler M et al (2009) K + -dependent paradoxical membrane depolarization and Na + overload, major and reversible contributors to weakness by ion channel leaks. Proc Natl Acad Sci USA 106:4036–4041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koch MC, Steinmeyer K, Lorenz C et al (1992) The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257:797–800

    Article  CAS  PubMed  Google Scholar 

  • Lehmann-Horn F, RĂ¼del R, Ricker K (1987a) Membrane defects in paramyotonia congenita (Eulenburg). Muscle Nerve 10:633–641

    Article  CAS  PubMed  Google Scholar 

  • Lehmann-Horn F, KĂ¼ther G, Ricker K et al (1987b) Adynamia episodica hereditaria with myotonia: a non-inactivating sodium current and the effect of extracellular pH. Muscle Nerve 10:363–374

    Article  CAS  PubMed  Google Scholar 

  • Lehmann-Horn F, RĂ¼del R, Jurkat-Rott K (2004) Chapter 46: Nondystrophic myotonias and periodic paralyses. In: Engel AG, Franzini-Armstrong C (eds) Myology, 3rd edn. McGraw-Hill, New York, pp 1257–1300

    Google Scholar 

  • Lerche H, Heine R, Pika U et al (1993) Human sodium channel myotonia: slowed channel inactivation due to substitutions for a glycine within the III/IV linker. J Physiol (Lond) 470:13–22

    CAS  Google Scholar 

  • Lerche H, Mitrovic N, Dubowitz V et al (1996) Paramyotonia congenita: The R1448P sodium channel mutation in adult human skeletal muscle. Ann Neurol 39:599–608

    Article  CAS  PubMed  Google Scholar 

  • Kornblum C, Lutterbey GG, Czermin B et al (2010) Whole-body high-field MRI shows no skeletal muscle degeneration in young patients with recessive myotonia congenita. Acta Neurol Scand 121:131–135

    Article  CAS  PubMed  Google Scholar 

  • Kornblum C, Lutterbey G, Bogdanow M et al (2006) Distinct neuromuscular phenotypes in myotonic dystrophy types 1 and 2: a whole body highfield MRI study. J Neurol 253:753–761

    Article  PubMed  Google Scholar 

  • Mohammadi B, Jurkat-Rott K, Alekov AK et al (2005) Preferred mexiletine block of human sodium channels with IVS4 mutations and its pH-dependence. Pharmacogenet 15:235–244

    Article  CAS  Google Scholar 

  • Nagel AM, Amarteifio E, Lehmann-Horn F, Jurkat-Rott K, Semmler W, Schad LR, Weber MA (2011) 3 Tesla sodium inversion recovery magnetic resonance imaging allows for improved visualization of intracellular sodium content changes in muscular channelopathies. Invest Radiol 46:759–766

    Article  CAS  PubMed  Google Scholar 

  • Rojas CV, Wang JZ, Schwartz LS et al (1991) A Met-to-Val mutation in the skeletal muscle Na + channel alpha-subunit in hyperkalaemic periodic paralysis. Nature 354:387–389

    Article  CAS  PubMed  Google Scholar 

  • Weber MA, Nagel AM, Wolf MB, Jurkat-Rott K, Kauczor HU, Semmler W, Lehmann-Horn F (2012) Permanent muscular sodium overload and persistent muscle oedema in Duchenne muscular dystrophy a possible contributor of progressive muscle degeneration. J Neurol 259:2385–2392

    Article  PubMed  Google Scholar 

  • Weber MA, Nagel AM, Jurkat-Rott K, Lehmann-Horn F (2011) Sodium (23Na) MRI detects elevated muscular sodium concentration in Duchenne muscular dystrophy. Neurology 77:2017–2024

    Article  CAS  PubMed  Google Scholar 

  • Weber MA, Nielles-Vallespin S, Essig M et al (2006a) Muscle Na+ channelopathies—MRI detects intracellular 23Na accumulation during episodic weakness. Neurology 67:1151–1158

    Article  CAS  PubMed  Google Scholar 

  • Weber MA, Nielles-Vallespin S, Huttner HB et al (2006b) Evaluation of patients with paramyotonia at 23Na MR imaging during cold induced weakness. Radiology 240:489–500

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Armin M. Nagel, Department of Medical Physics in Radiology, German Cancer Research Center Heidelberg, for his contribution. Prof. Dr. Frank Lehmann-Horn and PD Dr. Karin Jurkat-Rott receive grants from the non-profit Else Kröner-Fresenius-Stiftung, the German Federal Ministry of Education and Research (BMBF, IonoNeurOnet), and the Baden-Wuerttemberg Ministry of Science (Competence Center on Rare Disease). Prof. Dr. Frank Lehmann-Horn is an endowed Senior Research Professor of Neurosciences of the non-profit Hertie-Foundation. Parts of the 23Na MRI work were supported by a research grant from the Medical Faculty of Heidelberg University. Finally, we are grateful to the patients and their families for their participation and to the Deutsche Gesellschaft fĂ¼r Muskelkranke e.V. for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Jurkat-Rott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jurkat-Rott, K., Weber, MA., Lehmann-Horn, F. (2013). MRI in Muscle Channelopathies. In: Weber, MA. (eds) Magnetic Resonance Imaging of the Skeletal Musculature. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2013_922

Download citation

  • DOI: https://doi.org/10.1007/174_2013_922

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37218-6

  • Online ISBN: 978-3-642-37219-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics