Skip to main content

Reversible Acetylation Of Non Histone Proteins

Role in cellular function and disease

  • Chapter
Chromatin and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 41))

Post-translational modifications of nonhistone proteins play a significant role in regulating the chromatin structure, dynamics and thereby gene regulation. Among the different posttranslational modifications, reversible acetylation of non-histone proteins has profound functional implications on wide range of cellular processes. The acetylation status of these proteins is regulated by several cellular and non-cellular factors like viruses, physiological stresses, DNA damaging agents and ROS. Mutations found in the acetylation sites of these proteins and aberrant acetylation are related to imbalances in different cellular pathways and various diseases. Several factor acetyltransferases and deacetylases are known to regulate the acetylation of the nonhistone proteins. Modulators of these enzymes derived from natural as well as synthetic sources can thus have important therapeutic implications. Designing strategies to specifically target the acetylation of these proteins can be used as a valuable tool for new generation drugs

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Banerjee S, Kumar BRP, Kundu TK (2004) General transcriptional coactivator PC4 activates p53 function. Mol Cell Biol 24(5): 2052–2062

    Article  PubMed  CAS  Google Scholar 

  • Bedford MT, Richard S (2005) Arginine methylation an emerging regulator of protein function. Mol Cell 18(3): 263–272

    Article  PubMed  CAS  Google Scholar 

  • Bergel M, Herrera JE, Thatcher BJ, Prymakowska-Bosak M, Vassilev A, Nakatani Y, Martin B, Bustin M (2000) Acetylation of novel sites in the nucleosomal binding domain of chromosomal protein HMG-14 by p300 alters its interaction with nucleosomes. J Biol Chem 275(15): 11514–11520

    Article  PubMed  CAS  Google Scholar 

  • Bhakat KK, Hazra TK, Mitra S (2004) Acetylation of the human DNA glycosylase NEIL2 and inhibition of its activity. Nucleic Acids Research 32(10): 3033–3039

    Article  PubMed  CAS  Google Scholar 

  • Blander G, Zalle N, Daniely Y, Taplick J, Gray MD (2002). DNA Damage-induced Translocation of the Werner helicase is regulated by acetylation. J Biol Chem 277(52): 50934–50940

    Article  PubMed  CAS  Google Scholar 

  • Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4(10): 793–805

    Article  PubMed  CAS  Google Scholar 

  • Catez F, Lim JH, Hock R, Postnikov YV, Bustin M. (2003) HMGN dynamics and chromatin function. Biochem Cell Biol 81: 113–122

    Article  PubMed  CAS  Google Scholar 

  • Cereseto A, Manganaro L, Gutierrez MI, Terreni M, Fittipaldi A, Lusic M, Marcello A, Giacca M (2005) Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBOJ 24(17): 3070–3081

    Article  CAS  Google Scholar 

  • Chen LF, Greene WC (2004) Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5(5): 392–401

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Bieker JJ (2004) Stage-specific repression by the EKLF transcriptional activator. Mol Cell Biol 24(23): 10416–10424

    Article  PubMed  CAS  Google Scholar 

  • Choi CH, Burton ZF, Usheva A (2004) Auto-acetylation of transcription factors as a control mechanism in gene expression. Cell Cycle 3(2): 114–115

    PubMed  CAS  Google Scholar 

  • Clevers H (2004) Wnt breakers in colon cancer. Cancer Cell 5(1): 5–6

    Article  PubMed  CAS  Google Scholar 

  • Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13(5): 627–638

    Article  PubMed  CAS  Google Scholar 

  • Corda D, Colanzi A, Luini A (2006) The multiple activities of CtBP/BARS proteins: the Golgi view. Trends Cell Biol 16(3): 167–173

    Article  PubMed  CAS  Google Scholar 

  • Cosma MP, Tanaka T, Nasmyth K (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97: 299–311

    Article  PubMed  CAS  Google Scholar 

  • Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA, Fontemaggi G, Fanciulli M, Schiltz L, Blandino G, Balsano C, Levrero M (2002) DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell 9(1): 75–86

    Article  Google Scholar 

  • Davie JR, Hendzel MJ (1994) Multiple functions of dynamic histone acetylation. J Cell Biochem 55(1): 98–105

    Article  PubMed  CAS  Google Scholar 

  • Deng L, de la Fuente C, Fu P, Wang L, Donnelly R, Wade JD, Lambert P, Li H, Lee CG, Kashanchi F (2000) Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology 277(2): 278–295

    Article  PubMed  Google Scholar 

  • Deng L, Wang D, de la Fuente C, Wang L, Li H, Lee CG, Donnelly R, Wade JD, Lambert P, Kashanchi F (2001) Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA. Virology 289(2): 312–326

    Article  PubMed  CAS  Google Scholar 

  • Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E, Farina A, Martinez E. (2005) Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol 25(23): 10220–10234

    Article  PubMed  CAS  Google Scholar 

  • Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Anversa P, Kajstura J (2001) Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50(10): 2363–2375

    Article  PubMed  CAS  Google Scholar 

  • Forrest AR, Taylor DF, Crowe ML, Chalk AM, Waddell NJ, Kolle G, Faulkner GJ, Kodzius R, Katayama S, Wells C, Kai C, Kawai J, Carninci P, Hayashizaki Y, Grimmond SM (2006) Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases. Genome Biol 7 R5

    Article  PubMed  Google Scholar 

  • Fu M, Wang C, Wang J, Zhang X, Sakamaki T, Yeung YG, Chang C, Hopp T, Fuqua SA, Jaffray E, Hay RT, Palvimo JJ, Janne OA, Pestell RG (2002) Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function. Mol Cell Biol 22(10): 3373–3388

    Article  PubMed  CAS  Google Scholar 

  • Galbiati L, Mendoza-Maldonado R, Gutierrez MI, Giacca M (2005) Regulation of E2F-1 after DNA damage by p300-mediated acetylation and ubiquitination. Cell Cycle 4(7): 930–939

    PubMed  CAS  Google Scholar 

  • Gay F, Calvo D, LO MC, Ceron J, Maduro M, Lin R, Shi Y (2003) Acetylation regulates subcellular localization of the Wnt signaling nuclear effector POP-1. Genes Dev 17(6): 717–722

    Article  PubMed  CAS  Google Scholar 

  • Ghazaleh Sadri-Vakili, Jang-Ho J Cha (2006) Mechanisms of Disease: Histone modifications in Huntington’s disease. Nature Clinical Practice Neurology 2: 330–338

    Google Scholar 

  • Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG Jr, Levrero M, Wang JY (1999) The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399(6738): 734–735, 737

    Google Scholar 

  • Grunstein M (1999) Histone acetylation in chromatin structure and transcription. Nature 389: 349–352

    Article  Google Scholar 

  • Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90(4): 595–606

    Article  PubMed  CAS  Google Scholar 

  • Hasan S, El-Andaloussi N, Hardeland U, Hassa PO, Burki C, Imhof R, Schar P, Hottiger MO (2002) Acetylation regulates the DNA end-trimming activity of DNA polymerase beta. Mol Cell 10(5): 1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Hassa PO, Haenni SS, Buerki C, Meier NI, Lane WS, Owen H, Gersbach M, Imhof R, Hottiger MO (2005) Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J Biol Chem 280(49): 40450–40464

    Article  PubMed  CAS  Google Scholar 

  • Herrera JE, Bergel M, Yang XJ Nakatani Y, Bustin M (1997) The histone acetyltransferase activity of human GCN5 and PCAF is stabilized by coenzymes. J Biol Chem 272(43): 27253–27258

    Article  PubMed  CAS  Google Scholar 

  • Herrera JE, Sakaguchi K, Bergel M, Trieschmann L, Nakatani Y, Bustin M (1999) Specific acetylation of chromosomal protein HMG-17 by PCAF alters its interaction with nucleosomes. Mol Cell Biol 19(5): 3466–3473

    PubMed  CAS  Google Scholar 

  • Hong W, Kim AY, Ky S, Rakowski C, Seo SB, Chakravarti D, Atchison M, Blobel GA (2002) Inhibition of CBP-mediated protein acetylation by the Ets family oncoprotein PU.1. Mol Cell Biol 22(11): 3729–3743

    Article  PubMed  CAS  Google Scholar 

  • Huang BH, Laban M, Leung CH, Lee L, Lee CK Salto-Tellez M, Raju GC, Hooi SC (2005) Inhibition of histone deacetylase increases apoptosis and p21(Cip1/WAF1) expression, independent of histone deacetylase. Cell death differ 12(4): 395–404

    Article  PubMed  CAS  Google Scholar 

  • Imhof A, Yang XJ, Ogryzko VV, Nakatani Y, Wolffe AP, Ge H (1997) Acetylation of general transcription factors by histone acetyltransferases. Curr Biol 7(9): 689–692

    Article  PubMed  CAS  Google Scholar 

  • Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP (2002) MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO 21(22): 6236–6245

    Article  CAS  Google Scholar 

  • Ito T, Ikehara T, Nakagawa T, Kraus WL, Muramatsu M (2000) p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone. Genes Dev.14(15): 1899–1907

    PubMed  CAS  Google Scholar 

  • Jackson V, Shires A, Tanphaichitr N, Chalkley R (1976) Modifications to histones immediately after synthesis. J Mol Biol 104(2): 471–483

    Article  PubMed  CAS  Google Scholar 

  • Jacob AL, Lund J, Martinez P, Hedin L (2001) Acetylation of steroidogenic factor 1 protein regulates its transcriptional activity and recruits the coactivator GCN5. J Biol Chem 276(40): 37659–37664

    Article  PubMed  CAS  Google Scholar 

  • Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW (2002) Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111(5): 709–720

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Zeng SX, Dai MS, Yang XJ, Lu H (2002) MDM2 Inhibits PCAF (p300/CREB-binding Protein-associated Factor)-mediated p53 Acetylation. J Biol Chem 277(34): 30838–30843

    Article  PubMed  CAS  Google Scholar 

  • Kaiser C, James SR (2004) Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. BMC Biol. 2:23

    Article  PubMed  Google Scholar 

  • Kawaguchi Y, Ito A, Appella E, Yao TP (2006) Charge modification at multiple C-terminal lysine residues regulates p53 oligomerization and its nucleus-cytoplasm trafficking 281(3): 1394–1400

    CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Life (and death) in a malignant tumour. Nature 379(6560): 19–20

    Article  PubMed  CAS  Google Scholar 

  • Keizo Nishikawa, Makoto Kobayashi, Atsuko Masumi, Susan E Lyons, Brant M Weinstein, Paul Liu P, Masayuki Yamamoto (2003) Self-association of gata1 enhances transcriptional activity in vivo in Zebra Fish embryos. Mol Cell Biol 23: 8295–8305

    Article  Google Scholar 

  • Knights CD, Catania J, Giovanni SD, Muratoglu S, Perez R, Swartzbeck A, Quong AA, Zhang X, Beerman T, Pestell RG, Avantaggiati ML (2006) Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173(4): 533–544

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Furukawa-Hibi Y, Chen C, Horio Y, Isobe K, Ikeda K, Motoyama N (2005) SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med 16(2): 237–243

    PubMed  CAS  Google Scholar 

  • Kovacs JJ Cohen TJ Yao TP (2005) Chaperoning steroid hormone signaling via reversible acetylation. Nucl Recept Signal. 3: e004

    Article  PubMed  Google Scholar 

  • Kramer OH, Baus D, Knauer SK, Stein S, Jager E, Stauber RH, Grez M, Pfitzner E, Heinzel T (2006) Acetylation of Stat1 modulates NF-kappaB activity. Genes Dev 20(4): 473–485

    Article  PubMed  Google Scholar 

  • Kumar BR, Swaminathan V, Banerjee S , Kundu TK (2001) p300-mediated acetylation of human transcriptional coactivator PC4 is inhibited by phosphorylation. J Biol Chem 276(20): 16804–16809

    Article  PubMed  CAS  Google Scholar 

  • Lim JH, West KL, Rubinstein Y, Bergel M, Postnikov YV, Bustin M (2005) Chromosomal protein HMGN1 enhances the acetylation of lysine 14 in histone H3. EMBO J 24(17): 3038–3048

    Article  PubMed  CAS  Google Scholar 

  • Li M, Luo J, Brooks CL, Gu W (2002) Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem 277(52) 50607–50611

    Article  PubMed  CAS  Google Scholar 

  • Lu Q, Hutchins AE, Doyle CM, Lundblad JR, Kwok RP (2003) Acetylation of CAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances (REB-dependent Transcription. J Biol Chem. 278(18): 15727–15734

    Article  PubMed  CAS  Google Scholar 

  • Lucey MJ, Chen D, Garcia JL, Hart SM, Phoenix F, Jehani RA, Alao JP, White R, Kindle RB, Losson R, Chambon P, Parker MG, Schär P, Heery DM, Buluwelan L, Ali S (2005) T:G mismatch-specific thymine-DNA glycosylase (TDG) as a coregulator of transcription interacts with SRC1 family members through a novel tyrosine repeat motif. Nucleic Acids Research 33(19): 6393–6404

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W (2004) Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. PNAS 101(8) 2259–2264

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Nguyen C, Lee KS, Kahn M (2005) Differential roles for the coactivators CBP and p300 on TCF/beta-catenin-mediated survivin gene expression. Oncogene 24(22): 3619–3631

    Article  PubMed  CAS  Google Scholar 

  • Markham D, Munro S, Soloway J, O’Connor DP, La Thangue NB (2006) DNA-damage-responsive acetylation of pRb regulates binding to E2F-1. EMBO Rep.7(2): 192–198

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 6(11): 838–849

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Balbás MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T (2000) Regulation of E2F1 activity by acetylation. EMBO J 19(4): 662–671

    Article  PubMed  Google Scholar 

  • Maruta H, Greer K, Rosenbaum JL (1986) The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules. J Cell Biol 103(2): 571–579

    Article  PubMed  CAS  Google Scholar 

  • Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M. (2000) E2F family members are differentially regulated by reversible acetylation. J Biol Chem 275(15): 10887–10892

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K, Fukamizu A (2005) Acetylation of Foxol alters its DNA-binding ability and sensitivity to phosphorylation. PNAS 102(32): 11278–11283

    Article  PubMed  CAS  Google Scholar 

  • McBryant SJ, Adams VH, Hansen JC (2006) Chromatin architectural proteins. Chromosome Res 14(1): 39–51

    Article  PubMed  CAS  Google Scholar 

  • McMahon C, Suthiphongchai T, DiRenzo J, Ewen ME (1999) P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor. PNAS 96(10) 5382–5387

    Article  PubMed  CAS  Google Scholar 

  • Merika M, Thanos (2001) DEnhanceosomes. Curr Opin Genet Dev 11: 205–208

    Article  PubMed  CAS  Google Scholar 

  • Munshi N, Agalioti T, Lomvardas S, Merika M, Chen G, Thanos D (2001) Coordination of a transcriptional switch by HMGI(Y) acetylation. Science 293: 1133–1136

    Article  PubMed  CAS  Google Scholar 

  • Murphy PJ, Morishima Y, Kovacs JJ, Yao TP, Pratt WB (2005) Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J Biol Chem 280(40): 33792–33799

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa K, Kobayashi M, Masumi A, Lyons SE, Weinstein BM, Liu PP, Yamamoto M (2003) Self-association of gatal enhances transcriptional activity in vivo in Zebra Fish embryos. Mol Cell Biol 23(22): 8295-8305

    Article  PubMed  CAS  Google Scholar 

  • Olaharski AJ, Rine J, Marshall BL, Babiarz J, Zhang L, Verdin E, Smith MT (2005) The Flavoring agent dihydrocoumarin reverses pigenetic silencing and inhibits sirtuin deacetylases. PLoS Genet 1(6):e77

    Article  PubMed  Google Scholar 

  • Ott M, Schnolzer M, Garnica J, Fischle W, Emiliani S, Rackwitz HR, Verdin E (1999) Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr Biol 16–30:9(24): 1489–1492

    Article  CAS  Google Scholar 

  • Pagans S, Pedal A, North BJ, Kaehlcke K, Marshall BL, Dorr A, Hetzer-Egger C, Henklein P, Frye R, McBurney MW, Hruby H, Jung M, Verdin E, Ott M (2005) SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol 3(2):e41

    Article  PubMed  Google Scholar 

  • Paranjape SM, Krumm A, Kadonaga JT (1995) HMG17 is a chromatin-specific transcriptional coactivator that increases the efficiency of transcription initiation. Genes Dev 9(16): 1978–1991

    Article  PubMed  CAS  Google Scholar 

  • Qing Lu, Amanda E Hutchins, Colleen M Doyle, James R. Lundblad, Roland PS. Kwok (2001) Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent Transcription. Mol Cell Biol 21(18): 6181–6188

    Article  Google Scholar 

  • Ramanathan B, Smerdon MJ (1986) Changes in nuclear protein acetylation in u.v.-damaged human cells. Carcinogenesis 7(7): 1087–1094

    Article  PubMed  CAS  Google Scholar 

  • Rampalli S, Pavithra L, Bhatt A, Kundu TK, Chattopadhyay S (2005). Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex. Mol Cell Biol 25(19) 8415–8429

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Carrillo A, Wangh L, Allfrey V (1975) Assembly of newly replicated chromatin. Science 190(4210): 117–128

    Article  PubMed  CAS  Google Scholar 

  • Sadri-Vakili G, Cha JH (2006) Mechanisms of Disease: Histone modifications in Huntington’s disease. Nature Clinical Practice Neurology, 2(6):330–338

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12(18) 2831–2841

    PubMed  CAS  Google Scholar 

  • Shikama N, Chan HM, Krstic-Demonacos M, Smith L, Lee CW, Cairns W, La Thangue NB (2000). Functional interaction between nucleosome assembly proteins and p300/CREB-binding protein family coactivators. Mol Cell Biol 20(23): 8933–8943

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Stillman B (1991) Stepwise assembly of chromatin during DNA replication in vitro. EMBO J 10(4): 971–980

    PubMed  CAS  Google Scholar 

  • Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS, Huber LJ (2006) Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA Damage. Mol cell Biol 26(1): 28–38

    Article  PubMed  CAS  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbioloby and Molecular Biology Reviews 64(2): 435–459

    Article  CAS  Google Scholar 

  • Sun Y, Jiang X, Chen S, Fernandes N, Price BD (2005) A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. PNAS 102(37): 13182–13187

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan V, Kishore AH, Febitha KK, Kundu TK (2005) Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription. Mol Cell Biol 25(17) 7534–7545

    Article  PubMed  CAS  Google Scholar 

  • Szczesny B, Bhakat KK, Mitra S, Boldogh I (2004) Age-dependent modulation of DNA repair enzymes by covalent modification and subcellular distribution. Mech Ageing Dev 125(10–11): 755–765

    Article  PubMed  CAS  Google Scholar 

  • Tagami H, Péloponèse JM, Loret E, Jeang KT, Nakatani y, Emiliani S, Benkirane M, Kiernan RE (2002) Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. EMBO J 21(24): 6811–6819

    Article  PubMed  Google Scholar 

  • Van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM (2004) FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279(28) 28873–28879

    Article  PubMed  Google Scholar 

  • Varier RA, Kundu TK (2006) Chromatin modifications (acetylation/ deacetylation/ methylation) as new targets for HIV therapy. Curr Pharm Des 12(16): 1975–1993

    Article  PubMed  CAS  Google Scholar 

  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. Oct 19(107) 2149–159

    Google Scholar 

  • Vo N, Fjeld C, Goodman RH. (2001) Acetylation of nuclear hormone receptor-interacting protein RIP140 regulates binding of the transcriptional corepressor CtBP. Mol cell Biol 21(18): 6181–6188

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Taplick J, Geva N, Oren M (2004) Inhibition of p53 degradation by Mdm2 acetylation. FEBS Lett 561(1–3): 195–201

    Article  PubMed  CAS  Google Scholar 

  • Warnock LJ, Raines SA, Mee TR, Milner J (2005) Role of phosphorylation in p53 acetylation and PAb421 epitope recognition in baculoviral and mammalian expressed proteins. FEBS Journal 272(7): 1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Kurokawa M, Imai Y, Izutsu K, Asai T, Ichikawa M, Yamamoto G, Nitta E, Yamagata T, Sasaki K, Mitani K, Ogawa S, Chiba S, Hirai H (2004) AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. J Biol Chem 279(15): 15630–15638

    Article  PubMed  CAS  Google Scholar 

  • Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 24(1): 21–44

    PubMed  CAS  Google Scholar 

  • Zhang Q, Yao H, Vo N, Goodman RH (2000) Acetylation of adenovirus EIA regulates binding of the transcriptional corepressor CtBP. PNAS 97(26): 14323–14328

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Batta, K., Das, C., Gadad, S., Shandilya, J., Kundu, T.K. (2007). Reversible Acetylation Of Non Histone Proteins. In: Kundu, T.K., et al. Chromatin and Disease. Subcellular Biochemistry, vol 41. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5466-1_9

Download citation

Publish with us

Policies and ethics