Skip to main content

Thyroid Hormones, Glucocorticoids, Insulin, and Bone

  • Chapter
  • First Online:
Bone Regulators and Osteoporosis Therapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 262))

Abstract

Several endocrine systems have important effects on bone tissue. Thyroid hormones are essential for normal growth and development. Excess of these hormones will result in clinically significant changes that may require intervention. Glucocorticoids also have a marked effect on bone metabolism by several pathways. Their endogenous or exogenous excess will induce pathological processes that might elevate the risk of fractures. Insulin and the carbohydrate metabolism elicit a physiological effect on bone; however, the lack of insulin (type 1 diabetes) or insulin resistance (type 2 diabetes) have deleterious influence on bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen B, Jorgensen HL, Laulund AS, Nybo M, Brix TH, Hegedus L (2014) Low serum thyrotropin level and duration of suppression as a predictor of major osteoporotic fractures-the OPENTHYRO register cohort. J Bone Miner Res 29(9):2040–2050. https://doi.org/10.1002/jbmr.2244

    Article  CAS  PubMed  Google Scholar 

  • Adachi JD, Saag KG, Delmas PD et al (2001) Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo controlled extension trial. Arthritis Rheum 44(1):202–211

    CAS  PubMed  Google Scholar 

  • Adami S (2009) Bone health in diabetes: considerations for clinical management. Curr Med Res Opin 25(5):1057–1072

    PubMed  Google Scholar 

  • Allain TJ, Chambers TJ, Flanagan AM, McGregor AM (1992) Tri-iodothyronine stimulates rat osteoclastic bone resorption by an indirect effect. J Endocrinol 133(3):327–331

    CAS  PubMed  Google Scholar 

  • Amiche MA, Albaum JM, Tadrous M et al (2016) Fracture risk in oral glucocorticoid users: a Bayesian metaregression leveraging control arms of osteoporosis clinical trials. Osteoporos Int 27(5):1709–1718

    CAS  PubMed  Google Scholar 

  • An T, Hao J, Sun S, Li R, Yang M, Cheng G, You M (2017) Efficacy of statins for osteoporosis: a systematic review and meta-analysis. Osteoporos Int 28(1):47–57

    CAS  PubMed  Google Scholar 

  • Arruda AP, Hotamisligil GS (2015) Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab 22(3):381–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aung K, Htay T (2011) Thiazide diuretics and the risk of hip fracture. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005185.pub2

  • Baerrett-Connor E, Kritz-Silverstein D (1996) Does hyperinsulinemia preserve bone? Diabetes Care 19:1388–1392

    Google Scholar 

  • Ballock R, Mita BC, Zhou X, Chen DH, Mink LM (1999) Expression of thyroid hormone receptor isoforms in rat growth plate cartilage in vivo. J Bone Miner Res 14(9):1550–1556. https://doi.org/10.1359/jbmr.1999.14.9.1550

    Article  CAS  PubMed  Google Scholar 

  • Banovac K, Koren E (2000) Triiodothyronine stimulates the release of membrane-bound alkaline phosphatase in osteoblastic cells. Calcif Tissue Int 67(6):460–465

    CAS  PubMed  Google Scholar 

  • Barahona MJ, Sucunza N, Resmini E et al (2009) Deleterious effects of glucocorticoid replacement on bone in women after long-term remission of Cushing’s syndrome. J Bone Miner Res 24(11):1841–1846

    CAS  PubMed  Google Scholar 

  • Baschant U, Tuckermann J (2010) The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol 120(2-3):69–75

    CAS  PubMed  Google Scholar 

  • Bassett JH, Swinhoe R, Chassande O, Samarut J, Williams GR (2006) Thyroid hormone regulates heparan sulfate proteoglycan expression in the growth plate. Endocrinology 147(1):295–305. https://doi.org/10.1210/en.2005-0485

    Article  CAS  PubMed  Google Scholar 

  • Beavan S, Horner A, Bord S et al (2001) Colocalization of glucocorticoid and mineralocorticoid receptors in human bone. J Bone Miner Res 16(8):1496–1504

    CAS  PubMed  Google Scholar 

  • Behr M, Ramsden DB, Loos U (1997) Deoxyribonucleic acid binding and transcriptional silencing by a truncated c-erbA beta 1 thyroid hormone receptor identified in a severely retarded patient with resistance to thyroid hormone. J Clin Endocrinol Metab 82(4):1081–1087. https://doi.org/10.1210/jcem.82.4.3853

    Article  CAS  PubMed  Google Scholar 

  • Belaya ZE, Hans D, Rozhinskaya LY et al (2015) The risk factors for fractures and trabecular bone-score value in patients with endogenous Cushing’s syndrome. Arch Osteoporos 10(1):44

    PubMed  Google Scholar 

  • Belaya ZE, Iljin AV, Melnichenko GA et al (2016) Diagnostic performance of osteocalcin measurements in patients with endogenous Cushing’s syndrome. BoneKey Rep 5:815

    PubMed  PubMed Central  Google Scholar 

  • Bennett A, Chen T, Feldman D et al (1984) Characterization of insulin-like growth factor I receptors on cultured rat bone cells: regulation of receptor concentration by glucocorticoids. Endocrinology 115(4):1577–1583

    CAS  PubMed  Google Scholar 

  • Bilezikian JP, Watts NB, Usiskin K, Polidori D, Fung A, Sullivan D, Rosenthal N (2016) Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol Metab 101(1):44–51

    CAS  PubMed  Google Scholar 

  • Bochukova E, Schoenmakers N, Agostini M, Schoenmakers E, Rajanayagam O, Keogh JM, Henning E, Reinemund J, Gevers E, Sarri M, Downes K, Offiah A, Albanese A, Halsall D, Schwabe JW, Bain M, Lindley K, Muntoni F, Vargha-Khadem F, Dattani M, Farooqi IS, Gurnell M, Chatterjee K (2012) A mutation in the thyroid hormone receptor alpha gene. N Engl J Med 366(3):243–249. https://doi.org/10.1056/NEJMoa1110296

    Article  CAS  PubMed  Google Scholar 

  • Bolinder J, Ljunggren O, Johansson L, Wilding J, Langkilde AM, Sjostrom CD et al (2014) Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 16(2):159–169

    CAS  PubMed  Google Scholar 

  • Brennan-Speranza TC, Henneicke H, Gasparini SJ et al (2012) Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. J Clin Invest 122(11):4172–4189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley L, Guyatt G, Fink HA et al (2017) 2017 American College of Rheumatology guideline for the prevention and treatment of glucocorticoid induced osteoporosis. Arthritis Rheumatol 69(8):1521–1537

    PubMed  Google Scholar 

  • Buday B, Kulcsár E, Literáti Nagy B, Horváth T, Vitai M, Vecsei I, Bezzegh K, Kiss J, Péterfai E, Koltay L, Korányi L (2008) The role of osteocalcin in the connection of bone and glucose metabolism in humans. Orv Hetil 149(52):2453–2461

    PubMed  Google Scholar 

  • Camozzi V, Betterle C, Frigo AC et al (2018) Vertebral fractures assessed with dual-energy X-ray absorptiometry in patients with Addison’s disease on glucocorticoid and mineralocorticoid replacement therapy. Endocrine 59(2):319–329

    CAS  PubMed  Google Scholar 

  • Campos Pastor MM, López-Ibarra PJ, Escobar-Jiménez F, Serrano Pardo MD, García-Cervigón AG (2000) Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos Int 11(5):455–459

    CAS  PubMed  Google Scholar 

  • Canalis E, Mazziotti G, Giustina A et al (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18:1319–1328

    CAS  PubMed  Google Scholar 

  • Centrella M, McCarthy TL, Canalis E (1991) Glucocorticoid regulation of transforming growth factor beta 1 activity and binding in osteoblast-enriched cultures from fetal rat bone. Mol Cell Biol 11(9):4490–4496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran M (2017) Diabetes drug effects on the skeleton. Calcif Tissue Int 100(2):133–149

    CAS  PubMed  Google Scholar 

  • Chapman K, Holmes M, Seckl J (2013) 11b-Hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 93(3):1139–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chassande O, Fraichard A, Gauthier K, Flamant F, Legrand C, Savatier P, Laudet V, Samarut J (1997) Identification of transcripts initiated from an internal promoter in the c-erbA alpha locus that encode inhibitors of retinoic acid receptor-alpha and triiodothyronine receptor activities. Mol Endocrinol 11(9):1278–1290. https://doi.org/10.1210/mend.11.9.9972

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Zhang L, OuYang Y (2014) Glucocorticoid induced osteoblast apoptosis by increasing E4BP4 expression via up-regulation of Bim. Calcif Tissue Int 94(6):640–647

    CAS  PubMed  Google Scholar 

  • Chen S, Villalta SA, Agrawal DK (2016) FOXO1 mediates vitamin D deficiency-induced insulin resistance in skeletal muscle. J Bone Miner Res 31(3):585–595

    CAS  PubMed  Google Scholar 

  • Chiodini I, Carnevale V, Torlontano M et al (1998) Alterations of bone turnover and bone mass at different skeletal sites due to pure glucocorticoid excess: study in eumenorrheic patients with Cushing’s syndrome. J Clin Endocrinol Metab 83(6):1863–1867

    CAS  PubMed  Google Scholar 

  • Chiodini I, Morelli V, Masserini B et al (2009) Bone mineral density, prevalence of vertebral fractures, and bone quality in patients with adrenal incidentalomas with and without subclinical hypercortisolism: an Italian multicenter study. J Clin Endocrinol Metab 94(9):3207–3214

    CAS  PubMed  Google Scholar 

  • Christensen JO, Svendsen OL (1999) Bone mineral in pre- and postmenopausal women with insulin-dependent and non-insulin-dependent diabetes mellitus. Osteoporos Int 10(4):307–311

    CAS  PubMed  Google Scholar 

  • Chrousos GP, Torpy DJ, Gold PW (1998) Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med 129(3):229–240

    CAS  PubMed  Google Scholar 

  • Conaway HH, Henning P, Lie A, Tuckermann J et al (2016) Activation of dimeric glucocorticoid receptors in osteoclast progenitors potentiates RANKL induced mature osteoclast bone resorbing activity. Bone 93:43–54

    CAS  PubMed  Google Scholar 

  • Cooper MS, Walker EA, Bland R et al (2000) Expression and functional consequences of 11b-hydroxysteroid dehydrogenase activity in human bone. Bone 27(3):375–381

    CAS  PubMed  Google Scholar 

  • Cooper MS, Blumsohn A, Goddard PE et al (2003) 11b-Hydroxysteroid dehydrogenase type 1 activity predicts the effects of glucocorticoids on bone. J Clin Endocrinol Metab 88(8):3874–3877

    CAS  PubMed  Google Scholar 

  • Cooper MS, Syddall HE, Fall CH et al (2005) Circulating cortisone levels are associated with biochemical markers of bone formation and lumbar spine BMD: the Hertfordshire Cohort Study. Clin Endocrinol (Oxf) 62(6):692–697

    CAS  Google Scholar 

  • Cushing HW (1932) The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Bull Johns Hopkins Hosp 50:137–195

    Google Scholar 

  • Dallas SL, Prideaux M, Bonewald LF (2013) The osteocyte: an endocrine cell ... and more. Endocr Rev 34(5):658–690

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries F, Bracke M, Leufkens HG et al (2007) Fracture risk with intermittent high-dose oral glucocorticoid therapy. Arthritis Rheum 56(1):208–214

    PubMed  Google Scholar 

  • Dennison E, Hindmarsh P, Fall C et al (1999) Profiles of endogenous circulating cortisol and bone mineral density in healthy elderly men. J Clin Endocrinol Metab 84(9):3058–3063

    CAS  PubMed  Google Scholar 

  • Dormuth CR, Carney G, Carleton B, Bassett K, Wright JM (2009) Thiazolidinediones and fractures in men and women. Arch Intern Med 169(15):1395–1402

    CAS  PubMed  Google Scholar 

  • Eller-Vainicher C, Morelli V, Ulivieri FM et al (2013) Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Miner Res 27(10):2223–2230

    Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falhammar H, Filipsson H, Holmdahl G et al (2007) Fractures and bone mineral density in adult women with 21-hydroxylase deficiency. J Clin Endocrinol Metab 92(12):4643–4649

    CAS  PubMed  Google Scholar 

  • Fardet L, Petersen I, Nazareth I (2011) Prevalence of longterm oral glucocorticoid prescriptions in the UK over the past 20 years. Rheumatology (Oxford) 50(11):1982–1990

    Google Scholar 

  • Fassnacht M, Arlt W, Bancos I et al (2016) Management of adrenal incidentalomas: European Society of endocrinology clinical practice guideline in collaboration with the European network for the study of adrenal tumors. Eur J Endocrinol 175(2):G1–G34

    CAS  PubMed  Google Scholar 

  • Feldman K, Szappanos A, Butz H et al (2012) The rs4844880 polymorphism in the promoter region of the HSD11B1 gene associates with bone mineral density in healthy and postmenopausal osteoporotic women. Steroids 77(13):1345–1351

    CAS  PubMed  Google Scholar 

  • Fumoto T, Ishii KA, Ito M et al (2014) Mineralocorticoid receptor function in bone metabolism and its role in glucocorticoid-induced osteopenia. Biochem Biophys Res Commun 447(3):407–412

    CAS  PubMed  Google Scholar 

  • FütÅ‘ L, Toke J, Patócs A et al (2008) Skeletal differences in bone mineral area and content before and after cure of endogenous Cushing’s syndrome. Osteoporos Int 19(7):941–949

    PubMed  Google Scholar 

  • Gathercole LL, Lavery GG, Morgan SA et al (2013) 11b-hydroxysteroid dehydrogenase 1: translational and therapeutic aspects. Endocr Rev 34(4):525–555

    CAS  PubMed  Google Scholar 

  • Gauthier K, Chassande O, Plateroti M, Roux JP, Legrand C, Pain B, Rousset B, Weiss R, Trouillas J, Samarut J (1999) Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development. EMBO J 18(3):623–631. https://doi.org/10.1093/emboj/18.3.623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebru Y, Diao TY, Pan H, Mukwaya E, Zhang Y (2013) Potential of RAS inhibition to improve metabolic bone disorders. Biomed Res Int. https://doi.org/10.1155/2013/932691

  • Germain P, Staels B, Dacquet C, Spedding M, Laudet V (2006) Overview of nomenclature of nuclear receptors. Pharmacol Rev 58(4):685–704. https://doi.org/10.1124/pr.58.4.2

    Article  CAS  PubMed  Google Scholar 

  • Gluer CC, Marin F, Ringe JD et al (2013) Comparative effects of teriparatide and risedronate in glucocorticoid-induced osteoporosis in men: 18-month results of the EuroGIOPs trial. J Bone Miner Res 28(6):1355–1368

    PubMed  PubMed Central  Google Scholar 

  • Goddard GM, Ravikumar A, Levine AC (2015) Adrenal mild hypercortisolism. Endocrinol Metab Clin North Am 44(2):371–379

    PubMed  Google Scholar 

  • Grey A (2009) Thiazolidinedione-induced skeletal fragility--mechanisms and implications. Diabetes Obes Metab 11(4):275–284

    CAS  PubMed  Google Scholar 

  • Guo Q, Li H, Xu L, Wu S, Sun H, Zhou B (2017) Undercarboxylated osteocalcin reverts insulin resistance induced by endoplasmic reticulum stress in human umbilical vein endothelial cells. Sci Rep 7(1):46

    PubMed  PubMed Central  Google Scholar 

  • Hamidouche Z, Hay¨ E, Vaudin P et al (2008) FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/ β-catenin signaling-dependent Runx2 expression. FASEB J 22:3813–3822

    CAS  PubMed  Google Scholar 

  • Hansen M, Florescu A, Stoltenberg M (1996) Bone loss in rheumatoid arthritis. Influence of disease activity, duration of the disease, functional capacity, and corticosteroid treatment. Scand J Rheumatol 25(6):367–376

    CAS  PubMed  Google Scholar 

  • Hartmann K, Koenen M, Schauer S et al (2016) Molecular actions of glucocorticoids in cartilage and bone during health, disease, and steroid therapy. Physiol Rev 96(2):409–447

    CAS  PubMed  Google Scholar 

  • Harvey RD, McHardy KC, Reid IW, Paterson F, Bewsher PD, Duncan A, Robins SP (1991) Measurement of bone collagen degradation in hyperthyroidism and during thyroxine replacement therapy using pyridinium cross-links as specific urinary markers. J Clin Endocrinol Metab 72(6):1189–1194. https://doi.org/10.1210/jcem-72-6-1189

    Article  CAS  PubMed  Google Scholar 

  • Henneicke H, Herrmann M, Kalak R et al (2011) Corticosterone selectively targets endocortical surfaces by an osteoblast-dependent mechanism. Bone 49(4):733–742

    CAS  PubMed  Google Scholar 

  • Heshmati HM, Riggs BL, Burritt MF et al (1998) Effects of the circadian variation in serum cortisol on markers of bone turnover and calcium homeostasis in normal postmenopausal women. J Clin Endocrinol Metab 83(3):751–756

    CAS  PubMed  Google Scholar 

  • Hofbauer LC, Gori F, Riggs BL et al (1999) Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140:4382–4389

    CAS  PubMed  Google Scholar 

  • Honda M, Orii F, Ayabe T et al (2000) Expression of glucocorticoid receptor β in lymphocytes of patients with glucocorticoid-resistant ulcerative colitis. Gastroenterology 118:859–866

    CAS  PubMed  Google Scholar 

  • Huang BK, Golden LA, Tarjan G, Madison LD, Stern PH (2000) Insulin-like growth factor I production is essential for anabolic effects of thyroid hormone in osteoblasts. J Bone Miner Res 15(2):188–197. https://doi.org/10.1359/jbmr.2000.15.2.188

    Article  CAS  PubMed  Google Scholar 

  • Huizenga NA, Koper JW, de Lange P et al (1998) A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. J Clin Endocrinol Metab 83(1):144–151

    CAS  PubMed  Google Scholar 

  • Hwang JY, Lee SH, Kim GS et al (2009) HSD11B1 polymorphisms predicted bone mineral density and fracture risk in postmenopausal women without a clinically apparent hypercortisolemia. Bone 45(6):1098–1103

    CAS  PubMed  Google Scholar 

  • Inaba M, Nishizawa Y, Mita K, Kumeda Y, Emoto M, Kawagishi T, Ishimura E, Nakatsuka K, Shioi A, Morii H (1999) Poor glycemic control impairs the response of biochemical parameters of bone formation and resorption to exogenous 1,25-dihydroxyvitamin D3 in patients with type 2 diabetes. Osteoporos Int 9(6):525–531

    CAS  PubMed  Google Scholar 

  • Ishiguro S, Ito K, Nakagawa S et al (2017) The clinical benefits of denosumab for prophylaxis of steroid-induced osteoporosis in patients with pulmonary disease. Arch Osteoporos 12(1):44

    PubMed  Google Scholar 

  • Jastrup B, Mosekilde L, Melsen F, Lund B, Lund B, Sorensen OH (1982) Serum levels of vitamin D metabolites and bone remodelling in hyperthyroidism. Metabolism 31(2):126–132

    CAS  PubMed  Google Scholar 

  • Jia D, O’Brien CA, Stewart SA (2006) Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 147:5592–5599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia J, Yao W, Guan M et al (2011) Glucocorticoid dose determines osteocyte cell fate. FASEB J 25(10):3366–3376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones SG, Momin SR, Good MW, Shea TK, Patric K (2009) Distal upper and lower limb fractures associated with thiazolidinedione use. Am J Manag Care 15(8):491–496

    PubMed  Google Scholar 

  • Kanis JA, Johansson H, Oden A et al (2011) Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int 22(3):809–816

    CAS  PubMed  Google Scholar 

  • Karga H, Papapetrou PD, Korakovouni A, Papandroulaki F, Polymeris A, Pampouras G (2004) Bone mineral density in hyperthyroidism. Clin Endocrinol (Oxf) 61(4):466–472. https://doi.org/10.1111/j.1365-2265.2004.02110.x

    Article  Google Scholar 

  • Kawaguchi H, Pilbeam CC, Woodiel FN, Raisz LG (1994) Comparison of the effects of 3,5,3′-triiodothyroacetic acid and triiodothyronine on bone resorption in cultured fetal rat long bones and neonatal mouse calvariae. J Bone Miner Res 9(2):247–253. https://doi.org/10.1002/jbmr.5650090214

    Article  CAS  PubMed  Google Scholar 

  • Kawamata A, Iihara M, Okamoto T et al (2008) Bone mineral density before and after surgical cure of Cushing’s syndrome due to adrenocortical adenoma: prospective study. World J Surg 32(5):890–896

    PubMed  Google Scholar 

  • Kendler DL, Bauer DC, Davison KS et al (2016) Vertebral fractures: clinical importance and management. Am J Med 129(2):221.e1–221.10

    CAS  Google Scholar 

  • Kim HJ, Zhao H, Kitaura H et al (2006) Glucocorticoids suppress bone formation via the osteoclast. J Clin Invest 116:2152–2160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirwan JR et al (1995) The effect of glucocorticoids on joint destruction in rheumatoid arthritis. N Engl J Med 3:142–147

    Google Scholar 

  • Klaushofer K, Varga F, Glantschnig H, Fratzl-Zelman N, Czerwenka E, Leis HJ, Koller K, Peterlik M (1995) The regulatory role of thyroid hormones in bone cell growth and differentiation. J Nutr 125(7 Suppl):1996S–2003S. https://doi.org/10.1093/jn/125.suppl_7.1996S

    Article  CAS  PubMed  Google Scholar 

  • Koetz KR, Ventz M, Diederich S et al (2012) Bone mineral density is not significantly reduced in adult patients on low-dose glucocorticoid replacement therapy. J Clin Endocrinol Metab 97(1):85–92

    CAS  PubMed  Google Scholar 

  • Koetz KR, van Rossum EF, Ventz M et al (2013) BclI polymorphism of the glucocorticoid receptor gene is associated with increased bone resorption in patients on glucocorticoid replacement therapy. Clin Endocrinol (Oxf) 78(6):831–837

    CAS  Google Scholar 

  • Lakatos P, Stern PH (1992) Effects of cyclosporins and transforming growth factor beta 1 on thyroid hormone action in cultured fetal rat limb bones. Calcif Tissue Int 50(2):123–128

    CAS  PubMed  Google Scholar 

  • Lakatos P, Foldes J, Horvath C, Kiss L, Tatrai A, Takacs I, Tarjan G, Stern PH (1997) Serum interleukin-6 and bone metabolism in patients with thyroid function disorders. J Clin Endocrinol Metab 82(1):78–81. https://doi.org/10.1210/jcem.82.1.3641

    Article  CAS  PubMed  Google Scholar 

  • Lakatos P, Foldes J, Nagy Z, Takacs I, Speer G, Horvath C, Mohan S, Baylink DJ, Stern PH (2000) Serum insulin-like growth factor-I, insulin-like growth factor binding proteins, and bone mineral content in hyperthyroidism. Thyroid 10(5):417–423. https://doi.org/10.1089/thy.2000.10.417

    Article  CAS  PubMed  Google Scholar 

  • Landewé RB, Boers M, Verhoeven AC et al (2002) COBRA combination therapy in patients with early rheumatoid arthritis: long-term structural benefits of a brief intervention. Arthritis Rheum 46(2):347–356

    PubMed  Google Scholar 

  • Lane NE, Yao W, Balooch M et al (2006) Glucocorticoid treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J Bone Miner Res 21(3):466–476

    CAS  PubMed  Google Scholar 

  • Laugesen K, Jørgensen JOL, Sørensen HT et al (2017) Systemic glucocorticoid use in Denmark: a population-based prevalence study. BMJ Open 7(5):e015237

    PubMed  PubMed Central  Google Scholar 

  • Lee S, Donh HH (2017) FoxO integration of insulin signaling with glucose and lipid metabolism. J Endocrinol 233(2):R67–R79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee NK, Sowa H, Hinoi E, Ferron M et al (2007a) Endocrine regulation of of energy metabolism by the skeleton. Cell 130(3):456–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007b) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Buzkova P, Fink HA, Vu J, Carbone L, Chen Z, Cauley J, Bauer DC, Cappola AR, Robbins J (2010) Subclinical thyroid dysfunction and incident hip fracture in older adults. Arch Intern Med 170(21):1876–1883. https://doi.org/10.1001/archinternmed.2010.424

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J, Youn K, Choi NK, Lee JH, Kang D, Song HJ, Park BJ (2013) A population-based case-control study: proton pump inhibition and risk of hip fracture by use of bisphosphonate. J Gastroenterol 48(9):1016–1022

    CAS  PubMed  Google Scholar 

  • Loke YK, Singh S, Furberg C (2009) Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ 180(1):32–39

    PubMed  PubMed Central  Google Scholar 

  • Loviselli A, Mastinu R, Rizzolo E, Massa GM, Velluzzi F, Sammartano L, Mela Q, Mariotti S (1997) Circulating telopeptide type I is a peripheral marker of thyroid hormone action in hyperthyroidism and during levothyroxine suppressive therapy. Thyroid 7(4):561–566. https://doi.org/10.1089/thy.1997.7.561

    Article  CAS  PubMed  Google Scholar 

  • Luegmayr E, Glantschnig H, Varga F, Klaushofer K (2000) The organization of adherens junctions in mouse osteoblast-like cells (MC3T3-E1) and their modulation by triiodothyronine and 1,25-dihydroxyvitamin D3. Histochem Cell Biol 113(6):467–478

    CAS  PubMed  Google Scholar 

  • Majumdar SR, Morin SN, Lix LM et al (2013) Influence of recency and duration of glucocorticoid use on bone mineral density and risk of fractures: population-based cohort study. Osteoporos Int 24(9):2493–2498

    CAS  PubMed  Google Scholar 

  • Mansouri A, Chowdhury K, Gruss P (1998) Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19(1):87–90. https://doi.org/10.1038/ng0598-87

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Maffezzoni F, Doga M et al (2014) Outcome of glucose homeostasis in patients with glucocorticoid-induced osteoporosis undergoing treatment with bone active-drugs. Bone 67:175–180

    CAS  PubMed  Google Scholar 

  • McCarthy TL, Centrella M, Canalis E (1990) Cortisol inhibits the synthesis of insulin-like growth factor-I in skeletal cells. Endocrinology 126(3):1569–1575

    CAS  PubMed  Google Scholar 

  • Meier C, Kraenzlin ME, Bodmer M, Jick SS, Jick H, Meier CR (2008) Use of thiazolidinediones and fracture risk. Arch Intern Med 168(8):820–825

    CAS  PubMed  Google Scholar 

  • Mellibovsky L, Prieto-Alhambra D, Mellibovsky F et al (2015) Bone tissue properties measurement by reference point indentation in glucocorticoid-induced osteoporosis. J Bone Miner Res 30(9):1651–1656

    CAS  PubMed  Google Scholar 

  • Mendonca Monteiro de Barros G, Madeira M, Vieira Neto L, de Paula Paranhos Neto F, Carvalho Mendonca LM, Correa Barbosa Lima I, Corbo R, Fleiuss Farias ML (2016) Bone mineral density and bone microarchitecture after long-term suppressive levothyroxine treatment of differentiated thyroid carcinoma in young adult patients. J Bone Miner Metab 34(4):417–421. https://doi.org/10.1007/s00774-015-0680-4

    Article  CAS  PubMed  Google Scholar 

  • Milne M, Kang MI, Cardona G, Quail JM, Braverman LE, Chin WW, Baran DT (1999) Expression of multiple thyroid hormone receptor isoforms in rat femoral and vertebral bone and in bone marrow osteogenic cultures. J Cell Biochem 74(4):684–693

    CAS  PubMed  Google Scholar 

  • Miura M, Tanaka K, Komatsu Y, Suda M, Yasoda A, Sakuma Y, Ozasa A, Nakao K (2002) Thyroid hormones promote chondrocyte differentiation in mouse ATDC5 cells and stimulate endochondral ossification in fetal mouse tibias through iodothyronine deiodinases in the growth plate. J Bone Miner Res 17(3):443–454. https://doi.org/10.1359/jbmr.2002.17.3.443

    Article  CAS  PubMed  Google Scholar 

  • Monarni M, Cresci B, Coloumbini A, Pala L, Balzi D, Gori F, Chiasserini V, Marchionni N, Rotella CM, Mannucci E (2008) Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case-control study. Diabetes Care 31:199–203

    Google Scholar 

  • Monfoulet LE, Rabier B, Dacquin R, Anginot A, Photsavang J, Jurdic P, Vico L, Malaval L, Chassande O (2011) Thyroid hormone receptor beta mediates thyroid hormone effects on bone remodeling and bone mass. J Bone Miner Res 26(9):2036–2044. https://doi.org/10.1002/jbmr.432

    Article  CAS  PubMed  Google Scholar 

  • Mora S, Weber G, Marenzi K, Signorini E, Rovelli R, Proverbio MC, Chiumello G (1999) Longitudinal changes of bone density and bone resorption in hyperthyroid girls during treatment. J Bone Miner Res 14(11):1971–1977. https://doi.org/10.1359/jbmr.1999.14.11.1971

    Article  CAS  PubMed  Google Scholar 

  • Morelli V, Eller-Vainicher C, Palmieri S et al (2016) Prediction of vertebral fractures in patients with monolateral adrenal incidentalomas. J Clin Endocrinol Metab 101(7):2768–2775

    CAS  PubMed  Google Scholar 

  • Morgan SA, McCabe EL, Gathercole LL et al (2014) 11b-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proc Natl Acad Sci U S A 111(24):E2482–E2491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosekilde L, Melsen F (1978) Morphometric and dynamic studies of bone changes in hypothyroidism. Acta Pathol Microbiol Scand A 86(1):56–62

    CAS  PubMed  Google Scholar 

  • Mosekilde L, Eriksen EF, Charles P (1990) Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am 19(1):35–63

    CAS  PubMed  Google Scholar 

  • Nakamura H, Mori T, Genma R, Suzuki Y, Natsume H, Andoh S, Kitahara R, Nagasawa S, Nishiyama K, Yoshimi T (1996) Urinary excretion of pyridinoline and deoxypyridinoline measured by immunoassay in hypothyroidism. Clin Endocrinol (Oxf) 44(4):447–451

    CAS  Google Scholar 

  • Nixon M, Mackenzie SD, Taylor AI et al (2016) ABCC1 confers tissue-specific sensitivity to cortisol versus corticosterone: a rationale for safer glucocorticoid replacement therapy. Sci Transl Med 8(352):352ra109

    PubMed  Google Scholar 

  • O’Brien CA, Jia D, Plotkin LI (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1835–1841

    PubMed  Google Scholar 

  • O’Shea PJ, Harvey CB, Suzuki H, Kaneshige M, Kaneshige K, Cheng SY, Williams GR (2003) A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol Endocrinol 17(7):1410–1424. https://doi.org/10.1210/me.2002-0296

    Article  CAS  PubMed  Google Scholar 

  • Paggiosi MA, Peel NF, Eastell R (2015) The impact of glucocorticoid therapy on trabecular bone score in older women. Osteoporos Int 26(6):1773–1780

    CAS  PubMed  Google Scholar 

  • Pajvani UB, Accili D (2015) The new biology of diabetes. Diabetologia 58(11):2459–2468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palermo A, D’Onofrio L, Buzzetti R, Manfrini S, Napoli N (2017) Pathophysiology of bone fragility in patients with diabetes. Calcif Tissue Int 100(2):122–132

    CAS  PubMed  Google Scholar 

  • Pantazi H, Papapetrou PD (2000) Changes in parameters of bone and mineral metabolism during therapy for hyperthyroidism. J Clin Endocrinol Metab 85(3):1099–1106. https://doi.org/10.1210/jcem.85.3.6457

    Article  CAS  PubMed  Google Scholar 

  • Patel P, Hardy R, Sumathi V et al (2012) Expression of 11b-hydroxysteroid dehydrogenase enzymes in human osteosarcoma: potential role in pathogenesis and as targets for treatments. Endocr Relat Cancer 19(4):589–598

    CAS  PubMed  Google Scholar 

  • Pi M, Kapoor K, Ye R et al (2016) Evidence for osteocalcin binding and activation of GPRC6A in b-cells. Endocrinology 157(5):1866–1880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polak M, Legac I, Vuillard E, Guibourdenche J, Castanet M, Luton D (2006) Congenital hyperthyroidism: the fetus as a patient. Horm Res 65(5):235–242. https://doi.org/10.1159/000092454

    Article  CAS  PubMed  Google Scholar 

  • Raff H, Raff JL, Duthie EH et al (1999) Elevated salivary cortisol in the evening in healthy elderly men and women: correlation with bone mineral density. J Gerontol A Biol Sci Med Sci 54(9):M479–M483

    CAS  PubMed  Google Scholar 

  • Rauch A, Seitz S, Baschant U et al (2010) Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab 11(6):517–531

    CAS  PubMed  Google Scholar 

  • Recklinghausen FDV (1891) Die Fibröse oder deformierende Ostitis, die Osteomalazie und die osteoplastische Carzinose in ihren gegenseitigen Beziehungen. Festchrift Rudolf Virchow (German) Berlin: George Reimer, p 1

    Google Scholar 

  • Refetoff S, Weiss RE, Usala SJ (1993) The syndromes of resistance to thyroid hormone. Endocr Rev 14(3):348–399. https://doi.org/10.1210/edrv-14-3-348

    Article  CAS  PubMed  Google Scholar 

  • Reid DM, Devogelaer JP, Saag K et al (2009) Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 373(9671):1253–1263

    CAS  PubMed  Google Scholar 

  • Ritz E, Kreusser W, Rambausek M (1984) Effects of glucocorticoids on calcium and phosphate excretion. Adv Exp Med Biol 171:381–397

    CAS  PubMed  Google Scholar 

  • Rosen C (2009) Bone: serotonin, leptin and the central control of bone remodeling. Nat Rev Rheumatol 5:667–668

    Google Scholar 

  • Saag KG, Emkey R, Schnitzer TJ et al (1998) Glucocorticoid-Induced Osteoporosis Intervention Study Group. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. N Engl J Med 339(5):292–299

    CAS  PubMed  Google Scholar 

  • Saag KG, Shane E, Boonen S et al (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 357(20):2028–2039

    CAS  PubMed  Google Scholar 

  • Saag KG, Agnusdei D, Hans D et al (2016) Trabecular bone score in patients with chronic glucocorticoid therapy induced osteoporosis treated with alendronate or teriparatide. Arthritis Rheumatol 68(9):2122–2128

    CAS  PubMed  Google Scholar 

  • Saag KG, Wagman RB, Geusens P et al (2018) Denosumab versus risedronate in glucocorticoid-induced osteoporosis: a multicentre, randomised, double-blind, active controlled, double-dummy, non-inferiority study. Lancet Diabetes Endocrinol 6(6):445–454

    CAS  PubMed  Google Scholar 

  • Salcuni AS, Morelli V, Eller Vainicher C et al (2016) Adrenalectomy reduces the risk of vertebral fractures in patients with monolateral adrenal incidentalomas and subclinical hypercortisolism. Eur J Endocrinol 174(3):261–269

    CAS  PubMed  Google Scholar 

  • Sawamura M, Komatsuda A, Togashi M et al (2017) Effects of denosumab on bone metabolic markers and bone mineral density in patients treated with glucocorticoids. Intern Med 56(6):631–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz J, Frey KR, Cooper MS et al (2016) Reduction in daily hydrocortisone dose improves bone health in primary adrenal insufficiency. Eur J Endocrinol 174(4):531–538

    CAS  PubMed  Google Scholar 

  • Shanbhogue VV, Mitchell DM, Rosen CJ et al (2016) Type 2 diabetes and the skeleton: new insights into sweet bones. Lancet Diabetes Endocrinol 4(2):159–173

    CAS  PubMed  Google Scholar 

  • Sher LB, Woitge HW, Adams DJ et al (2004) Transgenic expression of 11β -hydroxysteroid dehydrogenase type 2 in osteoblasts reveals an anabolic role for endogenous glucocorticoids in bone. Endocrinology 145:922–929

    CAS  PubMed  Google Scholar 

  • Shi XM, Blair HC, Yang X et al (2000) Tandem repeat of C/EBP binding sites mediates PPAR2 gene transcription in glucocorticoid-induced adipocyte differentiation. J Cell Biochem 76:518–527

    CAS  PubMed  Google Scholar 

  • Shi L, Sanchez-Guijo A, Hartmann MF et al (2015) Higher glucocorticoid secretion in the physiological range is associated with lower bone strength at the proximal radius in healthy children: importance of protein intake adjustment. J Bone Miner Res 30(2):240–248

    CAS  PubMed  Google Scholar 

  • Shibata H, Spencer TE, Onate SA, Jenster G, Tsai SY, Tsai MJ, O’Malley BW (1997) Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res 52:141–164; discussion 164–165

    CAS  PubMed  Google Scholar 

  • Sivagurunathan S, Muir MM, Brennan TC et al (2005) Influence of glucocorticoids on human osteoclast generation and activity. J Bone Miner Res 20(3):390–398

    CAS  PubMed  Google Scholar 

  • Song IH, Buttgereit F (2006) Non-genomic glucocorticoid effects to provide the basis for new drug developments. Mol Cell Endocrinol 246:142–146

    CAS  PubMed  Google Scholar 

  • Soskolne WA, Schwartz Z, Goldstein M, Ornoy A (1990) The biphasic effect of triiodothyronine compared to bone resorbing effect of PTH on bone modelling of mouse long bone in vitro. Bone 11(5):301–307

    CAS  PubMed  Google Scholar 

  • Squires PE, Jones PM, Younis MY, Hills CE (2014) The calcium-sensing receptor and beta-cell function. Vitam Horm 95:249–267

    CAS  PubMed  Google Scholar 

  • Stevens DA, Hasserjian RP, Robson H, Siebler T, Shalet SM, Williams GR (2000) Thyroid hormones regulate hypertrophic chondrocyte differentiation and expression of parathyroid hormone-related peptide and its receptor during endochondral bone formation. J Bone Miner Res 15(12):2431–2442. https://doi.org/10.1359/jbmr.2000.15.12.2431

    Article  CAS  PubMed  Google Scholar 

  • Stolk RP, van Daele PL, Pols HA, Burge RH, Hofman A, Birkenhäger JC, Lamberts SW, Grobbee DE (1996) Hyperinsulinemia and bone mineral density in an elderly population: the Rotterdam study. Bone 18:545–549

    CAS  PubMed  Google Scholar 

  • Strehl C, Bijlsma JW, de Wit M et al (2016) Defining conditions where long-term glucocorticoid treatment has an acceptably low level of harm to facilitate implementation of existing recommendations: viewpoints from an EULAR task force. Ann Rheum Dis 75(6):952–995

    CAS  PubMed  Google Scholar 

  • Strotmeyer ES, Cauley JA (2007) Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes 14:429–435

    PubMed  Google Scholar 

  • Sui B, Hu C, Liao L, Chen Y et al (2016) Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis. Sci Rep 6(1):30186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svare A, Nilsen TI, Bjoro T, Forsmo S, Schei B, Langhammer A (2009) Hyperthyroid levels of TSH correlate with low bone mineral density: the HUNT 2 study. Eur J Endocrinol 161(5):779–786. https://doi.org/10.1530/EJE-09-0139

    Article  CAS  PubMed  Google Scholar 

  • Szappanos A, Patócs A, Tõke J et al (2009) BclI polymorphism of the glucocorticoid receptor gene is associated with decreased bone mineral density in patients with endogenous hypercortisolism. Clin Endocrinol (Oxf) 71(5):636–643

    CAS  Google Scholar 

  • Szappanos A, Toke J, Lippai D et al (2010) Bone turnover in patients with endogenous Cushing’s syndrome before and after successful treatment. Osteoporos Int 21(4):637–645

    CAS  PubMed  Google Scholar 

  • Tata JR (1961) The purification of thyroxine-binding globulin and thyroxine-binding prealbumin. Clin Chim Acta 6:819–832

    CAS  PubMed  Google Scholar 

  • Tomas FM, Munro HN, Young VR (1979) Effect of glucocorticoid administration on the rate of muscle protein breakdown in vivo in rats, as measured by urinary excretion of NT-methylhistidine. Biochem J 178(1):139–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth M, Grossman A (2013) Glucocorticoid-induced osteoporosis: lessons from Cushing’s syndrome. Clin Endocrinol (Oxf) 79(1):1–11

    Google Scholar 

  • Vadiveloo T, Donnan PT, Cochrane L, Leese GP (2011) The thyroid epidemiology, audit, and research study (TEARS): morbidity in patients with endogenous subclinical hyperthyroidism. J Clin Endocrinol Metab 96(5):1344–1351. https://doi.org/10.1210/jc.2010-2693

    Article  CAS  PubMed  Google Scholar 

  • Valderrábano RJ, Linares MI (2018) Diabetes mellitus and bone health: epidemiology, etiology and implications for fracture risk stratification. Clin Diabetes Endocrinol 4:9. https://doi.org/10.1186/s40842-018-0060-9

    Article  PubMed  PubMed Central  Google Scholar 

  • van Staa TP, Leufkens HG, Abenhaim L et al (2000a) Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology (Oxford) 39(12):1383–1389

    Google Scholar 

  • van Staa TP, Leufkens HG, Abenhaim L et al (2000b) Use of oral corticosteroids and risk of fractures. J Bone Miner Res 15(6):993–1000

    PubMed  Google Scholar 

  • Varga F, Spitzer S, Klaushofer K (2004) Triiodothyronine (T3) and 1,25-dihydroxyvitamin D3 (1,25D3) inversely regulate OPG gene expression in dependence of the osteoblastic phenotype. Calcif Tissue Int 74(4):382–387. https://doi.org/10.1007/s00223-003-0033-5

    Article  CAS  PubMed  Google Scholar 

  • Varga F, Rumpler M, Zoehrer R, Turecek C, Spitzer S, Thaler R, Paschalis EP, Klaushofer K (2010) T3 affects expression of collagen I and collagen cross-linking in bone cell cultures. Biochem Biophys Res Commun 402(2):180–185. https://doi.org/10.1016/j.bbrc.2010.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vestergaard P, Mosekilde L (2002) Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid 12(5):411–419. https://doi.org/10.1089/105072502760043503

    Article  PubMed  Google Scholar 

  • Vestergaard P, Mosekilde L (2003) Hyperthyroidism, bone mineral, and fracture risk--a meta-analysis. Thyroid 13(6):585–593. https://doi.org/10.1089/105072503322238854

    Article  PubMed  Google Scholar 

  • Vestergaard P, Lindholm J, Jørgensen JO et al (2002) Increased risk of osteoporotic fractures in patients with Cushing’s syndrome. Eur J Endocrinol 146(1):51–56

    CAS  PubMed  Google Scholar 

  • Vestergaard P, Rejnmark L, Mosekilde L (2005a) Fracture risk associated with systemic and topical corticosteroids. J Intern Med 257(4):374–384

    CAS  PubMed  Google Scholar 

  • Vestergaard P, Rejnmark I, Moseklide I (2005b) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48:1229–1299

    Google Scholar 

  • Visser TJ (2000) In: Feingold KR, Anawalt B, Boyce A et al (eds) Cellular uptake of thyroid hormones. Endotext, South Dartmouth

    Google Scholar 

  • Walsh LJ, Wong CA, Pringle M et al (1996) Use of oral corticosteroids in the community and the prevention of secondary osteoporosis: a cross sectional study. BMJ 313(7053):344–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FS, Ko JY, Yeh DW et al (2008) Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology 149:1793–1801

    CAS  PubMed  Google Scholar 

  • Wang N, Xue P, Wu X, Ma J, Wang Y, Li Y (2018) Role of sclerostin and dkk1 in bone remodeling in type 2 diabetic patients. Endocr Res 43(1):29–38

    CAS  PubMed  Google Scholar 

  • Watts NB, Bilezikian JP, Usiskin K, Edwards R, Desai M, Law G, Meininger G (2016) Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 101(1):157–166

    CAS  PubMed  Google Scholar 

  • Weber DR, Schwartz G (2016) Epidemiology of skeletal health in type 1 diabetes. Curr Osteoporos Rep 14(6):327–336

    PubMed  PubMed Central  Google Scholar 

  • Weinstein RS, Jilka RL, Parfitt AM et al (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102(2):274–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein RS, Nicholas RW, Manolagas SC (2000) Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab 85(8):2907–2912

    CAS  PubMed  Google Scholar 

  • Williams GR (2000) Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol Cell Biol 20(22):8329–8342. https://doi.org/10.1128/mcb.20.22.8329-8342.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GR, Bland R, Sheppard MC (1994) Characterization of thyroid hormone (T3) receptors in three osteosarcoma cell lines of distinct osteoblast phenotype: interactions among T3, vitamin D3, and retinoid signaling. Endocrinology 135(6):2375–2385. https://doi.org/10.1210/endo.135.6.7988420

    Article  CAS  PubMed  Google Scholar 

  • Woitge H, Harrison J, Ivkosic A (2001) Cloning and in vitro characterization of a 1(I)-collagen 11b-hydroxysteroid dehydrogenase type 2 transgenes as models for osteoblast-selective inactivation of natural glucocorticoids. Endocrinology 142(3):1341–1348

    CAS  PubMed  Google Scholar 

  • Wood CL, Soucek O, Wong SC et al (2018) Animal models to explore the effects of glucocorticoids on skeletal growth and structure. J Endocrinol 236(1):R69–R91

    PubMed  Google Scholar 

  • Xiong J, Piemontese M, Onal M et al (2015) Osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling bone. PLoS One 10(9):e0138189

    PubMed  PubMed Central  Google Scholar 

  • Yeap BB, Alfonso H, Chubb SA et al (2015) Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. J Clin Endocrinol Metab 100(1):63–71

    CAS  PubMed  Google Scholar 

  • Zarain-Herzberg A, García-Rivas G2, Estrada-Avilés R (2014) Regulation of SERCA pumps expression in diabetes. Cell Calcium 56(5):302–310

    CAS  PubMed  Google Scholar 

  • Zhang W, Yang N, Shi XM (2008) Regulation of mesenchymal stem cell osteogenic differentiation by glucocorticoid-induced leucine zipper (GILZ). J Biol Chem 283:4723–4729

    CAS  PubMed  Google Scholar 

  • Zhu TY, Griffith JF, Qin L et al (2015) Cortical thinning and progressive cortical porosity in female patients with systemic lupus erythematosus on long-term glucocorticoids: a 2-year case-control study. Osteoporos Int 26(6):1759–1771

    CAS  PubMed  Google Scholar 

  • Zofková I, Matucha P (2014) New insights into the physiology of bone regulation: the role of neurohormones. Physiol Res 63(4):421–427

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lakatos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakatos, P., Szili, B., Bakos, B., Takacs, I., Putz, Z., Istenes, I. (2019). Thyroid Hormones, Glucocorticoids, Insulin, and Bone. In: Stern, P.H. (eds) Bone Regulators and Osteoporosis Therapy. Handbook of Experimental Pharmacology, vol 262. Springer, Cham. https://doi.org/10.1007/164_2019_314

Download citation

Publish with us

Policies and ethics