Skip to main content

Experimental Models of Mucosal Inflammation

  • Chapter
Immune Mechanisms in Inflammatory Bowel Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 579))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annunziato F, Cosmi L, Liotta F et al. Phenotype, localization, and mechanism of suppression of CD4+CD25+ human thymocytes. J Exp Med 2002; 196(3):379–387.

    PubMed  CAS  Google Scholar 

  2. Aranda R, Sydora BC, McAllister PL et al. Analysis of intestinal lymphocytes in mouse colitis mediated by transfer of CD4+, CD45RBhighT cells to SCID recipients. J Immunol 1997; 158:3464–3473.

    PubMed  CAS  Google Scholar 

  3. Asseman C, Read S, Powrie F. Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: Control by CD4+ regulatory T cells IL-10. J Immunol 2003; 171(2):971–978.

    PubMed  CAS  Google Scholar 

  4. Asseman C, Mauze S, Leach MW et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999; 190(7):995–1004.

    PubMed  CAS  Google Scholar 

  5. Axelsson LG, Landstrom E, Goldschmitt TJ et al. Dextran sulfate sodium (DSS) induced experimental colitis in immunodeficient mice: Effects in CD4+ cell depleted, athymic and NK-cell depleted SCID mice. Inflamm Res 45:181–191.

    Google Scholar 

  6. Bamias G, Mishina M, Martin III CT et al. Differential role of Th1 and Th2 Cytokines in the pathogenesis of SAMP1/YitFc ileitis. Gastroenterology 2004; 126(4):A119.

    Google Scholar 

  7. Baron JL, Gardiner L, Nishimura S et al. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 2002; 16(4):583–594.

    PubMed  CAS  Google Scholar 

  8. Beck PL, Rosenberg IM, Xavier RJ et al. Transforming growth factor-beta mediates intestinal healing and susceptibility to injury in vitro and in vivo through epithelial cells. Am J Pathol 2003; 162(2):597–608.

    PubMed  CAS  Google Scholar 

  9. Becker C, Wirtz S, Blessing M et al. Constitutive p40 promotor activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest 2003; 112(5):693–706.

    PubMed  CAS  Google Scholar 

  10. Beg AA, Sha WC Bronson RT et al. Embryonic lethality and liver degeneration in mice lacking the Re1A component of NF-kappaB. Nature 1995; 376:167–170.

    PubMed  CAS  Google Scholar 

  11. Belghith M, Bluestone JA, Barriot S et al. TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 2003; 9(9):1202–1208.

    PubMed  CAS  Google Scholar 

  12. Bennett CL, Christie J, Ramsdell F et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27(1):20–21.

    PubMed  CAS  Google Scholar 

  13. Bilsborough J, George TC, Norment A et al. Mucosal CD8α+DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology 2003; 108(4):481–492.

    PubMed  CAS  Google Scholar 

  14. Boirivant M, Fuss IJ, Chu A et al. Oxazalone colitis: A murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med 1998; 188(1):1929–1939.

    PubMed  CAS  Google Scholar 

  15. Bouma G, Crusius JB, Odkerk P et al. Secretion of tumour necrosis factor alpha and lymphotoxin alpha in relation to polymorphisms in the TNF genes and HLA-DR alleles. Relevance for inflammatory bowel disease. Scand J Immunol 1996; 43(4):456–463.

    PubMed  CAS  Google Scholar 

  16. Bouma G, Kaushiva A, Strober W. Experimental murine colitis is regulated by two genetic loci, including one on chromosome 11 that regulates IL-12 responses. Gastroenterology 2002; 123(2):554–565.

    PubMed  CAS  Google Scholar 

  17. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 2003; 3(7):521–533.

    PubMed  CAS  Google Scholar 

  18. Brandwein SL, McCabe RP, Cong Y et al. Spontaneously colitic C3H/HeJBir mice demonstrate selective antibody reactivity to antigens of the enteric bacterial flora. J Immunol 1997; 159(1):44–52.

    PubMed  CAS  Google Scholar 

  19. Braun MC, He J, Wu CY et al. Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor β1 and β2 chain expression. J Exp Med 1999; 189(3):541–552.

    PubMed  CAS  Google Scholar 

  20. Braun MC, Kelsall BL. Regulation of interleukin-12 production by G-protein-coupled receptors. Microbes Infect 2001; 3(2):99–107.

    PubMed  CAS  Google Scholar 

  21. Breeling JL, Onderdonk AB, Cisneros RL et al. Bacterioides vulgatus outer membrane antigens associated with carageenan-induced colitis in guinea pigs. Infect Immunol 1998; 56(7):1754–1759.

    Google Scholar 

  22. Brigl M, Brenner MB. CD1: Antigen presentation and T cell function. Annu Rev Immunol 2004; 22:817–890.

    PubMed  CAS  Google Scholar 

  23. Brimnes J, Reimann J, Nissen M et al. Enteric bacterial antigens activate CD4+ T cells from scid mice with inflammatory bowel disease. Eur J Immunol 2001; 31(2):23–31.

    PubMed  CAS  Google Scholar 

  24. Brutkiewicz RR, Bennink JR, Yewdell JW et al. TAP-independent, beta 2-microglobulin-dependent surface expression of functional mouse CD1.1. J Exp Med 1995; 182(6):1913–1919.

    PubMed  CAS  Google Scholar 

  25. Camoglio L, te Velde AA, de Boer A et al. Hapten-induced colitis associated with maintained Th1 and inflammatory responses in IFN-γ receptor-deficient mice. Eur J Immunol 2000; 30(5):1486–1495.

    PubMed  CAS  Google Scholar 

  26. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000; 68(12):7010–7017.

    PubMed  CAS  Google Scholar 

  27. Chen Y, Inobe J, Kuchroo VK et al. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: Suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc Natl Acad Sci USA 1996; 93(1):388–391.

    PubMed  CAS  Google Scholar 

  28. Chen W, Jin W, Wahl SM. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor beta (TGF-β) production by murine CD4+ T cells. J Exp Med 1998; 188(10):1849–1857.

    PubMed  CAS  Google Scholar 

  29. Chen Y, Kuchroo VK, Inobe J et al. Regulatory T cell clones induced by oral tolerance: Suppression of autoimmune encephalomyelitis. Science 1994; 265(5176):1237–1240.

    PubMed  CAS  Google Scholar 

  30. Chen W, Wahl SM. TGF-β: The missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine Growth Factor Rev 2003; 14(2):85–89.

    PubMed  CAS  Google Scholar 

  31. Christ AD, Stevens AC, Koeppen H et al. An interleukin 12-related cytokine is up-regulated in ulcerative colitis but not in Crohn’s disease. Gastroenterology 1998; 115(2):307–313.

    PubMed  CAS  Google Scholar 

  32. Christensen HR, Frokiaer H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 2002; 168(1):171–178.

    PubMed  CAS  Google Scholar 

  33. Claesson MH, Bregenholt S, Bonhagen K et al. Colitis-inducing potency of CD4+ T cells in immunodeficient, adoptive hosts depends on their state of activation, IL-12 responsiveness, and CD45RB surface phenotype. J Immunol 1999; 162(6):3702–3710.

    PubMed  CAS  Google Scholar 

  34. Cong Y, Brandwein SL, McCabe RP et al. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitis C3H/HeJBir mice: Increased T helper cell type 1 response and ability to transfer disease. J Exp Med 1998; 187(6):855–864.

    PubMed  CAS  Google Scholar 

  35. Cong Y, Weaver CT, Lazenby A et al. Colitis induced by enteric bacterial antigen-specific CD4+ T cells requires CD40-CD40 ligand interaction for a sustained increase in mucosal IL-12. J Immunol 2000; 165(4):2173–2182.

    PubMed  CAS  Google Scholar 

  36. Contractor NV, Bassir H, Reya T et al. Lymphoid hyperplasia, autoimmunity, and compromised intestinal intraepithelial lymphocyte development in colitis-free gnotobiotic IL-2-deficient mice. J Immunol 1998; 160(1):385–394.

    PubMed  CAS  Google Scholar 

  37. Contractor NV, Bassirir H, Reya T et al. Lymphoid hyperplasia, autoimmunity, and compromised intestinal intraepithelial lymphocyte development in colitis-free gnotobiotic IL-2-deficient mice. J Immunol 1998; 75:253–61.

    Google Scholar 

  38. Dao T, Heal WZ, Crispe IN. IL-18 augments perforin-dependent cytotoxicity of liver NK-T cells. J Immunol 1998; 161(5):2217–2222.

    PubMed  CAS  Google Scholar 

  39. Darfeuille-Michaud A, Neut C, Barnich N et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology 1998; 115(6):1405–1413.

    PubMed  CAS  Google Scholar 

  40. Dascher CC, Brenner MB. CD1 antigen presentation and infectious disease. Contrib Microbiol 2003; 10:164–182.

    PubMed  CAS  Google Scholar 

  41. Davidson NJ, Hudak SA, Lesley RE et al. IL-12, but not IFN-γ, plays a major role in sustaining the chronic phase of colitis in IL-10-deficient mice. J Immunol 1998; 161(6):3143–3149.

    PubMed  CAS  Google Scholar 

  42. Davidson NJ, Leach MW, Fort MM et al. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J Exp Med 1996; 184(1):241–251.

    PubMed  CAS  Google Scholar 

  43. De Jong YP, Abadia-Molina AC, Satoskar AR et al. Development of chronic colitis is dependent on the cytokine MIF. Nat Immunol 2001; 2(11):1061–1066.

    PubMed  Google Scholar 

  44. De Jong YP, Comiskey M, Kalled SL et al. Chronic murine colitis is dependent on the CD154/CD40 pathway and can be attenuated by anti-CD154 administration. Gastroenterology 2000; 119(3):715–723.

    PubMed  Google Scholar 

  45. Dieleman LA, Hoentjen F, Quian BF et al. Reduced ratio of protective versus proinflammatory cytokine responses to commensal bacteria in HLA-B27 transgenic rats. Clin Exp Immunol 2004; 136(1):30–39.

    PubMed  CAS  Google Scholar 

  46. Dieleman LA, Palmen MJ, Akoh H et al. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol 114:385–391.

    Google Scholar 

  47. Dieleman LA, Ridwan BU, Tennyson GS et al. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 1994; 107(6):1643–1652.

    PubMed  CAS  Google Scholar 

  48. Dohi T, Fujihashi K, Kiyono H et al. Mice deficient in Th1-and Th2-type cytokines develop distinct forms of hapten-induced colitis. Gastroenterology 2000; 119(3):724–733.

    PubMed  CAS  Google Scholar 

  49. Dohi T, Fujihashi K, Rennert PD et al. Hapten-induced colitis is associated with colonic path hypertrophy and T helper cell 2-type responses. J Exp Med 1999; 189(8):1169–1180.

    PubMed  CAS  Google Scholar 

  50. Drenick EJ, Roslyn JJ. Cure of arthritis-dermatitis syndrome due to intestinal bypass by resection of nonfunctional segment of blind loop. Dig Dis Sci 1990; 35(5):656–660.

    PubMed  CAS  Google Scholar 

  51. Duchmann R, May E, Heike M et al. T cell specificity and cross reactivity towards enterobacteria, bacteriodes, bifidobacterium, and antigens from resident intestinal flora in humans. Gut 1999; 44(6):812–818.

    PubMed  CAS  Google Scholar 

  52. Duchmann R, Neurath MF, Meyer zum Buschenfelde KH. Responses to self and nonself intestinal microflora in health and inflammatory bowel disease. Res Immunol 1999; 148(8–9):589–594.

    Google Scholar 

  53. Duchmann R, Schmitt E, Knolle P et al. Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. Eur J Immunol 1996; 26(4):934–938.

    PubMed  CAS  Google Scholar 

  54. Dalwadi H, Wei B, Schrage M et al. B cell developmental requirement for the G alpha i2 gene. J Immunol 2003; 170(4):1707–1715.

    PubMed  CAS  Google Scholar 

  55. Eberl G, MacDonald HR. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 2000; 30(4):985–992.

    PubMed  CAS  Google Scholar 

  56. Egger B, Bajaj-Elliott M, MacDonald MW et al. Characterization of acute murine dextran sodium sulphate colitis: Cytokine profile and dose dependency. Digestion 2000; 62:240–248.

    PubMed  CAS  Google Scholar 

  57. Ehrhardt RO, Ludviksson BR, Gray B et al. Induction and prevention of colonic inflammation in IL-2-deficient mice. J Immunol 1997; 158(2):566–573.

    PubMed  CAS  Google Scholar 

  58. Elson CO, Beagley KW, Sharmanov AT et al. Hapten-induced model of murine inflammatory bowel disease: Mucosa immune responses and protection by tolerance. J Immunol 1996; 157(5):2174–2185.

    PubMed  CAS  Google Scholar 

  59. Erdman S, Fox JG, Dangler CA et al. Typholocolitis in NF-kappa B-deficient mice. J Immunol 2001; 166(3):1443–1447.

    PubMed  CAS  Google Scholar 

  60. Evans PC, Ovaa H, Hamon M et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J 2004; 378 (Pt 3):727–734.

    PubMed  CAS  Google Scholar 

  61. Fantini MC, Becker C, Monteleone G et al. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25-T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004; 172(9):5149–5153.

    PubMed  CAS  Google Scholar 

  62. Farmer MA, Sundberg JP, Bristol IJ et al. A major quantitative trait locus on chromosome 3 controls colitis severity in IL-10-deficient mice. Proc Natl Acad Sci USA 2001; 98(24):13820–13825.

    PubMed  CAS  Google Scholar 

  63. Fehervari Z, Sakaguchi S. Development and function of CD25+CD4+ regulatory T cells. Curr Opin Immunol 2004; 16(2):203–208.

    PubMed  CAS  Google Scholar 

  64. Fiocchi C. From immune activation to gut tissue injury: The pieces of the puzzle are coming together. Gastroenterology 1999; 117(5):1238–1241.

    PubMed  CAS  Google Scholar 

  65. Fiorucci S, Mencarelli A, Palazzetti B et al. Importance of innate immunity and collagen binding integrin alphalbetal in TNBS-induced colitis. Immunity 2002; 17(6):769–780.

    PubMed  CAS  Google Scholar 

  66. Flynn S, van Sinderen D, Thornton GM et al. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarus subsp. Salivarus UCC118. Microbiology 2002; 148 (Pt 4):973–984.

    PubMed  CAS  Google Scholar 

  67. Franchimont D, Bouma G, Galon J et al. Adrenal cortical activation in murine colitis. Gastroenterology 2000; 119(6):1560–1568.

    PubMed  CAS  Google Scholar 

  68. Fuss IJ, Boirivant M, Lacy B et al. The interrelated roles of TGF-β and IL-10 in the regulation of experimental colitis. J Immunol 2002; 168(2):900–908.

    PubMed  CAS  Google Scholar 

  69. Fuss IJ, Heller F, Boirivant M et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest 2004; 113(10):1490–1497.

    PubMed  CAS  Google Scholar 

  70. Fuss IJ, Marth T, Neurath MF et al. Anti-interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology 1999; 117(5):1078–1088.

    PubMed  CAS  Google Scholar 

  71. Fuss IJ, Neurath M, Boirivant M et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 1996; 157(3):1261–1270.

    PubMed  CAS  Google Scholar 

  72. Gorelik L, Flavell RA. Abrogation of TGF-β signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12(2):171–81.

    PubMed  CAS  Google Scholar 

  73. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Ann Rev Biochem 1993; 62:385–391.

    PubMed  CAS  Google Scholar 

  74. Groux H, O’Garra A, Bigler M et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389(6652):737–742.

    PubMed  CAS  Google Scholar 

  75. Guo L, Hu-Li J, Paul WE. Probabilistic regulation of IL-4 production in Th2 cells: Accessibility at the IL4 locus. Immunity 2004; 20(2):193–203.

    PubMed  CAS  Google Scholar 

  76. Hagenbaugh A, Sharma S, Dubinett SM et al. Altered immune responses in interleukin 10 transgenic mice. J Exp Med 1997; 185(12):2101–2110.

    PubMed  CAS  Google Scholar 

  77. Hahm KB, Im YH, Parks TW et al. Loss of transforming growth factor beta signaling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut 2001; 49:164–165.

    Google Scholar 

  78. Hanada T, Yoshida T, Kinjyo I et al. A mutant form of JAB/SOCS1 augments the cytokine-induced JAK/STAT pathway by accelerating degradation of wild-type JAB/CIS family proteins through the SOCS-box. J Biol Chem 2001; 276(44):40746–40754.

    PubMed  CAS  Google Scholar 

  79. He J, Gurunathan S, Iwasaki A et al. Primary role for Gi protein signaling in the regulation of interleukin 12 production and the induction of T helper cell type 1 responses. J Exp Med 2000; 191(9):1605–1610.

    PubMed  CAS  Google Scholar 

  80. Heller F, Fuss IJ, Nieuwenhuis EE et al. Oxazalone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 2002; 17(5):629–638.

    PubMed  CAS  Google Scholar 

  81. Hermiston ML, Gordon JL. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 1995; 270(2539):1203–1207.

    PubMed  CAS  Google Scholar 

  82. Hoentjen F, Harmsen HJ, Braat H et al. Antibiotics with a selective aerobic or anaerobic spectrum have different therapeutic activities in various regions of the colon in interleukin 10 gene deficient mice. Gut 2003; 52(12):1721–1727.

    PubMed  CAS  Google Scholar 

  83. Hollander GA, Simpson SJ, Mizoguchi E et al. Severe colitis in mie with aberrant thymic selection. Immunity 1995; 3(1):27–38.

    PubMed  CAS  Google Scholar 

  84. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609):1057–1061.

    Google Scholar 

  85. Hori S, Takahashi T, Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 2003; 81:331–371.

    PubMed  CAS  Google Scholar 

  86. Hornquist CE, Lu X, Rogers-Fani PM et al. G(alpha)i2-deficient mice with colitis exhibit a local increase in memory CD4+ T cells and proinflammatory Th1-type cytokines. J Immunol 1999; 158(3):1068–1077.

    Google Scholar 

  87. Iijima H, Takahashi I, Kishi D et al. Alteration of interleukin 4 production results in the inhibition of T helper type 2 cell-dominated inflammatory bowel disease in T cell receptor alpha chain-deficient mice. J Exp Med 1999; 190(5):607–615.

    PubMed  CAS  Google Scholar 

  88. Iqbal N, Oliver JR, Wagner FH et al. T helper 1 and T helper 2 cells are pathogenic in an antigen-specific model of colitis. J Exp Med 2002; 195(1):71–84.

    PubMed  CAS  Google Scholar 

  89. Isolauri E, Majamaa H, Arvola T et al. Lactobacillus casei strain GG reverses increased intestinal permeability induced by cow milk in suckling rats. Gastroenterology 1993; 105(6):1643–1650.

    PubMed  CAS  Google Scholar 

  90. Iwasaki A, Kelsall BL. Freshly isolated peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentation of T helper type 2 cells. J Exp Med 1999; 190(2):229–239.

    PubMed  CAS  Google Scholar 

  91. Kitajima S, Takoma S, Morimoto M. Changes in colonic mucosal permeability mouse colitis induced with dextran sulfate sodium. Exp Animal 1999; 48:137–143.

    CAS  Google Scholar 

  92. Kitani A, Fuss I, Nakamura K et al. Transforming growth factor (TGF)-β1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitiates coordinated immunoregulatory activity and amelioration of TGF-β1-mediated fibrosis. J Exp Med 2003; 198(8):1179–1188.

    PubMed  CAS  Google Scholar 

  93. Kitani A, Fuss IJ, Nakamura K et al. Treatment of experimental (Trinitrobenzene sulfonic acid) colitis by intranasal administration of transforming growth factor (TGF)-β1 plasmid: TGF-β1-mediated suppression of T helper cell type 1 response occurs by interleukin (IL)-10 induction and IL-12 receptor β2 chain downregulation. J Exp Med 2000; 192(1):41–52.

    PubMed  CAS  Google Scholar 

  94. Kishi D, Takahashi I, Kai Y et al. Alteration of V beta usage and cytokine production of CD4+ TCR beta beta homodimers T cells by elimination of Bacterioides vulgatus prevents colitis in TCR alpha-chain-deficient mice. J Immunol 165:5891–5899.

    Google Scholar 

  95. Klein C, Nguyen D, Liu CH et al. Gene therapy for Wiskott-Aldrich syndrome: Rescue of T-cell signaling and amelioration of colitis upon transplantation of retrovirally transduced hematopoietic stem cells in mice. Blood 2003; 101(6):2159–2166.

    PubMed  CAS  Google Scholar 

  96. Kobayashi M, Kweon MN, Kuwata H et al. Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J Clin Invest 2003; 111(9):1297–308.

    PubMed  CAS  Google Scholar 

  97. Kontoyiannis D, Pasparakis M, Pizarro TT et al. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: Implications for joint and gut-associated immunopathologies. Immunity 1999; 10(3):387–398.

    PubMed  CAS  Google Scholar 

  98. Kosiewicz MM, Nast CC, Krishnan A et al. Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn’s disease. J Clin Invest 2001; 107(6):695–702.

    PubMed  CAS  Google Scholar 

  99. Kozaiwa K, Sugawara K, Smith Jr MF et al. Identification of a quantitative trait locus for ileitis in a spontaneous mouse model of Crohn’s disease: SAMP1/YitFc. Gastroenterology 2003; 125(2):477–490.

    PubMed  Google Scholar 

  100. Krajina T, Leithauser F, Moller P et al. Colonic lamina propria dendritic cells in mice with CD4+ T cell-induced colitis. Eur J Immunol 2003; 33(4):1073–1083.

    PubMed  CAS  Google Scholar 

  101. Kronenberg M, Gapin L. The unconventional lifestyle of NKT cells. Nat Rev Immunol 2002; 2(8):57–568.

    Google Scholar 

  102. Kuchroo VK, Umetsu DT, DeKruff RH et al. The TIM gene family: Emerging roles in immunity and disease. Nat Rev Immunol 2003; 3(6):454–62.

    PubMed  CAS  Google Scholar 

  103. Kullberg MC, Anderson JF, Gorelick PL et al. Induction of colitis by a CD4+ T cell clone specific for a bacterial epitope. Proc Natl Acad Sci USA 2003; 100(26):15830–15835.

    PubMed  CAS  Google Scholar 

  104. Kullberg MC, Jankovic D, Gorelick PL et al. Bacteria-triggered CD4+ T regulatory cells suppress Helicobacter hepaticus-induced colitis. J Exp Med 2002; 196(4):505–515.

    PubMed  CAS  Google Scholar 

  105. Kullberg MC, Ward JM, Gorelick PL et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12 and gamma interferon-dependent mechanism. Infect Immun 1998; 66(11):5157–5166.

    PubMed  CAS  Google Scholar 

  106. Lee EG, Boone DL, Chai S et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000; 289(5488):2350–2354.

    PubMed  CAS  Google Scholar 

  107. Lee YK, Puong KY, Ouwehand AC et al. Displacement of bacterial pathogens from mucus and Caco2 cell surface by lactobacilli. J Med Microbiol 2003; 52(Pt 10):925–930.

    PubMed  Google Scholar 

  108. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-β. Annu Rev Immunol 1998; 16:137–161.

    PubMed  CAS  Google Scholar 

  109. Leveille-Webster CR, Arias IM. The biology of the P-glycoprotein. J Membr Biol 1995; 143:89–94.

    PubMed  CAS  Google Scholar 

  110. Levings MK, Bacchetta R, Schultz U et al. The role of IL-10 and TGF-β in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol 2002; 129(4):263–276.

    PubMed  CAS  Google Scholar 

  111. Lichtman SN, Keku J, Clark RI et al. Biliary tract disease in rats with experimental small bowel bacterial overgrowth. Hepatology 1991; 13(4):766–772.

    PubMed  CAS  Google Scholar 

  112. Liu H, Hu B, Xu D et al. CD4+CD25+ regulatory T cells cure murine colitis: The role of IL-10, TGF-β, and CTLA-4. J Immunol 2003; 171(10):5012–5017.

    PubMed  CAS  Google Scholar 

  113. Liu Z, Geboes K, Colpaert S et al. Prevention of experimental colitis in SCID mice reconstituted with CD45RBhigh CD4+ T cells by blocking the CD40-CD154 interactions. J Immunol 2000; 164(11):6005–6014.

    PubMed  CAS  Google Scholar 

  114. Liu Z, Geboes K, Heremans H et al. Role of interleukin-12 in the induction of mucosal inflammation and abrogation of regulatory T cell function in chronic experimental colitis. Eur J Immunol 2001; 31(5):1550–1560.

    PubMed  CAS  Google Scholar 

  115. Lodes MJ, Cong Y, Elson CO et al. Bacterial flagellin is a dominant antigen in Crohn’s disease. J Clin Invest 2004; 113(9):1296–1306.

    PubMed  CAS  Google Scholar 

  116. Ludviksson BR, Ehrhardt RO, Strober W. TGF-β production regulates the development of the 2,4,6-trinitrophenol-conjugated keyhole limpet hemocyanin-induced colonic inflammation in IL-2-deficient mice. J Immunol 1997; 159(7):3622–3628.

    PubMed  CAS  Google Scholar 

  117. Ludviksson BR, Strober W, Nishikomori R et al. Administration of mAb against alpha E β7 prevents and ameliorates immunization-induced colitis in IL-2−/− mice. J Immunol 1999; 162(8):4975–4982.

    PubMed  CAS  Google Scholar 

  118. Mack DR, Michail S, Wei S et al. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 1999; 276 (4 Pt):G941–G950.

    PubMed  CAS  Google Scholar 

  119. Mackay F, Browning JL, Lawton P et al. Both the lymphotoxin and tumor necrosis factor pathways are involved in experimental murine models of colitis. Gastroenterology 1998; 115(6):1464–1475.

    PubMed  CAS  Google Scholar 

  120. Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004; 303(5664):1662–1665.

    PubMed  CAS  Google Scholar 

  121. Madsen KL, Doyle JS, Jewell LD et al. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 1999; 116(5):1107–1114.

    PubMed  CAS  Google Scholar 

  122. Madsen K, Cornish A, Soper P et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 2001; 121(3):580–591.

    PubMed  CAS  Google Scholar 

  123. Madsen KL, Doyle JS, Tavernini MM et al. Antibiotic therapy attenuates colitis in interleukin 10 gene-deficient mice. Gastroenterology 2000; 118(6):1097–1105.

    Google Scholar 

  124. Mahler M, Bristol IJ, Leiter EH et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am J Physiol 1998; 274(3 Pt 1):G544–G551.

    PubMed  CAS  Google Scholar 

  125. Mahler M, Bristol IJ, Sundberg JP et al. Genetic analysis of susceptibility to dextran sulfate sodium-induced colitis in mice. Genomics 1999; 55(2):147–156.

    PubMed  CAS  Google Scholar 

  126. Mahler M, Most C, Schmidtke S et al. Genetics of colitis susceptibility in IL-10-deficient mice: Backcross versus F2 results contrasted by principal component analysis. Genomics 2002; 80(3):274–282.

    PubMed  Google Scholar 

  127. Malmstrom V, Shipton D, Singh B et al. CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J Immunol 2001; 166(11):6972–6981.

    PubMed  CAS  Google Scholar 

  128. Malloy KJ, Salaun L, Cahill R et al. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med 2003; 197(1):111–119.

    Google Scholar 

  129. Mangell P, Nejdfors P, Wang M et al. Lactobacillus plantarum 299v inhibits Escherichia coli-induced intestinal permeability. Dig Dis Sci 2002; 47(3):511–516.

    PubMed  Google Scholar 

  130. Mannon P, Fuss IJ, Mayer L et al. Anti-interleukin-12 treats active Crohn’s disease. Gastroenterology 2004; 126(4):A22, abstract.

    Google Scholar 

  131. Mao Y, Noback S, Kasravi B et al. The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 1996; 111(2):334–344.

    PubMed  CAS  Google Scholar 

  132. Matsumoto S, Okabe Y, Setoyama H et al. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut 1998; 43(1):71–78.

    PubMed  CAS  Google Scholar 

  133. Mashimo H, Wu DC, Podolsky DK et al. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 1996; 274:204.

    Google Scholar 

  134. Mayer L, Eisenhard D. Lack of induction of suppressor T cells by intestinal epithelial cells from patients with inflammatory bowel disease. J Clin Invest 1990; 86(4):1255–1260.

    PubMed  CAS  Google Scholar 

  135. Mizoguchi A, Mizoguchi E, Chiba C et al. Role of appendix in the development of inflammatory bowel disease in TCR-α mutant mice. J Exp Med 1996; 184(2):707–715.

    PubMed  CAS  Google Scholar 

  136. Mizoguchi A, Mizoguchi E, Saubermann LJ et al. Limited CD4 T-cell diversity associated with colitis in T-cell receptor alpha mutant mice requires a T helper 2 environment. Gastroenterology 2000; 119(4):983–995.

    PubMed  CAS  Google Scholar 

  137. Mizoguchi A, Mizoguchi E, Smith RN et al. Suppressive role of B cells in chronic colitis of T cell receptor alpha mutant mice. J Exp Med 1997; 186(10):1749–1756.

    PubMed  CAS  Google Scholar 

  138. Mizoguchi A, Mizoguchi E, Takedatsu H et al. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002; 16(2):219–230.

    PubMed  CAS  Google Scholar 

  139. Monteleone G, Biancone L, Marasco R et al. Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology 1997; 112(4):1169–1178.

    PubMed  CAS  Google Scholar 

  140. Morris GP, Beck PL, Herridge MS et al. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 1989; 96(3):795–803.

    PubMed  CAS  Google Scholar 

  141. Mottet C, Uhlig HH, Powrie F. Cutting edge: Cure of colitis by CD4+CD25+ regulatory T cells. J Immunol 2003; 170(8):3939–3943.

    PubMed  CAS  Google Scholar 

  142. Nakamura K, Kitani A, Fuss I et al. TGF-β 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 2004; 172(2):834–842.

    PubMed  CAS  Google Scholar 

  143. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001; 194(5):629–644.

    PubMed  CAS  Google Scholar 

  144. Nelson PA, Akselband Y, Dearborn SM et al. Effect of oral beta interferon on subsequent immune responsiveness. Ann NY Acad Sci 1996; 778:145–155.

    PubMed  CAS  Google Scholar 

  145. Neurath MF, Fuss I, Kelsall BL et al. Experimental granulomatous colitis in mice is abrogated by induction of TGF-β-mediated oral tolerance. J Exp Med 1996; 183(6):2605–2616.

    PubMed  CAS  Google Scholar 

  146. Neurath MF, Fuss I, Kelsall BL et al. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 1995; 182(5):1281–1290.

    PubMed  CAS  Google Scholar 

  147. Neurath MF, Fuss I, Pasparakis M et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol 1997; 27(7):1743–1750.

    PubMed  CAS  Google Scholar 

  148. Neurath MF, Weigmann B, Finotto S et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease. J Exp Med 2002; 195(9):1129–1143.

    PubMed  CAS  Google Scholar 

  149. Nieuwenhuis EE, Neurath MF, Corazza N et al. Disruption of T helper 2-immune responses in Epstein-Barr virus induced gene 3-deficient mice. Proc Natl Acad Sci USA 2002; 99(26):16951–16956.

    PubMed  CAS  Google Scholar 

  150. Obermeier F, Dunger N, Strauch UG et al. Contrasting activity of cytosine-guanosin dinucleotide oligonucleotides in mice with experimental colitis. Clin Exp Immunol 2003; 134(2):217–224.

    PubMed  CAS  Google Scholar 

  151. Ohkusa T. Production of experimental ulcerative colitis in hamsters by dextran sulfate sodium and change in intestinal microflora. Jpn J Gastroenterol 1985; 82:1327–1336.

    CAS  Google Scholar 

  152. Onderdonk AB, Franklin ML, Cisneros RL. Production of experimental ulcerative colitis in gnotobiotic guinea pigs with simplified microflora. Infect Immun 1981; 32(1):225–231.

    PubMed  CAS  Google Scholar 

  153. Onderdonk AB, Hermos JA, Dzink JL et al. Protective effect of metronidazole in experimental ulcerative colitis. Gastroenterology 1978; 74:521–526.

    PubMed  CAS  Google Scholar 

  154. Oppmann B, Lesley R, Blom B et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000; 13(5):715–725.

    PubMed  CAS  Google Scholar 

  155. Orchard TR, Dhar A, Simmons JD et al. MHC class I chain-like gene A (MICA) and its associations with inflammatory bowel disease and peripheral arthropathy. Clin Exp Immunol 2001; 126(3):437–440.

    PubMed  CAS  Google Scholar 

  156. Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: Mice deficient fro the multiple drug resistance gene, mdrla, spontaneously develop colitis. J Immunol 1998; 161:5733–5744.

    PubMed  CAS  Google Scholar 

  157. Peng Y, Laouar Y, Li MO et al. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci USA 2004; 101(13):4572–4577.

    PubMed  CAS  Google Scholar 

  158. Pfeiffer C, Stein J, Southwood S et al. Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. J Exp Med 1995; 181(4):1569–1574.

    PubMed  CAS  Google Scholar 

  159. Podolsky DK. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: The best offense is a good defense. Am J Physiol 1999; 273(3 Pt 1):G495–G499.

    Google Scholar 

  160. Poussier P, Ning T, Chen J et al. Intestinal inflammation observed in IL-2R/IL-2 mutant mice is associated with impaired intestinal T lymphopoiesis. Gastroenterology 2000; 118(5):880–891.

    PubMed  CAS  Google Scholar 

  161. Powrie F, Carlino J, Leach MW et al. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4+ T cells. J Exp Med 1996; 183(6):2669–2774.

    PubMed  CAS  Google Scholar 

  162. Powrie F, Correa-Oliveira R, Mauze S et al. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 1994; 179(2):589–600.

    PubMed  CAS  Google Scholar 

  163. Powrie F, Leach MW. Genetic and spontaneous models of inflammatory bowel disease in rodents: Evidence for abnormalities in mucosal immune regulation. Ther Immunol 1995; 2(2):115–123.

    PubMed  CAS  Google Scholar 

  164. Powrie F, Leach MW, Mauze S et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1994; 1(7):553–562.

    PubMed  CAS  Google Scholar 

  165. Proberts CS, Chott A, Turner JR et al. Persistent clonal expansion of peripheral blood CD4+ lymphocytes in chronic inflammatory bowel disease. J Immunol 1996; 157:3183–3191.

    Google Scholar 

  166. Rachmilewitz D, Katakura K, Karmeli F et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 2004; 126(2):520–528.

    PubMed  CAS  Google Scholar 

  167. Rachmilewitz D, Karmeli F, Takabayashi K et al. Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology 2002; 122(5):1428–41.

    PubMed  CAS  Google Scholar 

  168. Rath HC, Schultz M, Freitag R et al. Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice. Infect Immun 2001; 69(4):2277–2285.

    PubMed  CAS  Google Scholar 

  169. Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacterioides vulgatus or Escherichia coli. Infect Immunol 1999; 67(6):2969–2974.

    CAS  Google Scholar 

  170. Rayes N, Seehofer D, Muller AR et al. Influence of probiotics and fibre on the incidence of bacterial infections following major abdominal surgery — results of a prospective trial. Z Gastroenterol 2002; 40(10):869–876.

    PubMed  CAS  Google Scholar 

  171. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J Exp Med 2000; 192(2):295–302.

    PubMed  CAS  Google Scholar 

  172. Rivera-Nieves J, Bamias G, Vidrich A et al. Emergence of perianal fistulizing disease in the SAMP1/YitFc mouse, a spontaneous model of chronic ileitis. Gastroenterology 2003; 124(4):972–982.

    PubMed  Google Scholar 

  173. Rodloff AC, Widera P, Ehlers S et al. Suppression of blastogenic transformation of lymphocytes by Bacterioides fragilis in vitro and in vivo. Int J Med Microbiol 274:406–416.

    Google Scholar 

  174. Roncarolo MG, Bacchetta R, Bordignon C et al. Type 1 T regulatory cells. Immunol Rev 2001; 182:68–79.

    PubMed  CAS  Google Scholar 

  175. Rudolph U, Finegold MJ, Rich SS et al. Ulcerative colitis and adenocarcinoma of the colon in G alpha i2-deficient mice. Nat Genet 1995; 10(2):143–150.

    PubMed  CAS  Google Scholar 

  176. Sadlack B, Merz H, Schorle H et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:203–205.

    Google Scholar 

  177. Sadlack B, Merz H, Schorle H et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993; 75(2):253–261.

    PubMed  CAS  Google Scholar 

  178. Sakaguchi S, Sakaguchi N, Shimizu J et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: Their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001; 182:18–32.

    PubMed  CAS  Google Scholar 

  179. Sakaguchi S, Takahashi T, Yamazaki S et al. Immunologic self tolerance maintained by T-cell-mediated control of self-reactive T cells: Implications for autoimmunity and tumor immunity. Microbes Infect 2001; 3(11):911–918.

    PubMed  CAS  Google Scholar 

  180. Sartor RB. Colitis in HLA-B27/β2 microglobulin transgenic rats. Int Rev Immunol 2000; 19(1):39–50.

    PubMed  CAS  Google Scholar 

  181. Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: Antibiotics, probiotics, and prebiotics. Gastroenterology 2004; 126(6):1620–1633.

    PubMed  Google Scholar 

  182. Sartor RB, Veltkamp C. Interactions between enteric bacteria and the immune system which determine mucosal homeostasis vs. chronic intestinal inflammation: Lessons from rodent models. In: Rogler G, Kullman F, eds. IBD at the End of Its First Century. Dordrecht: Kluwer Academic, 2000:30–41.

    Google Scholar 

  183. Satsangi J, Parkes M, Louis E et al. Two stage genome-wide search inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7, and 12. Nat Genet 1996; 14:199–202.

    PubMed  CAS  Google Scholar 

  184. Schultz M, Tonkonogy SL, Sellon RK et al. IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Physiol 1999; 276(6 Pt 1):G1461–G1472.

    PubMed  CAS  Google Scholar 

  185. Schultz M, Veltkamp C, Dieleman LA et al. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis 2002; 8(2):71–80.

    PubMed  Google Scholar 

  186. Shaikh R, Santee S, Granger SW et al. Constitutive expression of LIGHT on T cells leads to lymphocyte activation, inflammation, and tissue destruction. J Immunol 2001; 167:6330–6337.

    PubMed  CAS  Google Scholar 

  187. Sheil B, McCarthy J, O’Mahony L et al. Is the mucosal route of administration essential for probiotic function? Subcutaneous administration is associated with attenuation of murine colitis and arthritis. Gut 2004; 53(5):694–700.

    PubMed  CAS  Google Scholar 

  188. Simpson SJ, Shah S, Comskey M et al. T cell-mediated pathology in two models of experimental colitis depends predominantly on the interleukin 12/Signal transducer and activator of transcription (Stat)-4 pathway, but is not conditional on interferon gamma expression by T cells. J Exp Med 1998; 187(8):1225–1234.

    PubMed  CAS  Google Scholar 

  189. Snapper SB, Rosen FS, Mizoguchi E et al. Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 1998; 9(1):81–91.

    PubMed  CAS  Google Scholar 

  190. Spencer SD, Di Marco F, Hooley J et al. The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J Exp Med 1998; 187(4):571–578.

    PubMed  CAS  Google Scholar 

  191. Spencer DM, Veldman GM, Banerjee S et al. Distinct inflammatory mechanisms mediate early versus late colitis in mice. Gastroenterology 2002; 122(1):94–105.

    PubMed  Google Scholar 

  192. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol 2002; 20:495–549.

    PubMed  CAS  Google Scholar 

  193. Strober W, Kelsall B, Marth T. Oral tolerance. J Clin Immunol 1998; 18(1):1–30.

    PubMed  CAS  Google Scholar 

  194. Stuber E, Strober W, Neurath M. Blocking the CD40L-CD40 interaction in vivo specifically prevents the priming of T helper 1 cells through the inhibition of interleukin 12 secretion. J Exp Med 1996; 183(2):693–698.

    PubMed  CAS  Google Scholar 

  195. Sundberg JP, Elson CO, Bedigian H et al. Spontaneous heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology 1994; 107(6):1726–1735.

    PubMed  CAS  Google Scholar 

  196. Suzuki A, Hanada T, Mitsuyama K et al. CIS3/SOC3/SS13 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med 2001; 193(4):471–481.

    PubMed  CAS  Google Scholar 

  197. Takahashi T, Sakaguchi S. Naturally arising CD25+CD4+ regulatory T cells in maintaining immunologic self-tolerance and preventing autoimmune disease. Curr Mol Med 2003; 3(8):693–706.

    PubMed  CAS  Google Scholar 

  198. Takahashi T, Sakaguchi S. [T cell mediated immunoregulation and autoimmune disease]. Tanpakushitsu Kakusan Kos 2002; 47(16 Suppl):2331–2335.

    CAS  Google Scholar 

  199. Takahashi T, Sakaguchi S. The role of regulatory T cells in controlling immunologic self-tolerance. Int Rev Cytol 2003; 225:1–32.

    PubMed  CAS  Google Scholar 

  200. Takeda K, Clausen BE, Kaisho T et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 1999; 10(1):39–49.

    PubMed  CAS  Google Scholar 

  201. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21:335–376.

    PubMed  CAS  Google Scholar 

  202. Ten Hove T, Corbaz A, Amitai H et al. Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-α production in mice. Gastroenterology 2001; 121(6):1372–1379.

    PubMed  Google Scholar 

  203. Tlaskalova H, Stepankova R, Hudcovic T et al. The role of bacterial microflora in development of dextran sodium sulfate (DSS) induced colitis in Immunocompetent and immunodeficient mice. Microb Ecol Health Dis 1999; 11:115–16, abstract.

    Google Scholar 

  204. Tomczak MF, Erdman SE, Poutahidis T et al. NF-kappa B is required within the innate immune system to inhibit microflora-induced colitis and expression of IL-12 p40. J Immunol 2003; 171(3):1484–1492.

    PubMed  CAS  Google Scholar 

  205. Toy LS, Yio XY, Lin A et al. Defective expression of gp180, a novel CD8 ligand on intestinal epithelial cells, in inflammatory bowel disease. J Clin Invest 1997; 100(8):2062–2071.

    PubMed  CAS  Google Scholar 

  206. Toyabe S, Seki S, Iiai T et al. Requirement of IL-4 and liver NK1+ T cells for concanavalin A-induced hepatic injury in mice. J Immunol 1997; 159(3):1537–1542.

    PubMed  CAS  Google Scholar 

  207. Van de Wal Y, Corazza N, Allez M et al. Delineation of CD1d-restricted antigen presentation pathway associated with human and mouse intestinal epithelial cells. Gastroenterology 2003; 124(5):1420–1431.

    PubMed  Google Scholar 

  208. Vezys V, Lefrancois L. Cutting edge: Inflammatory signals drive organ-specific autoimmunity to normally cross-tolerizing endogenous antigen. J Immunol 2002; 169(12):6677–6680.

    PubMed  CAS  Google Scholar 

  209. Vezys V, Olson S, Lefrancois L. Expression of intestine-specific antigen reveals novel pathways of CD8 T cell tolerance induction. Immunity 2000; 12(5):505–514.

    PubMed  CAS  Google Scholar 

  210. Wahl SM, Chen W. TGF-β: How tolerant can it be? Immunol Res 2003; 28(3):167–179.

    PubMed  CAS  Google Scholar 

  211. Watanabe M, Ueno Y, Yajima T et al. Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa. J Exp Med 1998; 187(3):389–402.

    PubMed  CAS  Google Scholar 

  212. Watanabe T, Kitani A, Murrary P et al. NOD2 is a negative regulator of Toll-like receptor 2 mediated Th1 response. Natu Immunol manuscript in press, 2004.

    Google Scholar 

  213. Weiner HL. Oral tolerance: Immune mechanisms and the generation of Th3-type TGF-β-secreting regulatory cells. Microbes Infect 2001; 3(11):947–954.

    PubMed  CAS  Google Scholar 

  214. Weiner HL. Oral tolerance: Immune mechanisms and treatment of autoimmune diseases. Immunol Today 1997; 18(7):335–343.

    PubMed  CAS  Google Scholar 

  215. Wirtz S, Finotto S, Kanzler S et al. Cutting edge: Chronic intestinal inflammation in STAT-4 transgenic mice: Characterization of disease and adoptive transfer by TNF-plus IFN-γ-producing CD4+ T cells that respond to bacterial antigens. J Immunol 1999; 162(4):1884–1888.

    PubMed  CAS  Google Scholar 

  216. Xiao S, Sung SS, Fu SM et al. Combining Fas mutation with interleukin-2 deficiency prevents Colitis and Lupus: Implicating interleukin-2 for auto-reactive T cell expansion and Fas ligand for colon epithelial cell death. J Biol Chem 2003; 278(52):52730–52738.

    PubMed  CAS  Google Scholar 

  217. Yacyshyn B, Maksymowych W, Bowen-Yacyshyn MB. Differences in P-glycoprotein-170 expression and activity between Crohn’s disease and ulcerative colitis. Hum Immunol 1999; 60(8):677–687.

    PubMed  CAS  Google Scholar 

  218. Yamada Y, Marshall S, Specian RD et al. A comparative analysis of two models of colitis in rats. A comparative analysis of two models of colitis in rats. Gastroenterology 1992; 102(5):1524–1534.

    PubMed  CAS  Google Scholar 

  219. Yamazaki M, Yajima T, Tanabe M et al. Mucosal T cells expressing high levels of IL-7 receptor are potential targets for treatment of chronic colitis. J Immunol 2003; 171(3):156–163.

    Google Scholar 

  220. Yoshida M, Shirai Y, Watanabe T et al. Differential localization of colitogenic Th1 and Th2 cells monospecific to a microflora-associated antigen in mice. Gastroenterology 2002; 123(6):1949–1961.

    PubMed  CAS  Google Scholar 

  221. Yoshida M, Watanabe T, Usui T et al. CD4 T cells monospecific to ovalbumin produced by Escherichia coli can induce colitis upon transfer to BALB/c and SCID mice. Int Immunol 2001; 13(12):1561–1570.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Strober, W., Fuss, I.J. (2006). Experimental Models of Mucosal Inflammation. In: Blumberg, R.S., Neurath, M.F. (eds) Immune Mechanisms in Inflammatory Bowel Disease. Advances in Experimental Medicine and Biology, vol 579. Springer, New York, NY. https://doi.org/10.1007/0-387-33778-4_5

Download citation

Publish with us

Policies and ethics