Skip to main content

Neuronal Organization in the Inferior Colliculus

  • Chapter
The Inferior Colliculus

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin LM, Anderson DJ, and Brugge JF (1970) Tonotopic organization and discharge characteristics of single neurons in nuclei of the lateral lemniscus of the cat. Journal. of Neurophysiology 33:421–440.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Tran L, and Syka J (1994) The responses of neurons in subdivisions of the inferior colliculus of cats to tonal noise and vocal stimuli. Experimental Brain Research 98:53–64.

    Article  CAS  Google Scholar 

  • Aitkin LM, Webster WR, Veale JL, and Crosby DC (1975) Inferior colliculus. I. Comparison of response properties of neurons in central, pericentral, and external nuclei of adult cat. Journal of Neurophysiology 38:1196–1207.

    PubMed  CAS  Google Scholar 

  • Barnes-Davies M and Forsythe ID (1995) Pre-and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. Journal of Physiology (London) 488:387–406.

    CAS  Google Scholar 

  • Bartlett EL and Smith PH (2002) Effects of paired-pulse and repetitive stimulation on neurons in the rat medial geniculate body. Neuroscience 113:957–974.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett EL, Stark JM, Guillery RW, and Smith PH (2000) Comparison of the fine structure of cortical and collicular terminals in the rat medial geniculate body. Neuroscience 100:811–828.

    Article  PubMed  CAS  Google Scholar 

  • Batra R and Fitzpatrick DC (1999) Discharge patterns of neurons in the ventral nucleus of the lateral lemniscus of the unanesthetized rabbit. Journal of Neurophysiology 82:1097–1113.

    PubMed  CAS  Google Scholar 

  • Batra R and Fitzpatrick DC (2002) Processing of interaural temporal disparities in the medial division of the ventral nucleus of the lateral lemniscus. Journal of Neurophysiology 88:666–675.

    PubMed  Google Scholar 

  • Batra R, Kuwada S, and Fitzpatrick DC (1997a) Sensitivity to interaural temporal disparities of low-and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. Journal of Neurophysiology 78:1222–1236.

    PubMed  CAS  Google Scholar 

  • Batra R, Kuwada S, and Fitzpatrick DC (1997b) Sensitivity to interaural temporal disparities of low-and high-frequency neurons in the superior olivary complex. II. Coincidence detection. Journal of Neurophysiology 78:1237–1247.

    PubMed  CAS  Google Scholar 

  • Batra R, Kuwada S, and Stanford TR (1989) Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit. Journal of. Neurophysiology 61:257–268.

    PubMed  CAS  Google Scholar 

  • Batra R, Kuwada S, and Stanford TR (1993) High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences. Journal of Neurophysiology 70:64–80.

    PubMed  CAS  Google Scholar 

  • Berman AL (1968) The Brain Stem of the Cat. A Cytoarchitectonic Atlas with Stereotaxic. Coordinates. The University of Wisconsin Press, Madison.

    Google Scholar 

  • Brown M, Webster WR, and Martin RL (1997a) Intensity and frequency functions of [14C]2-deoxyglucose labelling in the central nucleus of the inferior colliculus in the cat. Hearing Research 104:73–89.

    Article  PubMed  CAS  Google Scholar 

  • Brown M, Webster WR, and Martin RL (1997b) The three-dimensional frequency organization of the inferior colliculus of the cat: a 2-deoxyglucose study. Hearing Research 104:57–72.

    Article  PubMed  CAS  Google Scholar 

  • Brunso-Bechtold JK, Thompson GC, and Masterton RB (1981) HRP study of the organization of auditory afferents ascending to central nucleus of inferior colliculus in cat. Journal of Comparative Neurology 197:705–722.

    Article  PubMed  CAS  Google Scholar 

  • Caicedo A, d’Aldin C, Puel JL, and Eybalin M (1996) Distribution of calcium-binding protein immunoreactivities in the guinea pig auditory brainstem. Anatomy and Embryology 194:465–487.

    Article  PubMed  CAS  Google Scholar 

  • Casseday JH, Ehrlich D, and Covey E (2000) Neural measurement of sound duration: control by excitatory-inhibitory interactions in the inferior colliculus. Journal of Neurophysiology 84:1475–1487.

    PubMed  CAS  Google Scholar 

  • Chen L, Kelly JB, and Wu SH (1999) The commissure of Probst as a source of GABAergic inhibition. Hearing Research 138:106–114.

    Article  PubMed  CAS  Google Scholar 

  • Clopton BM and Winfield JA (1973) Tonotopic organization in the inferior colliculus of the rat. Brain Research 56:355–358.

    Article  PubMed  CAS  Google Scholar 

  • Coleman JR, McDonald AJ, Pinek B, and Zrull MC (1992) The inferior colliculus: calbindin and parvalbumin immunoreactivity in neural grafts. Experimental Neurology 115:142–145.

    Article  PubMed  CAS  Google Scholar 

  • Covey E (1993) The monaural nuclei of the lateral lemniscus: parallel pathways from cochlear nucleus to the midbrain. In: Merchán MA, Juiz JM, Godfrey DA, and Mugnaini E (eds). The Mammalian Cochlear Nuclei. Plenum Press, New York, pp. 321–334.

    Google Scholar 

  • Davis KA (2002) Evidence of a functionally segregated pathway from dorsal cochlear nucleus to inferior colliculus. Journal of Neurophysiology 87:1824–1835.

    PubMed  Google Scholar 

  • Dezso A, Schwarz DWF, and Schwarz IE (1993) A survey of the auditory midbrain, thalamus and forebrain in the chicken (Gallus domesticus) with cytochrome oxidase histochemistry. Journal of Otolaryngology 22:391–396.

    PubMed  CAS  Google Scholar 

  • Doubell TP, Baron J, Skaliora I, and King AJ (2000) Topographical projection from the superior colliculus to the nucleus of the brachium of the inferior colliculus in the ferret: convergence of visual and auditory information. European Journal of Neuroscience 12:4290–4308.

    Article  PubMed  CAS  Google Scholar 

  • Ehret G and Merzenich MM (1985) Auditory midbrain responses parallel spectral integration phenomena. Science 227:1245–1247.

    PubMed  CAS  Google Scholar 

  • Faye-Lund H and Osen KK (1985) Anatomy of the inferior colliculus in rat. Anatomy. and Embryology 171:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Eshete F, Stevens B, and Itoh K (1997) Action potential-dependent regulation of gene expression: temporal specificity in Ca2+ cAMP-responsive element binding proteins and mitogen-activated protein kinase signaling. Journal of Neuroscience 17:7252–7266.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick DC, Batra R, Stanford TR, and Kuwada S (1997) A neuronal population code for sound localization. Nature 388:871–874.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick KA (1975) Cellular architecture and topographic organization of the inferior colliculus of the squirrel monkey. Journal of Comparative Neurology 164:185–208.

    Article  PubMed  CAS  Google Scholar 

  • Gardner SM, Trussell LO, and Oertel D (2001) Correlation of AMPA receptor subunit composition with synaptic input in the mammalian cochlear nuclei. Journal of Neuroscience 21:7428–7437.

    PubMed  CAS  Google Scholar 

  • Geniec P and Morest DK (1971) The neuronal architecture of the human posterior colliculus. Acta Otolaryngologica Supplement 295:1–33.

    CAS  Google Scholar 

  • Glendenning KK and Masterton RB (1983) Acoustic chiasm: efferent projections of the lateral superior olive. Journal of Neuroscience 3:1521–1537.

    PubMed  CAS  Google Scholar 

  • Glendenning KK, Baker BN, Hutson KA, and Masterton RB (1992) Acoustic chiasm V: inhibition and excitation in the ipsilateral and contralateral projections of LSO. Journal. of Comparative Neurology 319:100–122.

    Article  PubMed  CAS  Google Scholar 

  • Glezer II, Hof PR, and Morgane PJ (1998) Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncatus) and the macaque monkey (Macaca fascicularis). Journal of Chemical Neuroanatomy 15:203–237.

    Article  PubMed  CAS  Google Scholar 

  • González-Hernández T, Mantolán-Sarmiento B, González-González B, and Pérez-González H (1996) Sources of GABAergic input to the inferior colliculus of the rat. Journal of Comparative Neurology 372:309–326.

    Article  PubMed  Google Scholar 

  • González-Lima F and Cada A (1994) Cytochrome oxidase activity in the auditory system of the mouse: a qualitative and quantitative histochemical study. Neuroscience 63:559–578.

    Article  PubMed  Google Scholar 

  • González-Lima F, Valla J, and Matos-Collazo S (1997) Quantitative cytochemistry of cytochrome oxidase and cellular morphometry of the human inferior colliculus in control and Alzheimer’s patients. Brain Research 752:117–126.

    Article  PubMed  Google Scholar 

  • Guinan JJ Jr, Norris BE, and Guinan SS (1972) Single auditory units in the superior olivary complex. II: Locations of unit categories and tonotopic organization. International. Journal of Neuroscience 4:147–166.

    Article  Google Scholar 

  • Gupta A, Wang Y, and Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278.

    Article  PubMed  CAS  Google Scholar 

  • Harting JK and Van Lieshout DP (2000) Projections from the rostral pole of the inferior colliculus to the cat superior colliculus. Brain Research 881:244–247.

    Article  CAS  Google Scholar 

  • Hutson KA (1988) Connections of the Auditory Midbrain: Efferent Projections of the Dorsal. Nucleus of the Lateral Lemniscus, the Nucleus Sagulum, and the Origins of the GABAergic. Commissure of Probst. Doctoral thesis. Florida State University, Tallahassee.

    Google Scholar 

  • Idrizbegovic E, Bogdanovic N, and Canlon B (1999) Sound stimulation increases calcium-binding protein immunoreactivity in the inferior colliculus in mice. Neuroscience. Letters 259:49–52.

    Article  PubMed  CAS  Google Scholar 

  • Irvine DRF (1986) The auditory brainstem. A review of the structure and function of auditory brainstem processing mechanisms. In: Autrum H, Ottoson D, Perl ER, Schmidt RF, Shimazu H, and Willis WD (eds). Progress in Sensory Physiology 7:1–279.

    Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN and Fay RR (eds). Springer Handbook of Auditory Research, Volume 2: The Mammalian Auditory. Pathway: Neurophysiology. Springer-Verlag, New York, pp. 153–231.

    Google Scholar 

  • Joris PX (1996) Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive. Journal of Neurophysiology 76:2137–2156.

    PubMed  CAS  Google Scholar 

  • Joris PX and Yin TCT (1995) Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. Journal of Neurophysiology 73:1043–1062.

    PubMed  CAS  Google Scholar 

  • Kelly JB and Sally SL (1993) Effects of superior olivary complex lesions on binaural responses in rat auditory cortex. Brain Research 605:237–250.

    Article  PubMed  CAS  Google Scholar 

  • King AJ, Jiang ZD, and Moore DR (1998) Auditory brainstem projections to the ferret superior colliculus: anatomical contribution to the neural coding of sound azimuth. Journal of Comparative Neurology 390:342–365.

    Article  PubMed  CAS  Google Scholar 

  • Klug A, Bauer EE, Hanson JT, Hurley L, Meitzen J, and Pollak GD (2002) Response selectivity for species-specific calls in the inferior colliculus of Mexican free-tailed bats is generated by inhibition. Journal of Neurophysiology 88:1941–1954.

    PubMed  Google Scholar 

  • Knudsen EI (1983a) Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl. Science 222:939–942.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1983b) Subdivisions of the inferior colliculus in the barn owl (Tyto alba). Journal of Comparative Neurology 218:174–186.

    Article  PubMed  CAS  Google Scholar 

  • Kudo M and Niimi K (1980) Ascending projections of the inferior colliculus in the cat: an autoradiographic study. Journal of Comparative Neurology 191:545–556.

    Article  PubMed  CAS  Google Scholar 

  • Kuwada S and Yin TCT (1983) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function. Journal of Neurophysiology 50:981–999.

    PubMed  CAS  Google Scholar 

  • Kuwada S, Yin TCT, Syka J, Buunen TJF, and Wickesberg RE (1984) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. IV. Comparison of monaural and binaural response properties. Journal of Neurophysiology 51:1306–1325.

    PubMed  CAS  Google Scholar 

  • Kuwada S, Stanford TR, and Batra R (1987) Interaural phase-sensitive units in the inferior colliculus of the unanesthetized rabbit: effects of changing phase. Journal of. Neurophysiology 57:1338–1360.

    PubMed  CAS  Google Scholar 

  • Kuwada S, Batra R, and Fitzpatrick DC (1997) Neural processing of binaural temporal cues. In: Gilkey RH and Anderson TR (eds). Binaural and Spatial Hearing in Real. and Virtual Environments. Lawrence Erlbaum Associates, Mahwah, pp. 399–425.

    Google Scholar 

  • Le Beau FEN, Malmierca MS, and Rees A (2001) Iontophoresis in vivo demonstrates a key role for GABAA and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. Journal of Neuroscience 21:7303–7312.

    Google Scholar 

  • Li Y, Evans MS, and Faingold CL (1998) In vitro electrophysiology of neurons in subnuclei of rat inferior colliculus. Hearing Research 121:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Loftus WC, Bishop DC, Saint Marie RL, and Oliver DL (2002) Segregation of excitatory inputs from the medial superior olive (MSO) and the lateral superior olive (LSO) in laminae of the low frequency inferior colliculus (IC). Society for Neuroscience Abstracts 28:845.4.

    Google Scholar 

  • Loftus WC, Bishop DC, Saint Marie RL, and Oliver DL (2004a) Organization of binaural excitatory and inhibitory inputs to the inferior colliculus from the superior olive. Journal. of Comparative Neurology 472:330–344.

    Article  PubMed  Google Scholar 

  • Loftus WC, Malmierca MS, Bishop DC, and Oliver DL (2004b) Ascending inputs to the lateral cortex of the inferior colliculus (IC) in rat and cat. Association for Research in. Otolaryngology Abstracts 27:109.

    Google Scholar 

  • Lohmann C and Friauf E (1996) Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. Journal of. Comparative Neurology 367:90–109.

    Article  PubMed  CAS  Google Scholar 

  • Lopez DE, Saldaña E, Nodal FR, Merchán MA, and Warr WB (1999) Projections of cochlear root neurons, sentinels of the rat auditory pathway. Journal of Comparative. Neurology 415:160–174.

    Article  PubMed  CAS  Google Scholar 

  • Malmierca MS, Blackstad TW, Osen KK, Karagülle T, and Molowny RL (1993) The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. Journal of Comparative Neurology 333:1–27.

    Article  PubMed  CAS  Google Scholar 

  • Malmierca MS, Rees A, Le Beau FEN, and Bjaalie JG (1995) Laminar organization of frequency-defined local axons within and between the inferior colliculi of the guinea pig. Journal of Comparative Neurology 357:124–144.

    Article  PubMed  CAS  Google Scholar 

  • Malmierca MS, Leergaard TB, Bajo VM, Bjaalie JG, and Merchán MA (1998) Anatomic evidence of a three-dimensional mosaic pattern of tonotopic organization in the ventral complex of the lateral lemniscus in cat. Journal of Neuroscience 18:10603–10618.

    PubMed  CAS  Google Scholar 

  • Malmierca MS, Merchán MA, Henkel CK, and Oliver DL (2002) Direct projections from cochlear nuclear complex to auditory thalamus in the rat. Journal of Neuroscience 22:10891–10897.

    PubMed  CAS  Google Scholar 

  • Meininger V, Pol D, and Derer P (1986) The inferior colliculus of the mouse. A Nissl and Golgi study. Neuroscience 17:1159–1179.

    Article  PubMed  CAS  Google Scholar 

  • Merchán MA and Berbel P (1996) Anatomy of the ventral nucleus of the lateral lemniscus in rats: a nucleus with a concentric laminar organization. Journal of Comparative. Neurology 372:245–263.

    Article  PubMed  Google Scholar 

  • Merchán MA, Saldaña E, and Plaza I (1994) Dorsal nucleus of the lateral lemniscus in the rat: concentric organization and tonotopic projection to the inferior colliculus. Journal of Comparative Neurology 342:259–278.

    Article  PubMed  Google Scholar 

  • Merzenich MM and Reid MD (1974) Representation of the cochlea within the inferior colliculus of the cat. Brain Research 77:397–415.

    Article  PubMed  CAS  Google Scholar 

  • Morest DK (1969) The growth of dendrites in the mammalian brain. Zeitschrift für. Anatomie und Entwicklungsgeschichte 128:290–317.

    Article  PubMed  CAS  Google Scholar 

  • Morest DK and Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. Journal of Comparative. Neurology 222:209–236.

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ and Masterton RB (1986) Stimulation-induced [14C]2-deoxyglucose labeling of synaptic activity in the central auditory system. Journal of Comparative Neurology 245:553–565.

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Endo T, and Onaya T (1991) Distribution of parvalbumin immunoreactivity in the human brain. Journal of Neurology 238:320–322.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL (1984a) Dorsal cochlear nucleus projections to the inferior colliculus in the cat: a light and electron microscopic study. Journal of Comparative Neurology 224:155–172.

    Article  Google Scholar 

  • Oliver DL (1984b) Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Neuroscience 11:409–424.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL (1985) Quantitative analyses of axonal endings in the central nucleus of the inferior colliculus and distribution of 3H-labeling after injections in the dorsal cochlear nucleus. Journal of Comparative Neurology 237:343–359.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL (1987) Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: possible substrates for binaural interaction. Journal of Comparative. Neurology 264:24–46.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL (2000) Ascending efferent projections of the superior olivary complex. Microscopy. Research and Technique 51:355–363.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL and Huerta MF (1992) Inferior and superior colliculi. In: Webster DB, Popper AN, and Fay RR (eds). Springer Handbook of Auditory Research, Volume 2: The. Mammalian Auditory Pathway: Neurophysiology. Springer-Verlag, New York, pp. 168–221.

    Google Scholar 

  • Oliver DL and Morest DK (1984) The central nucleus of the inferior colliculus in the cat. Journal of Comparative Neurology 222:237–264.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL and Shneiderman A (1991) The anatomy of the inferior colliculus: cellular basis for integration of monaural and binaural information. In: Altschuler RA, Bobbin RP, Clopton BM, and Hoffman DW (eds). Neurobiology of Hearing: The Central. Auditory System. Raven Press, New York, pp. 195–222.

    Google Scholar 

  • Oliver DL, Kuwada S, Yin TCT, Haberly LB, and Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. Journal. of Comparative Neurology 303:75–100.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Winer JA, Beckius GE, and Saint Marie RL (1994) Morphology of GABAergic neurons in the inferior colliculus of the cat. Journal of Comparative Neurology 340:27–42.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Beckius GE, and Shneiderman A (1995) Axonal projections from the lateral and medial superior olive to the inferior colliculus of the cat: a study using electron microscopic autoradiography. Journal of Comparative Neurology 360:17–32.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Beckius GE, Bishop DC, and Kuwada S (1997) Simultaneous anterograde labeling of axonal layers from lateral superior olive and dorsal cochlear nucleus in the inferior colliculus of cat. Journal of Comparative Neurology 382:215–229.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Ostapoff E-M, and Beckius GE (1999) Direct innervation of identified tectothalamic neurons in the inferior colliculus by axons from the cochlear nucleus. Neuroscience 93:643–658.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Beckius GE, Loftus WC, and Batra R (2003) Topography of interaural temporal disparity coding in projections of medial superior olive to inferior colliculus. Journal of Neuroscience 23:7438–7449.

    PubMed  CAS  Google Scholar 

  • Olszewski J and Baxter D (1982) Cytoarchitecture of the Human Brain Stem. Karger, New York.

    Google Scholar 

  • Paloff AM, Usunoff KG, Hinova-Palova DV, and Ivanov DP (1989) The fine structure of the inferior colliculus in the cat. I. Neuronal perikarya in the central nucleus. Journal. für Hirnforschung 30:69–90.

    PubMed  CAS  Google Scholar 

  • Paloff AM, Usunoff KG, and Hinova-Palova DV (1992) Ultrastructure of Golgiimpregnated and gold-toned neurons in the central nucleus of the inferior colliculus in the cat. Journal für Hirnforschung 33:361–407.

    PubMed  CAS  Google Scholar 

  • Paxinos G (1999) Chemoarchitectonic Atlas of the Rat Brainstem. Academic Press, San Diego.

    Google Scholar 

  • Paxinos G and Watson C (1998) The Rat Brain in Stereotaxic Coordinates. Academic Press, San Diego.

    Google Scholar 

  • Perney TM, Marshall J, Martin KA, Hockfield S, and Kaczmarek LK (1992) Expression of the mRNAs for the KV3.1 potassium channel gene in the adult and developing rat brain. Journal of Neurophysiology 68:756–766.

    PubMed  CAS  Google Scholar 

  • Peruzzi D, Bartlett E, Smith PH, and Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. Journal of. Neuroscience 17:3766–3777.

    PubMed  CAS  Google Scholar 

  • Peruzzi D, Sivaramakrishnan S, and Oliver DL (2000) Identification of cell types in brain slices of the inferior colliculus. Neuroscience 101:403–416.

    Article  PubMed  CAS  Google Scholar 

  • Poremba A, Jones D, and González-Lima F (1997) Metabolic effects of blocking tone conditioning on the rat auditory system. Neurobiology of Learning and Memory 68:154–171.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran R and May BJ (2002) Functional segregation of ITD sensitivity in the inferior colliculus of decerebrate cats. Journal of Neurophysiology 88:2251–2261.

    PubMed  Google Scholar 

  • Ramachandran R, Davis KA, and May BJ (1999) Single-unit responses in the inferior colliculus of decerebrate cats I. Classification based on frequency response maps. Journal. of Neurophysiology 82:152–163.

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1995) Histology of the Nervous System of Man and Vertebrates. Oxford University Press, New York.

    Google Scholar 

  • Ribak CE and Roberts RC (1986) The ultrastructure of the central nucleus of the inferior colliculus of the Sprague-Dawley rat. Journal of Neurocytology 15:421–438.

    Article  PubMed  CAS  Google Scholar 

  • Riquelme R, Saldaña E, Osen KK, Ottersen OP, and Merchán MA (2001) Colocalization of GABA and glycine in the ventral nucleus of the lateral lemniscus in rat: an in situ hybridization and semiquantitative immunocytochemical study. Journal of Comparative. Neurology 432:409–424.

    Article  PubMed  CAS  Google Scholar 

  • RoBards MJ (1979) Somatic neurons in the brainstem and neocortex projecting to the external nucleus of the inferior colliculus: an anatomical study in the opossum. Journal. of Comparative Neurology 184:547–565.

    Article  PubMed  CAS  Google Scholar 

  • RoBards MJ, Watkins DW III, and Masterton RB (1976) An anatomical study of some somesthetic afferents to the intercollicular terminal zone of the midbrain of the opossum. Journal of Comparative Neurology 170:499–524.

    Article  PubMed  CAS  Google Scholar 

  • Rockel AJ and Jones EG (1973a) The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. Journal of Comparative Neurology 147:11–60.

    Article  PubMed  CAS  Google Scholar 

  • Rockel AJ and Jones EG (1973b) The neuronal organization of the inferior colliculus of the adult cat. II. The pericentral nucleus. Journal of Comparative Neurology 149:301–334.

    Article  PubMed  CAS  Google Scholar 

  • Roth GL, Aitkin LM, Andersen RA, and Merzenich MM (1978) Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. Journal. of Comparative Neurology 182:661–680.

    Article  PubMed  CAS  Google Scholar 

  • Saint Marie RL and Baker RA (1990) Neurotransmitter-specific uptake and retrograde transport of [3H]glycine from the inferior colliculus by ipsilateral projections of the superior olivary complex and nuclei of the lateral lemniscus. Brain Research 524:244–253.

    Article  PubMed  CAS  Google Scholar 

  • Saint Marie RL Ostapoff E-M, Morest DK, and Wenthold RJ (1989) Glycineimmunoreactive projection of the cat lateral superior olive: possible role in midbrain ear dominance. Journal of Comparative Neurology 279:382–396.

    Article  PubMed  CAS  Google Scholar 

  • Saint Marie RL, Shneiderman A, and Stanforth DA (1997) Patterns of γ-aminobutyric acid and glycine immunoreactivities reflect structural and functional differences of the cat lateral lemniscal nuclei. Journal of Comparative Neurology 389:264–276.

    Article  PubMed  CAS  Google Scholar 

  • Saint Marie RL, Luo L, and Ryan AF (1999) Effects of stimulus frequency and intensity on c-fos mRNA expression in the adult rat auditory brainstem. Journal of Comparative. Neurology 404:258–270.

    Article  PubMed  CAS  Google Scholar 

  • Saldaña E and Merchán MA (1992) Intrinsic and commissural connections of the rat inferior colliculus. Journal of Comparative Neurology 319:417–437.

    Article  PubMed  Google Scholar 

  • Schmid S, Guthmann A, Ruppersberg JP, and Herbert H (2001) Expression of AMPA receptor subunit flip/flop splice variants in the rat auditory brainstem and inferior colliculus. Journal of Comparative Neurology 430:160–171.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner CE and Langner G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386.

    Article  PubMed  CAS  Google Scholar 

  • Semple MN and Aitkin LM (1979) Representation of sound frequency and laterality by units in central nucleus of cat inferior colliculus. Journal of Neurophysiology 42:1626–1639.

    PubMed  CAS  Google Scholar 

  • Senut MC and Alvarado-Mallart RM (1987) Cytodifferentiation of quail tectal primordium transplanted homotopically into the chick embryo. Brain Research 429:187–205.

    PubMed  CAS  Google Scholar 

  • Seto-Ohshima A, Aoki E, Semba R, Emson PC, and Heizmann CW (1990) Parvalbumin immunoreactivity in the central auditory system of the gerbil: a developmental study. Neuroscience Letters 119:60–63.

    Article  PubMed  CAS  Google Scholar 

  • Sheng HZ, Fields RD, and Nelson PG (1993) Specific regulation of immediate early genes by patterned neuronal activity. Journal of Neuroscience Research 35:459–467.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi S, Shiraishi Y, Oliver DL, and Altschuler RA (2001) Expression of GABAA receptor subunits in the rat central nucleus of the inferior colliculus. Molecular Brain. Research 96:122–132.

    Article  PubMed  CAS  Google Scholar 

  • Shneiderman A and Henkel CK (1987) Banding of lateral superior olivary nucleus afferents in the inferior colliculus: a possible substrate for sensory integration. Journal. of Comparative Neurology 266:519–534.

    Article  PubMed  CAS  Google Scholar 

  • Shneiderman A and Oliver DL (1989) EM autoradiographic study of the projections from the dorsal nucleus of the lateral lemniscus: a possible source of inhibitory inputs to the inferior colliculus. Journal of Comparative Neurology 286:28–47.

    Article  PubMed  CAS  Google Scholar 

  • Shneiderman A, Oliver DL, and Henkel CK (1988) Connections of the dorsal nucleus of the lateral lemniscus: an inhibitory parallel pathway in the ascending auditory system? Journal of Comparative Neurology 276:188–208.

    Article  PubMed  CAS  Google Scholar 

  • Shneiderman A, Chase MB, Rockwood JM, Benson CG, and Potashner SJ (1993) Evidence for a GABAergic projection from the dorsal nucleus of the lateral lemniscus to the inferior colliculus. Journal of Neurochemistry 60:72–82.

    PubMed  CAS  Google Scholar 

  • Sivaramakrishnan S and Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. Journal of Neuroscience 21:2861–2877.

    PubMed  CAS  Google Scholar 

  • Smith PH (1992) Anatomy and physiology of multipolar cells in the rat inferior collicular cortex using the in vitro brain slice technique. Journal of Neuroscience 12:3700–3715.

    PubMed  CAS  Google Scholar 

  • Spencer RF, Shaia WT, Gleason AT, Sismanis A, and Shapiro SM (2002) Changes in calcium-binding protein expression in the auditory brainstem nuclei of the jaundiced Gunn rat. Hearing Research 171:129–141.

    Article  PubMed  CAS  Google Scholar 

  • Spirou GA, May BJ, Wright DD, and Ryugo DK (1993) Frequency organization of the dorsal cochlear nucleus in cats. Journal of Comparative Neurology 329:36–52.

    Article  PubMed  CAS  Google Scholar 

  • Spitzer MW and Semple MN (1998) Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. Journal of Neurophysiology 80:3062–3076.

    PubMed  CAS  Google Scholar 

  • Stanford TR, Kuwada S, and Batra R (1992) A comparison of the interaural time sensitivity of neurons in the inferior colliculus and thalamus of the unanesthetized rabbit. Journal of Neuroscience 12:3200–3216.

    PubMed  CAS  Google Scholar 

  • Tardif E, Chiry O, Probst A, Magistretti PJ, and Clarke S (2003) Patterns of calciumbinding proteins in human inferior colliculus: identification of subdivisions and evidence for putative parallel systems. Neuroscience 116:1111–1121.

    Article  PubMed  CAS  Google Scholar 

  • Vater M and Braun K (1994) Parvalbumin calbindin D-28k and calretinin immunoreactivity in the ascending auditory pathway of horseshoe bats. Journal of Comparative. Neurology 341:534–558.

    Article  PubMed  CAS  Google Scholar 

  • Waitzman DM and Oliver DL (2002) The midbrain. In: Ramachandran VS (ed). Encyclopedia. of the Human Brain. Academic Press, San Diego, pp. 43–68.

    Google Scholar 

  • Wang YX, Wenthold RJ, Ottersen OP, and Petralia RS (1998) Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits. Journal of Neuroscience 18:1148–1160.

    PubMed  CAS  Google Scholar 

  • Whitley JM and Henkel CK (1984) Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat. Journal of Comparative Neurology 229:257–270.

    Article  PubMed  CAS  Google Scholar 

  • Wiberg M, Westman J, and Blomqvist A (1987) Somatosensory projection to the mesencephalon: an anatomical study in the monkey. Journal of Comparative Neurology 264:92–117.

    Article  PubMed  CAS  Google Scholar 

  • Winer JA, Saint Marie RL, Larue DT, and Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proceedings of. the National Academy of Sciences of the United States of America 93:8005–8010.

    Article  PubMed  CAS  Google Scholar 

  • Winer JA, Larue DT, Diehl JJ, and Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. Journal of Comparative Neurology 400:147–174.

    Article  PubMed  CAS  Google Scholar 

  • Wu SH, Ma CL, Sivaramakrishnan S, and Oliver DL (2002) Synaptic modification in neurons of the central nucleus of the inferior colliculus. Hearing Research 168:43–54.

    Article  PubMed  Google Scholar 

  • Yang Y, Saint Marie RL, and Oliver DL (2003a) Frequency resolution in the auditory brainstem determined by sound-induced expression of Fos protein. Society for Neuroscience. Abstracts 29:592.11.

    Google Scholar 

  • Yang Y, Saint Marie RL, and Oliver DL (2003b) Threshold sensitivities of neuronal populations in cochlear nucleus (CN) determined by sound-induced FOS expression: evidence for acoustic stimulation of granule cells. Association for Research in Otolaryngology. Abstracts 26:701.

    Google Scholar 

  • Yang Y, Saint Marie RL, and Oliver DL (2004) The effect of binaural stimulation on frequency resolution in the rat inferior colliculus (IC). Association for Research in. Otolaryngology Abstracts 27:48.

    Google Scholar 

  • Yasuhara O, Akiyama H, McGeer EG, and McGeer PL (1994) Immunohistochemical localization of hyaluronic acid in rat and human brain. Brain Research 635:269–282.

    Article  PubMed  CAS  Google Scholar 

  • Yin TCT and Chan JCK (1990) Interaural time sensitivity in medial superior olive of cat. Journal of Neurophysiology 64:465–488.

    PubMed  CAS  Google Scholar 

  • Yin TCT and Kuwada S (1983a) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency. Journal of Neurophysiology 50:1020–1042.

    PubMed  CAS  Google Scholar 

  • Yin TCT and Kuwada S (1983b) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase. Journal of Neurophysiology 50:1000–1019.

    PubMed  CAS  Google Scholar 

  • Zhang DX, Li L, Kelly JB, and Wu SH (1998) GABAergic projections from the lateral lemniscus to the inferior colliculus of the rat. Hearing Research 117:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y and Wu SH (2000) Long-term potentiation in the inferior colliculus studied in rat brain slice. Hearing Research 147:92–103.

    Article  PubMed  CAS  Google Scholar 

  • Zook JM, Winer JA, Pollak GD, and Bodenhamer RD (1985) Topology of the central nucleus of the mustache bat’s inferior colliculus: correlation of single unit properties and neuronal architecture. Journal of Comparative Neurology 231:530–546.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Oliver, D.L. (2005). Neuronal Organization in the Inferior Colliculus. In: Winer, J.A., Schreiner, C.E. (eds) The Inferior Colliculus. Springer, New York, NY. https://doi.org/10.1007/0-387-27083-3_2

Download citation

Publish with us

Policies and ethics