Skip to main content

Mechanoelectrical Transduction in Auditory Hair Cells

  • Chapter
Vertebrate Hair Cells

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 27))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Art JJ, Fettiplace R (1987) Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol 385:207–242.

    PubMed  CAS  Google Scholar 

  • Art JJ, Wu YC, Fettiplace R (1995) The calcium-activated potassium channels of turtle hair cells. J Gen Physiol 105:49–72.

    PubMed  CAS  Google Scholar 

  • Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol 388:323–347.

    PubMed  CAS  Google Scholar 

  • Assad JA, Corey DP (1992) An active motor model for adaptation by vertebrate hair cells. J Neurosci 12:3291–3309.

    PubMed  CAS  Google Scholar 

  • Assad JA, Hacohen N, Corey DP (1989) Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc Natl Acad Sci USA 86:2918–2922.

    PubMed  CAS  Google Scholar 

  • Assad JA, Shepherd GM, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7:985–994.

    PubMed  CAS  Google Scholar 

  • Bagger-Sjöback D, Wersäll J (1973) The sensory hairs and tectorial membrane of the basilar papilla in the lizard Calotes versicolor. J Neurocytol 2:329–350.

    PubMed  Google Scholar 

  • Balasubramanian S, Lynch JW, Barry PH (1995) The permeation of organic cations through cAMP-gated channels in mammalian olfactory receptor neurons. J Membr Biol 146:177–191.

    PubMed  CAS  Google Scholar 

  • Batters C, Arthur CP, Lin A, Porter J, Geeves MA, Milligan RA, Molly JE, Coluccio LM (2004) Myo 1c is designed for the adaptation responsxe in the inner ear. EMBO J 23:1433–1440.

    PubMed  CAS  Google Scholar 

  • Baumann M, Roth A (1986) The Ca++ permeability of the apical membrane in neuromast hair cells. J Comp Physiol [A] 158:681–688.

    CAS  Google Scholar 

  • Belyantseva IA, Adler HJ, Curi R, Frolenkov GI, Kachar B (2000) Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J Neurosci 20:RC116.

    Google Scholar 

  • Belyantseva IA, Boger ET, Friedman TB (2003) Myosin XVa localizes to the tips of the inner ear stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci USA 100:13958–13963.

    PubMed  CAS  Google Scholar 

  • Benser ME, Issa NP, Hudspeth AJ (1993) Hair-bundle stiffness dominates the elastic reactance to otolithic-membrane shear. Hear Res 68:243–252.

    PubMed  CAS  Google Scholar 

  • Benser ME, Marquis RE, Hudspeth AJ (1996) Rapid, active hair bundle movements in hair cells from the bullfrog’s sacculus. J Neurosci 16:5629–5643.

    PubMed  CAS  Google Scholar 

  • Bialek W (1987) Physical limits to sensation and perception. Annu Rev Biophys Biophys Chem 16:455–478.

    PubMed  CAS  Google Scholar 

  • Block SM (1992) Biophysical principles of sensory transduction. In: Corey DP, Roper SD (eds), Sensory Transduction. New York: Rockefeller University Press, pp. 1–17.

    Google Scholar 

  • Bönigk W, Bradley J, Müller F, Sesti F, Boekhoff I, Ronnett V, Kaupp UB, Frings S (1999) The native rat olfactory nucleotide-gated channel is composed of three distinct subunits. J Neurosci 19:5332–5347.

    PubMed  Google Scholar 

  • Bosher SK, Warren RL (1978) Very low calcium content of cochlear endolymph, an extracellular fluid. Nature 273:377–378.

    PubMed  CAS  Google Scholar 

  • Bosovic D, Hudspeth AJ (2003) Hair-bundle movements elicited by transepthelial electrical stimulation of hair cells in the sacculus of the bullfrog. Proc Natl Acad Sci USA 100:958–963.

    Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.

    PubMed  CAS  Google Scholar 

  • Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155.

    PubMed  CAS  Google Scholar 

  • Cheatham MA, Dallos P (2001) Inner hair cell response patterns: implications for low-frequency hearing. J Acoust Soc Am 110:2034–2044.

    PubMed  CAS  Google Scholar 

  • Choe Y, Magnasco MO, Hudspeth AJ (1998) A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels. Proc Natl Acad Sci USA 95:15321–15326.

    PubMed  CAS  Google Scholar 

  • Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269.

    PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281:675–677.

    PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3:962–976.

    PubMed  CAS  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Géléoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 9:723–730.

    Google Scholar 

  • Cortopassi G, Hutchin T (1994) A molecular and cellular hypothesis for aminoglycosideinduced deafness. Hear Res 78:27–30.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J Physiol 306:79–125.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 312:377–412.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1983) Auditory nerve responses to imposed displacements of the turtle basilar membrane. Hear Res 12:199–208.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364:359–379.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1989) Activation and adaptation of transducer currents in turtle hair cells. J Physiol 419:405–434.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1991) The actions of calcium on the mechanoelectrical transducer current of turtle hair cells. J Physiol 434:369–398.

    PubMed  CAS  Google Scholar 

  • Cruickshank CC, Minchin RF, Le Dain AC, Martinac B (1997) Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys J 73:1925–1931.

    PubMed  CAS  Google Scholar 

  • Dallos P (2003) Some pending problems in cochlear mechanics. In: Gummer AW (ed), Biophysics of the Cochlea: From Molecules to Models. Singapore: World Scientific, pp. 97–109.

    Google Scholar 

  • Denk W, Webb WW (1992) Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells. Hear Res 60:89–102.

    PubMed  CAS  Google Scholar 

  • Denk W, Holt JR, Shepherd GM, Corey DP (1995) Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15:1311–1321.

    PubMed  CAS  Google Scholar 

  • Donaudy F, Ferrara A, Esposito L, Hertzano R, Ben-David O, Bell RE, Melchionado S, Zelante L, Avraham K, Gasparini P (2003) Multiple mutations of MYO1A, a cochlear-expressed gene, in sensorineural hearing loss. Am J Hum Genet 72:1571–1577.

    PubMed  CAS  Google Scholar 

  • Drescher MJ, Khan KM, Beisel KW, Karadaghy AA, Hatfield JS, Kim SY, Drescher AJ, Lasak JM, Barretto RL, Shakir AH, Drescher DG (1997) Expression of adenylyl cyclase type I in cochlear inner hair cells. Mol Brain Res 45:325–330.

    PubMed  CAS  Google Scholar 

  • Drescher MJ, Barretto RL, Chaturvedi D, Beisel KW, Hatfield JS, Khan KM, Drescher DG (2002) Expression of subunits for the cAMP-sensitive ‘olfactory’ cyclic nucleotidegated ion channel in the cochlea: implications for signal transduction. Brain Res Mol Brain Res 98:1–14.

    PubMed  CAS  Google Scholar 

  • Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG (2001) Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci 21:5066–5078.

    PubMed  CAS  Google Scholar 

  • Dwyer TM, Adams DJ, Hille B (1980) The permeability of the endplate channel to organic cations in frog muscle. J Gen Physiol 75:469–492.

    PubMed  CAS  Google Scholar 

  • Eatock RA (2000) Adaptation in hair cells. Annv Rev Neurosci 23:285–314.

    CAS  Google Scholar 

  • Eatock RA, Corey DP, Hudspeth AJ (1987) Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. J Neurosci 7:2821–2836.

    PubMed  CAS  Google Scholar 

  • Eberl DF, Hardy RW, Kernan MJ (2000) Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci 20:5981–5988.

    PubMed  CAS  Google Scholar 

  • Farris HE, LeBlanc CL, Goswami J, Ricci AJ (2004) Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J Physiol (epub June).

    Google Scholar 

  • Fettiplace R, Fuchs PA (1999) Mechanisms of hair cell tuning. Annv Rev Physiol 61:809–34.

    CAS  Google Scholar 

  • Fettiplace R, Ricci AJ (2003) Adaptation in auditory hair cells. Curr Opin Neurobiol 13:446–451.

    PubMed  CAS  Google Scholar 

  • Fettiplace R, Ricci AJ, Hackney CM (2001) Clues to the cochlear amplifier from the turtle ear. Trends Neurosci 24:169–175.

    PubMed  CAS  Google Scholar 

  • Fettiplace R, Crawford AC, Ricci AJ (2003) The effects of calcium on mechanotransducer channel kinetics in auditory hair cells. In: Gummer AW (ed), Biophysics of the Cochlea: From Molecules to Models. Singapore: World Scientific, pp. 65–72.

    Google Scholar 

  • Flock A, Flock B, Murray E (1977) Studies on the sensory hairs of receptor cells in the inner ear. Acta Otolaryngol 83:85–91.

    PubMed  CAS  Google Scholar 

  • Flock AF, Strelioff D (1984) Studies on hair cells in isolated coils from the guinea pig cochlea. Hear Res 15:11–18.

    PubMed  CAS  Google Scholar 

  • Forge A, Schacht J (2000) Aminoglycoside antibiotics. Audiol Neurootol 5: 3–32.

    PubMed  CAS  Google Scholar 

  • Frank G, Hemmert W, Gummer AW (1999) Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc Natl Acad Sci USA 96:4420–4425.

    PubMed  CAS  Google Scholar 

  • Frank JE, Markin V, Jaramillo F (2002) Characterization of adaptation motors in saccular hair cell by fluctuation analysis. Biophys J 83:3188–3201.

    PubMed  CAS  Google Scholar 

  • Franke R, Dancer A (1982) Cochlear mechanisms at low frequencies in the guinea pig. Arch Otorhinolaryngol 234:213–218.

    PubMed  CAS  Google Scholar 

  • Fridberger A, Flock A, Ulfendahl M, Flock B (1998) Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proc Natl Acad Sci USA 95:7127–7132.

    PubMed  CAS  Google Scholar 

  • Frings S, Lynch JW, Lindemann B (1992) Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity and blockage. J Gen Physiol 100:45–67.

    PubMed  CAS  Google Scholar 

  • Fodor AA, Gordon SE, Zagotta WN (1997) Mechanism of tetracaine block of cyclic nucleotide-gated channels. J Gen Physiol 109:3–14.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Nagai T, Evans MG (1988) Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci 8:2460–2467.

    PubMed  CAS  Google Scholar 

  • Furness DN, Hackney CM (1985) Cross-links between stereocilia in the guinea pig cochlea. Hear Res 18:177–188.

    PubMed  CAS  Google Scholar 

  • Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21:7013–7025.

    PubMed  CAS  Google Scholar 

  • Garcia JA, Yee AG, Gillespie PG, Corey DP (1998) Localization of myosin-Ibeta near both ends of tip links in frog saccular hair cells. J Neurosci 18:8637–8647.

    PubMed  CAS  Google Scholar 

  • Geisler CD (1993) A model of stereociliary tip-link stretches. Hear Res 65:79–82.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Sang C (1995) A cochlear model using feed-forward outer-hair-cell forces. Hear Res 86:132–146.

    PubMed  CAS  Google Scholar 

  • Géléoc G, Corey DP (2001) Modulation of mechanoelectrical transduction by protein kinase A in utricular hair cells of neonatal mice. Assoc Res Otolaryngol Abst 24:242.

    Google Scholar 

  • Géléoc GS, Lennan GW, Richardson GP, Kros CJ (1997) A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc R Soc Lond B 264:611–621.

    Google Scholar 

  • Gillespie PG, Corey DP (1997) Myosin and adaptation by hair cells. Neuron 19:955–958.

    PubMed  CAS  Google Scholar 

  • Gillespie PG, Cyr JL (2004) Myosin-1c, the hair cell’s adaptation motor. Ann Rev Physiol 66:521–545.

    CAS  Google Scholar 

  • Gillespie PG, Wagner MC, Hudspeth AJ (1993) Identification of a 120 kd hair-bundle myosin located near stereociliary tips. Neuron 11:581–594.

    PubMed  CAS  Google Scholar 

  • Gillespie PG, Gillespie SK, Mercer JA, Shah K, Shokat KM (1999) Engineering of the myosin-1beta nucleotide-binding pocket to create selective sensitivity to N(6)-modified ADP analogs. J Biol Chem 274:31373–31381.

    PubMed  CAS  Google Scholar 

  • Glowatzki E, Ruppersberg JP, Zenner HP, Rüsch A (1997) Mechanically and ATPinduced currents of mouse outer hair cells are independent and differentially blocked by d-tubocurarine. Neuropharmacology 36:1269–1275.

    PubMed  CAS  Google Scholar 

  • Goodman MB, Ernstrom GG, Chelur DS, O’Hagan R, Yao CA, Chalfie M (2002) MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415:1039–1042.

    PubMed  CAS  Google Scholar 

  • Goodyear R, Richardson G (1999) The ankle-link antigen: an epitope sensitive to calcium chelation associated with the hair-cell surface and the calycal processes of photoreceptors. J Neurosci 19:3761–3772.

    PubMed  CAS  Google Scholar 

  • Grunder S, Muller A, Ruppersberg JP (2001) Developmental and cellular expression pattern of epithelial sodiuim channel alpha, beta and gamma subunits in the inner ear of the rat. Eur J Neurosci 13:641–648.

    PubMed  CAS  Google Scholar 

  • Hackney CM, Furness DN (1995) Hair cell ultrastructure and mechanotransduction: morphological effects of low extracellular calcium levels on stereociliary bundles in the turtle cochlea. In: Flock A, Ottoson D, Ulfendahl M (eds), Active Hearing. Oxford: Pergamon, pp. 103–111.

    Google Scholar 

  • Hackney CM, Fettiplace R, Furness DN (1993) The functional morphology of stereociliary bundles on turtle cochlear hair cells. Hear Res 69:163–175.

    PubMed  CAS  Google Scholar 

  • Hackney CM, Furness DN, Benos DJ, Woodley JF, Barratt J (1992) Putative immunolocalization of the mechanoelectrical transduction channels in mammalian cochlear hair cells. Proc R Soc Lond B 248:215–221.

    CAS  Google Scholar 

  • Hackney CM, Mahendrasingam S, Jones EMC, Fettiplace R (2003) The distribution of calcium buffering proteins in the turtle cochlea. J Neurosci 23:4577–4589.

    PubMed  CAS  Google Scholar 

  • Hacohen N, Assad JA, Smith WJ, Corey DP (1989) Regulation of tension on hair-cell transduction channels: displacement and calcium dependence. J Neurosci 9:3988–3997.

    PubMed  CAS  Google Scholar 

  • Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y, Yee AG, Mooseker MS, Corey DP (1997) Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137:1287–1307.

    PubMed  CAS  Google Scholar 

  • He DZ, Jia S, Dallos P (2004) Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea. Nature 429:766–770.

    PubMed  CAS  Google Scholar 

  • Heller S, Bell AM, Denis CS, Choe Y, Hudspeth AJ (2002) Parvalbumin 3 is an abundant Ca2+ buffer in hair cells. J Assoc Res Otolaryngol 3:488–498.

    PubMed  Google Scholar 

  • Hiel H, Navaratnam D, Oberholtzer JO, Fuchs PA (2001) Topological and developmental gradients of calbindin expression in the chick’s inner ear. J Assoc Res Otolaryngol 3:1–15.

    Google Scholar 

  • Holt JR, Corey DP, Eatock RA (1997) Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low frequency vestibular organ. J Neurosci 17:8739–8748.

    PubMed  CAS  Google Scholar 

  • Holt JR, Gillespie SK, Provance DW, Shah K, Shokat KM, Corey DP, Mercer JA, Gillespie PG (2002)A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108:371–381.

    PubMed  CAS  Google Scholar 

  • Holton T, Hudspeth AJ (1986) The transduction channel of hair cells from the bull-frog characterized by noise analysis. J Physiol 375:195–227.

    PubMed  CAS  Google Scholar 

  • Howard J (2001) Mechanics of Motor Proteins and the Cytoskeleton. Sunderland, MA: Sinauer.

    Google Scholar 

  • Howard J, Ashmore JF (1986) Stiffness of sensory hair bundles in the sacculus of the frog. Hear Res 23:93–104.

    PubMed  CAS  Google Scholar 

  • Howard J, Hudspeth AJ (1987) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell. Proc Natl Acad Sci USA 84:3064–3068.

    PubMed  CAS  Google Scholar 

  • Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199.

    PubMed  CAS  Google Scholar 

  • Huang M, Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367:467–470.

    PubMed  CAS  Google Scholar 

  • Huber A (2001) Scaffolding proteins organize multimolecular protein complexes for sensory signal transduction. Eur J Neurosci 14:769–776.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ (1982) Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci 2:1–10.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ (1985) The cellular basis of hearing: the biophysics of hair cells. Science 230:745–752.

    PubMed  CAS  Google Scholar 

  • Hudspeth A (1997) Mechanical amplification of stimuli by hair cells. Curr Opin Neurobiol 7:480–486.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci USA 97:11765–11772.

    PubMed  CAS  Google Scholar 

  • Ikeda K, Kusakari JU, Takasaka T, Saito Y (1987) The Ca2+ activity of cochlear endolymph of the guine pig and the effect of inhibitors. Hear Res 26:117–125.

    PubMed  CAS  Google Scholar 

  • Ismailov II, Awayda MS, Berdiev BK, Bubien JK, Lucas JE, Fuller CM, Benos DJ (1996) Triple-barrel organization of ENaC, a cloned epithelial Na+ channel. J Biol Chem 271:807–816.

    PubMed  CAS  Google Scholar 

  • Jaramillo F, Hudspeth AJ (1991) Localization of the hair cell’s transduction channels at the hair bundle’s top by iontophoretic application of a channel blocker. Neuron 7:409–420.

    PubMed  CAS  Google Scholar 

  • Jaramillo F, Hudspeth AJ (1993) Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle. Proc Natl Acad Sci USA 90:1330–1334.

    PubMed  CAS  Google Scholar 

  • Jaramillo F, Howard J, Hudspeth AJ (1990) Calcium ions promote rapid mechanically evoked movements of hair bundles. In: Dallos P, Geisler, CD, Matthews JW, Ruggero MA, Steele CR (eds), The Mechanics and Biophysics of Hearing. Berlin: Springer-Verlag, pp. 26–33.

    Google Scholar 

  • Jones EM, Gray-Keller M, Fettiplace R (1999) The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea. J Physiol 518:653–665.

    PubMed  CAS  Google Scholar 

  • Jørgensen F, Kroese ABA (1995) Ca selectivity of the transduction channels in hair cell of the frog sacculus. Acta Physiol Scand 155:363–376.

    PubMed  Google Scholar 

  • Jørgensen F, Ohmori H (1988) Amiloride blocks the mechanoelectrical transduction channel of hair cells of chick. J Physiol 403:577–588.

    PubMed  Google Scholar 

  • Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie PG (2000) High-resolution structure of hair-cell tip links. Proc Natl Acad Sci USA 97:13336–13341.

    PubMed  CAS  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391.

    PubMed  CAS  Google Scholar 

  • Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6:832–836.

    PubMed  CAS  Google Scholar 

  • Kennedy HJ, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433:880–883.

    PubMed  CAS  Google Scholar 

  • Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, El-Amraoui A, Petit C, Jentsch TJ (2000) KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci USA 97:4333–4338.

    PubMed  CAS  Google Scholar 

  • Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC (2000) Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev 32:163–166.

    PubMed  CAS  Google Scholar 

  • Kim J, Chung YD, Park D-Y, Choi S, Shin, DW, Soh H, Lee HW., Son W, Yim J, Park C-S, Kernan MJ, Kim CA (2003) TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84.

    PubMed  CAS  Google Scholar 

  • Kimitsuki T, Ohmori H (1992) The effect of caged calcium release on the adaptation of the transduction current in chick hair cells. J Physiol 458:27–40.

    PubMed  CAS  Google Scholar 

  • Kimitsuki T, Ohmori H (1993) Dihydrostreptomycin modifies adaptation and blocks the mechano-electric transducer in chick cochlear hair cells. Brain Res 624:143–150.

    PubMed  CAS  Google Scholar 

  • Kimitsuki T, Nakagawa T, Hisashi K, Komune S, Komiyama S (1996) Gadolinium blocks mechano-electric transducer current in chick cochlear hair cells. Hear Res 101:75–80.

    PubMed  CAS  Google Scholar 

  • Kolston PJ (1999) Comparing in vitro, in situ, and in vivo experimental data in a three-dimensional model of mammalian cochlear mechanics. Proc Natl Acad Sci USA 96:3676–3681.

    PubMed  CAS  Google Scholar 

  • Köppl C (1995) Otoacoustic emissions as an indicator for active cochlear mechanics: a primitive property of vertebrate hearing organs. In: Manley GA (ed), Advances in Hearing Research. Singapore: World Science Publishers, pp. 207–216.

    Google Scholar 

  • Köppl C, Manley GA, Konishi M (2000) Auditory processing in birds. Curr Opin Neurobiol 10:474–481.

    PubMed  Google Scholar 

  • Kössl M (1994) Otoacoustic emissions from the cochlea of the ‘constant frequency’ bats, Pteronotus parnellii and Rhinolophus rouxi. Hear Res 72:59–72.

    PubMed  Google Scholar 

  • Kozel PJ, Friedman RA, Erway LC, Yamoah EN, Liu LH, Riddle T, Duffy JJ, Doetschman T, Miller ML, Cardell EL, Shull GE (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J Biol Chem 273:18693–18696.

    PubMed  CAS  Google Scholar 

  • Kozel PJ, Davis RR, Krieg EF, Shull GE, Erway LC (2002) Deficiency in the plasma membrane calcium ATPase isoform 2 increases susceptibility to noise-induced hearing loss. Hear Res 164:231–239.

    PubMed  CAS  Google Scholar 

  • Kroese AB, Das A, Hudspeth AJ (1989) Blockage of the transduction channels of hair cells in the bullfrog’s sacculus by aminoglycoside antibiotics. Hear Res 37:203–217.

    PubMed  CAS  Google Scholar 

  • Kros CJ, Rüsch A, Richardson GP (1992) Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc R Soc Lond B 249:185–193.

    CAS  Google Scholar 

  • Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP (2002) Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5:41–47.

    PubMed  CAS  Google Scholar 

  • Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446.

    PubMed  CAS  Google Scholar 

  • Langer MG, Fink S, Koitschev A, Rexhausen U, Horber JK, Ruppersberg JP (2001) Lateral mechanical coupling of stereocilia in cochlear hair bundles. Biophys J 80:2608–2621.

    PubMed  CAS  Google Scholar 

  • Lim DJ (1986) Functional structure of the organ of Corti: a review. Hear Res 22:117–146.

    PubMed  CAS  Google Scholar 

  • Little KF, Neugebauer D-C (1985) Interconnections between the stereovilli of the fish inner ear. II. Systematic investigation of saccular hair bundles of Rutilus rutilus (Teleostei). Cell Tissue Res 284:473–479.

    Google Scholar 

  • Lumpkin EA, Hudspeth AJ (1995) Detection of Ca2+ entry through mechanosensitive channels localizes the site of mechanoelectrical transduction in hair cells. Proc Natl Acad Sci USA 92:10297–10301.

    PubMed  CAS  Google Scholar 

  • Lumpkin EA, Marquis RE, Hudspeth AJ (1997) The selectivity of the hair cell’s mechanoelectrical-transduction channel promotes Ca2+ flux at low Ca2+ concentrations. Proc Natl Acad Sci USA 94:10997–11002.

    PubMed  CAS  Google Scholar 

  • Mammano F, Ashmore JF (1996) Differential expression of outer hair cell potassium currents in the isolated cochlea of the guinea-pig. J Physiol 496:639–646.

    PubMed  CAS  Google Scholar 

  • Manley GA (2001) Evidence for an active process and a cochlear amplifier in nonmammals. J Neurophysiol. 86:541–549.

    PubMed  CAS  Google Scholar 

  • Manley GA, Kirk DL, Koppl C, Yates GK (2001) In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards. Proc Natl Acad Sci USA 98:2826–2831.

    PubMed  CAS  Google Scholar 

  • Marcotti W, Kros CJ (1999) Developmental expression of the potassium current IK,n contributes to maturation of mouse outer hair cells. J Physiol 520:653–660.

    PubMed  CAS  Google Scholar 

  • Markin VS, Hudspeth AJ (1995) Gating-spring models of mechanoelectrical transduction by hair cells of the internal ear. Annu Rev Biophys Biomol Struct 24:59–83.

    PubMed  CAS  Google Scholar 

  • Martin P, Hudspeth AJ (1999) Active hair-bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli. Proc Natl Acad Sci USA 96:14306–14311.

    PubMed  CAS  Google Scholar 

  • Martin P, Mehta AD, Hudspeth AJ (2000) Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc Natl Acad Sci USA 97:12026–12031.

    PubMed  CAS  Google Scholar 

  • Martin P, Bozovic D, Choe Y, Hudspeth AJ (2003) Spontaneous oscillations by hair bundles of bullfrog’s sacculus. J Neurosci 23:4533–4548.

    PubMed  CAS  Google Scholar 

  • Matulef K, Zagotta WN (2003) Cyclic nucleotide-gated ion channels. Annu Rev Cell Dev Biol 19:23–44.

    PubMed  CAS  Google Scholar 

  • Meyer J, Furness DN, Zenner HP, Hackney CM, Gummer AW (1998) Evidence for opening of hair-cell transducer channels after tip-link loss. J Neurosci 18:6748–6756.

    PubMed  CAS  Google Scholar 

  • Meyers JR, MacDonald RB, Duggan A, Lenzi D, Standaert DG, Corwin JT, Cory DP (2003) Lighting up the senses: FM1-43 loading of sensory cells through nonslelective ion channels. J Neurosci 23:4054–4065.

    PubMed  CAS  Google Scholar 

  • Mhatre AN, Li J, Kim Y, Coling DE, Lalwani AK (2004) Cloning and developmental expression of nonmuscle myosin IIA (Myh9) in the mammalian inner ear. J Neurosci Res 76:296–305.

    PubMed  CAS  Google Scholar 

  • Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472.

    PubMed  CAS  Google Scholar 

  • Mountain DC, Hubbard AE (1989) Rapid force production in the cochlea. Hear Res 42:195–202.

    PubMed  CAS  Google Scholar 

  • Mulroy MJ (1974) Cochlear anatomy of the alligator lizard. Brain Behav Evol 10:69–87.

    PubMed  CAS  Google Scholar 

  • Neely ST, Kim DO (1983) An active cochlear model showing sharp tuning and high sensitivity. Hear Res 9:123–130.

    PubMed  CAS  Google Scholar 

  • Nilius B, Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G (2000) Whole-cell and single channel monovalent cation currents through the novel rabbit epithelial Ca2+ channel ECaC. J Physiol 527:239–248.

    PubMed  CAS  Google Scholar 

  • Nobili R, Mammano F (1996) Biophysics of the cochlea II: stationary nonlinear phenomenology. J Acoust Soc Am 99:2244–2255.

    PubMed  CAS  Google Scholar 

  • Ohmori H (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol 359:189–217.

    PubMed  CAS  Google Scholar 

  • Ostap EM, Pollard TD (1996) Biochemical kinetic characterization of the Acanthamoeba myosin-I ATPase. J Cell Biol 132:1053–1060.

    PubMed  CAS  Google Scholar 

  • Perrault-Micale C, Shushan AD, Coluccio LM (2000) Truncation of mammalian myosin I results in loss of Ca2+-sensitive motility. J Biol Chem 275:21618–21623.

    Google Scholar 

  • Petit C, Levilliers J, Hardelin J-P (2001) Molecular genetics of hearing loss. Annu Rev Genet 35:589–646.

    PubMed  CAS  Google Scholar 

  • Pickles JO (1993) A model for the mechanics of the stereociliar bundle on acousticolateral hair cells. Hear Res 68:159–172.

    PubMed  CAS  Google Scholar 

  • Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15:103–112.

    PubMed  CAS  Google Scholar 

  • Pollak G, Henson OW, Novick A (1972) Cochlear microphonic audiograms in the pure tone bat, Chilonycteris parnelli parnelli. Science 176:66–68.

    Google Scholar 

  • Preyer P, Renz S, Hemmert, W, Zenner, H-P, and Gummer AW (1996) Receptor potential of outer hair cells isolated from base to apex of the adult guinea pig cochlea: implications for cochlear tuning mechanisms. Aud Neurosci 2:145–157.

    Google Scholar 

  • Probst R, Lonsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89:2027–2067.

    PubMed  CAS  Google Scholar 

  • Ramanathan K, Michael TH, Jiang GJ, Hiel H, Fuchs PA. (1999) A molecular mechanism for electrical tuning of cochlear hair cells. Science 283:215–217.

    PubMed  CAS  Google Scholar 

  • Ren T, Nuttall AL (1996) Extracochlear electrically evoked otoacoustic emissions: a model for in vivo assessment of outer hair cell electromotility. Hear Res 92:178–183.

    Google Scholar 

  • Ricci AJ (2002) Differences in mechano-transducer channel kinetics underlie tonotopic distribution of fast adaptation in auditory hair cells. J Neurophysiol 87:1738–1748.

    PubMed  Google Scholar 

  • Ricci AJ, Fettiplace R (1997) The effects of calcium buffering and cyclic AMP on mechano-electrical transduction in turtle auditory hair cells. J Physiol 501:111–124.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Fettiplace R (1998) Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol 506:159–173.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Wu YC, Fettiplace R (1998) The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. J Neurosci 18:8261–8277.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2000) Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci 20:7131–7142.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2002) Mechanisms of active hair bundle motion in auditory hair cells. J Neurosci 22:44–52.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40:983–990.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Kennedy HJ, Crawford AC, Fettiplace R (2005) The transduction channel filter in auditory hair cells. J Neurosci 25:7831–7839.

    PubMed  CAS  Google Scholar 

  • Richardson GP, Forge A, Kros CJ, Fleming J, Brown SDS, Steel KP (1997) Myosin VIIA is required for aminoglycoside accumulation in cochlear hair cells. J Neurosci 17:9506–9519.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352.

    PubMed  CAS  Google Scholar 

  • Rüsch A, Kros CJ, Richardson GP (1994) Block by amiloride and its derivatives of mechano-electrical transduction in outer hair cells of mouse cochlear cultures. J Physiol 474:75–86.

    PubMed  Google Scholar 

  • Russell IJ, Richardson GP (1987) The morphology and physiology of hair cells in organotypic cultures of the mouse cochlea. Hear Res 31:9–24.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Kössl M, Richardson GP (1992) Nonlinear mechanical responses of mouse cochlear hair bundles. Proc Roy Soc Lond Ser B 250:217–227.

    CAS  Google Scholar 

  • Rzadzinska AK, Schneider ME, Davies C, Riordan GP, Kachar B (2004) An actin molecular treadmill and myosins maintain stereocilia functional architecture and selfrenewal. J Cell Biol 164:887–897.

    PubMed  CAS  Google Scholar 

  • Salt AN, Inamura N, Thalmann R, Vora A (1989) Calcium gradients in inner ear endolymph. Am J Otolaryngol 10:371–375.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J (1992) On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. J Neurosci 12:1906–1916.

    PubMed  CAS  Google Scholar 

  • Sariban-Sohraby S, Benos DJ (1986) The amiloride-sensitive sodium channel. Am J Physiol 250:C175–190.

    PubMed  CAS  Google Scholar 

  • Saunders JC, Cohen YE, Szymko YM (1991) The structural and functional consequences of acoustic injury in the cochlea and peripheral auditory system: a five year update. J Acoust Soc Am 90:136–146.

    PubMed  CAS  Google Scholar 

  • Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262.

    PubMed  Google Scholar 

  • Shotwell SL, Jacobs R, Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann NY Acad Sci 374:1–10.

    PubMed  CAS  Google Scholar 

  • Sidi S, Friedrich RW, Nicolson T (2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99.

    PubMed  CAS  Google Scholar 

  • Siemens J, Lillo C Dumont RA, Reynolds A, Williams DS, Gillespie PG, Muller U (2004) Cadherin 23 is a component of the tip link in hair cell stereocilia. Nature 428:901–903.

    Google Scholar 

  • Söllner C, Rauch GJ, Siemens J, Geisler R, Schuster SC, Muller U, Nicolson T (2004) Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428:955–959.

    PubMed  Google Scholar 

  • Steyger PS, Gillespie PG, Baird RA (1998) Myosin Ibeta is located at tip link anchors in vestibular hair bundles. J Neurosci 18:4603–4615.

    PubMed  CAS  Google Scholar 

  • Strassmaier M, Gillespie PG (2002) The hair cell’s transduction channel. Curr Opin Neurobiol 12:380–386.

    PubMed  CAS  Google Scholar 

  • Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394.

    PubMed  CAS  Google Scholar 

  • Strelioff D, Flock A (1984) Stiffness of sensory-cell hair bundles in the isolated guinea pig cochlea. Hear Res 15:19–28.

    PubMed  CAS  Google Scholar 

  • Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65:177–183.

    PubMed  CAS  Google Scholar 

  • Szymko YM, Dimitri PS, Saunders JC (1992) Stiffness of hair bundle in the chick cochlea. Hear Res 59:241–249.

    PubMed  CAS  Google Scholar 

  • Tilney LG, Saunders JC (1983) Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell on the cochlea. J Cell Biol 96:807–821.

    PubMed  CAS  Google Scholar 

  • Tucker T, Fettiplace R (1995) Confocal imaging of calcium mocrodomains and calcium extrusion in turtle hair cells. Neuron 15:1323–1335.

    PubMed  CAS  Google Scholar 

  • van Dijk P, Narins PM, Wang J (1996) Spontaneous otoacoustic emissions in seven frog species. Hear Res 101:102–112.

    PubMed  Google Scholar 

  • van Netten SM, Kros CJ (2000) Gating energies and forces of the mammalian hair cell transducer channel and related hair bundle mechanics. Proc R Soc Lond B 267:1915–1923.

    Google Scholar 

  • van Netten SM, Dinklo T, Marcotti W, Kros CJ (2003) Channel gating forces govern accuracy of mechano-electrical transduction in hair cells. Proc Natl Acad Sci USA 100:15510–15515.

    PubMed  Google Scholar 

  • Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B, Bindels RJ (2000) Permeation and gating properties of the novel epithelial Ca2+ channel. J Biol Chem 275:3963–3969.

    PubMed  CAS  Google Scholar 

  • Vollrath MA, Eatock RA (2003) Time course and extent of mechanotransducer adaptation in mouse utricular hair cells: comparison with frog saccular hair cells. J Neurophysiol 90:2676–2689.

    PubMed  Google Scholar 

  • Walker RG, Hudspeth AJ (1996) Calmodulin controls adaptation of mechanoelectrical transduction by hair cells of the bullfrog’s sacculus. Proc Natl Acad Sci USA 93:2203–2207.

    PubMed  CAS  Google Scholar 

  • Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234.

    PubMed  CAS  Google Scholar 

  • Wu YC, Ricci AJ, Fettiplace R (1999) Two components of transducer adaptation in auditory hair cells. J Neurophysiol 82:2171–2181.

    PubMed  CAS  Google Scholar 

  • Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calciumpermeable temperature-sensitive cation channel. Nature 418:181–186.

    PubMed  CAS  Google Scholar 

  • Yamoah EN, Gillespie PG (1996) Phosphate analogs block adaptation in hair cells by inhibiting adaptation-motor force production. Neuron 17:523–533.

    PubMed  CAS  Google Scholar 

  • Yamoah EN, Lumpkin EA, Dumont RA, Smith PJ, Hudspeth AJ, Gillespie PG (1998) Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia. J Neurosci 18:610–624.

    PubMed  CAS  Google Scholar 

  • Yates GK, Kirk DL (1998) Cochlear electrically evoked emissions modulated by mechanical trnasduction channels. J Neurosci 18:1996–2003.

    PubMed  CAS  Google Scholar 

  • Zhao Y, Yamoah EN, Gillespie PG (1996) Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc Natl Acad Sci USA 93:15469–15474.

    PubMed  CAS  Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155

    PubMed  CAS  Google Scholar 

  • Zhu T, Beckingham K, Ikebe M (1998) High affinity Ca2+ binding sites of calmodulin are critical for regulation of myosin Iβ motor function. J Biol Chem 273:20481–20486.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Fettiplace, R., Ricci, A.J. (2006). Mechanoelectrical Transduction in Auditory Hair Cells. In: Eatock, R.A., Fay, R.R., Popper, A.N. (eds) Vertebrate Hair Cells. Springer Handbook of Auditory Research, vol 27. Springer, New York, NY. https://doi.org/10.1007/0-387-31706-6_4

Download citation

Publish with us

Policies and ethics