Skip to main content

Interleukin-2 in the Treatment of Renal Cell Carcinoma and Malignant Melanoma

  • Chapter
Cytokines and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 126))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Linehan WM, Zbar B, Bates SE, et al. Cancers of the kidney and ureter, in: Cancer Principles and Practices of Oncology (6th ed.). V.T. Devita, Jr., S. Hellman and S.A. Rosenberg, eds, Lippinocott Williams and Wilkins, Philadelphia: 1368–1369, 2001.

    Google Scholar 

  2. Buzaid AC, et al. Cisplatin, vinblastine, and DTIC versus DTIC alone in metastatic melanoma: Preliminary results of a phase III cancer community oncology program trial. Proc Am Soc Clin Oncol 10: 293, 1993 (abstr).

    Google Scholar 

  3. Chapman P, et al. Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol 17(9); 2745–2751, 1999.

    PubMed  CAS  Google Scholar 

  4. Yogada A, Abi-Bached B, Petrylak D: Chemotherapy for advanced renal cell carcinoma: 1983–1993. Semin Oncol, 22: 42, 1995.

    Google Scholar 

  5. Nakarai T, Robertson MJ, Streuli M, et al: Interleukin-2 receptor gamma chain expression on resting and activated lymphoid cells. J Exp Med 180: 241, 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Rayman P, Uzzo RG, Kolenko V, et al: Tumor-induced dysfunction in interleukin-2 production and interleukin-2 receptor signaling: a mechanism of immune escape. Cancer J Sci Am 6(suppl1): S81–S87, 2000.

    PubMed  Google Scholar 

  7. Woglom WH: Immunity to transplantable tumors. Cancer Res 4: 129, 1929.

    Google Scholar 

  8. Rosenberg SA: Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Can J Sci Am 6(suppl1): S2–S7, 2000.

    Google Scholar 

  9. Morgan DA, Ruscitti FW, Gallo RC: Selective in vitro growth of lymphocytes from hormonal bone marrows. Science 193: 1700–1800, 1976.

    Google Scholar 

  10. Stotter H, Rude E, Wagner H: T-cell factor (interleukin 2) allows in vivo induction of T-helper cells against heterologous erythrocytes in athymic (nu/nu) mice. Eur J Immunol 10:719–722, 1980.

    PubMed  CAS  Google Scholar 

  11. Wagner H, Hardt C, Heeg K, et al: T-cell derived helper factor involves in vivo induction of cytotoxic T cells in nu/nu mice. Nature 284: 278–280, 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Reimann J, Diamantstein T: Interleukin 2 allows the in vivo induction of anti-erythrocyte autoantibody production in nude mice associated with the injection of rat erythrocytes. Clin Exp Immunol 43: 641–644, 1980.

    Google Scholar 

  13. Clason AE, Duarte AJS, Kopiec-Weglinski JW, et al: Restoration of allograft responsiveness in B rats by interleukin 2 and/or adherent cells. J Immunol 129: 252–259, 1982.

    PubMed  CAS  Google Scholar 

  14. Merluzzi VJ, Kenney RE, Schmid FA, et al: Recovery of the in vivo cytotoxic T-cell response in cyclophosphamide-treated mice by injection of mixed-lymphocyte-culture supernatants. Cancer Res 41: 3663–3665, 1981.

    PubMed  CAS  Google Scholar 

  15. Taniguchi T, Matsui H, Fajita T et al: Structure and expression of a cloned cDNA for human interleukin-2. Nature 302:305–310, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Lotze MT, Grimm EA, Mazumder A, et al: Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Research 41: 4420–4425, 1981.

    PubMed  CAS  Google Scholar 

  17. Rosenstein M, Rosenberg SA: Generation of lytic and proliferative lymphoid clones to syngeneic tumor: in vitro and in vivo studies. J Natl Can Inst 72: 1161–1165, 1984.

    CAS  Google Scholar 

  18. Rayner AA, Grimm EA, Lotze MT, et al: Lymphokine-activated killer (LAK) cell phenomenon. IV. Lysis by LAK cell clones of fresh human tumor cells from autologous and multiple allogeneic tumors. J Natl Cancer Inst 75: 67–75, 1985.

    PubMed  CAS  Google Scholar 

  19. Grimm EA, Mazumder A, Zhang HZ, et al: The lymphokine activated killer cell phenomenon: lysis of NK resistant fresh solid tumor cells by rIL-2 activated autologous human peripheral blood lymphocytes. J Exp Med 155: 1823–1841, 1982.

    Article  PubMed  CAS  Google Scholar 

  20. Grimm EA, Ramsey KM, Mazumder A, et al: Lymphocyte activated killer cell phenomenon II. Precursor phenotype is serologically distinct from peripheral T lymphocytes, memory cytotoxic thymus-derived lymphocytes, and natural killer cells. J Exp Med 157: 884–897, 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Rosenberg M, Yron I, Kaufmann Y, Rosenberg SA: Lysis of fresh syngeneic natural killer-resistant murine tumor cells by lymphocytes cultured in interleukin 2. Cancer Research 44: 1946–1953, 1984.

    PubMed  Google Scholar 

  22. Owen-Sxhaub LB, Abraham SR, Hemstreet III GP: Phenotypic characterization of murine lymphokine-activated killer cells. Cell Immunol 103: 272–286, 1986.

    Article  Google Scholar 

  23. Rosenberg SA, Mule JJ, Spiess PJ et al: Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant IL-2. J Exp Med 161: 1169–1188, 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Mazumder A, Rosenberg SA: Successful immunotherapy of natural killer resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2. J Exp Med 159: 495–507, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Mule JJ, Shu S, Schwarz SL, Rosenberg SA. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 225: 1487–1489, 1984.

    PubMed  CAS  Google Scholar 

  26. Lafreniere R, Rosenberg SA: Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2. Cancer Res 45:3735–3741, 1985.

    PubMed  CAS  Google Scholar 

  27. Ettinghausen SE, Lipford EH, Mule JJ, Rosenberg SA. Recombinant interleukin-2 stimulates in vivo proliferation of adoptively transferred lymphokine activated-killer (LAK) cells. J Immunol 135:3623–3635, 1985.

    PubMed  CAS  Google Scholar 

  28. Rosenberg SA, Lotze MT, Muul LM, et al: Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. NEJM 313: 1485–1492, 1985.

    PubMed  CAS  Google Scholar 

  29. Rosenberg SA, Lotze MT, Muul LM, et al: A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin alone. NEJM 316: 889–897, 1987.

    PubMed  CAS  Google Scholar 

  30. Rosenberg SA, Lotze MT, Yang JT et al: Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 210: 474–485, 1989.

    PubMed  CAS  Google Scholar 

  31. Hawkins MJ. Current status and possible future directions. Princip Pract Oncol 8:1–14, 1989.

    Google Scholar 

  32. Dutcher JP, Creekmore S, Weiss GR et al: A phase II study of interleukin-2 and lymphokine-activated killer cells in patients with metastatic malignant melanoma. J Clin Oncol 7:477–485, 1989.

    PubMed  CAS  Google Scholar 

  33. Rosenberg SA: Adoptive cellular therapy in patients with advanced cancer: An update. Biol Ther Cancer 1: 1–15, 1991.

    Google Scholar 

  34. McCabe MS, Stablein D, Hawkins MJ, NCI Modified Group C Investigator: The modified Group C experience-Phase III randomized trials of IL-2 vs. IL-2/LAK in advanced renal cell carcinoma and advanced melanoma. ASCO Proc 10: 213–291, 1987.

    Google Scholar 

  35. Rosenberg SA, Yang JC, White DE and Steinberg SM: Durability of complete responses in patients with metastatic cancer treated with high dose interleukin-2: Identification of the antigens mediating response. Annals of Surgery, 228(3): 307–319, 1998.

    Article  PubMed  CAS  Google Scholar 

  36. Fisher R, Rosenberg S, Fyfe G: Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am 6(suppl 1): 555–557, 2000.

    Google Scholar 

  37. Atkins MB, Kunkel I, Sznol M et al: High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long term survival update. Cancer J Sci Am 6(suppl1):S1l–S14, 2000.

    Google Scholar 

  38. Eton O, et al. Sequential biochemotherapy versus chemotherapy for metastatic melanoma: Results from a phase III randomized trial. J Clin Oncol 20(8): 2045–2052, 2002.

    Article  PubMed  CAS  Google Scholar 

  39. Rosenberg SA, Yang JC, Schwartzentruber DJ et al: Prospective randomized trial of the treatment of patients with metastatic melanoma using chemotherapy with cisplatin, dacarbazine, and tamoxifen alone or in combination with interleukin-2 and interferon alpha-2b. J Clin Oncol 17(3): 968–975, 1999.

    PubMed  CAS  Google Scholar 

  40. Lee DS, White DE, Hurst R, et al: Patterns of relapse and response to re-treatment in patients with metastatic melanoma or renal cell carcinoma who responded to interleukin-2-based immunotherapy. Can J Sci Am 4:86–93, 1998.

    CAS  Google Scholar 

  41. Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system? Semin Immunol 8:271–280, 1996.

    Article  PubMed  CAS  Google Scholar 

  42. Rosenberg SA, Yang JC, Topalian MD, et al: Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271(12): 907–913, 1994.

    Article  PubMed  CAS  Google Scholar 

  43. Itoh K, Platsoucas DC, Balch CM. Autologous tumor-specific cytotoxic T lymphocytes in the infiltrate of human metastatic melanomas: activation by interleukin 2 and autologous tumor cells and involvement of the T cell receptor. J Exp Med 168: 1419–1441, 1988.

    Article  PubMed  CAS  Google Scholar 

  44. Lotze MT: The future role of interleukin-2 in cancer therapy. Cancer J Sci Am 6(suppl 1):S58–S60, 2000.

    PubMed  Google Scholar 

  45. Lotze MT: Future directions for recombinant interleukin-2 in cancer: a chronic inflammatory disorder. Can J Sci Amer 3: S106–S108, 1997.

    Google Scholar 

  46. Green DR, Ware CF: Fas-ligand: privilege and peril. Proc Natl Acad Sci USA 94: 5986–5990, 1997.

    Article  PubMed  CAS  Google Scholar 

  47. O'Connell J, O'Sullivan GC, Collins JK et al: The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 184: 1075–1082, 1996.

    Article  PubMed  Google Scholar 

  48. Matzinger P: Tolerance, danger, and the extended family. Ann Rev Immunol 12: 991–1045, 1994.

    CAS  Google Scholar 

  49. Ridge JP, Fuchs EJ, Matzinger P: Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 271: 1723–1726, 1996.

    PubMed  CAS  Google Scholar 

  50. Krastev Z, Koltchakov V, Tomov B and Koten JW: Non-melanoma and non-renal cell carcinoma malignancies treated with interleukin-2. Hepato-Gastroenterology 50: 1006–1016, 2003.

    PubMed  CAS  Google Scholar 

  51. Mule JJ, Yang JC, Afreniere RL, et al: Identification of cellular mechanisms operational in vivo during the regression of established pulmonary metastases by the systemic administration of high-dose recombinant interleukin-2. J Immunol 139:285–294, 1987.

    PubMed  CAS  Google Scholar 

  52. Boccoli G, Masciulli R, Ruggeri EM et al: Adoptive immunotherapy of human cancer: the cytokine cascade and monocyte activation following high-dose interleukin-2 bolus treatment. Cancer Res 50: 5795–5800, 1990.

    PubMed  CAS  Google Scholar 

  53. Phan G, Attia P, Steinberg S, et al: Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. J Clin Oncol 19:3477–3482, 2001.

    PubMed  CAS  Google Scholar 

  54. Fumagalli L, Vinke J, Wilco H, et al: Lymphocyte counts independently predict overall survival in advanced cancer patients: a biomarker for IL-2 immunotherapy. J of Immunother 26(5): 394–402, 2003.

    Article  CAS  Google Scholar 

  55. Favrot MC, Combaret S, Negrier S, et al: Functional and immunophenotypic modifications induced by interleukin-2 did not predict response to therapy in patients with renal cell carcinoma. J of Biol Resp Modifiers 9:167–177, 1990.

    CAS  Google Scholar 

  56. Hermann G, Geertsen P, vod der Maase H, Zeuthen J: Interleukin-2 dose, blood monocyte and CD25+ lymphocyte counts as predictors of clinical response to interleukin-2 therapy in patients with renal cell carcinoma. Cancer Immunol Immunother 34:111–114, 1991.

    Article  PubMed  CAS  Google Scholar 

  57. Eisenthal A, Skornick Y, Ron I, et al: Phenotypic and functional profile of peripheral blood mononuclear cells isolated from melanoma patients undergoing combined immunotherapy and chemotherapy. Cancer Immunol Immunother 37: 367–372, 1993.

    Article  PubMed  CAS  Google Scholar 

  58. Atzpodien J, Kirchner H, Korfer A, et al: Expansion of peripheral blood natural killer cells correlates with clinical outcome in cancer patients receiving recombinant subcutaneous IL-2 and interferon-alpha-2. Tumor Biol 14:354–359, 1993.

    Article  CAS  Google Scholar 

  59. Schwartzentruber D: Guidelines for the safe administration of high-dose interleukin-2. J of Immunother 24(4): 287–293, 2001.

    Article  CAS  Google Scholar 

  60. Dillman RO, Oldham RK, Tauer KW et al: Continuous interleukin-2 and lymphokine-activated killer cells for advanced cancer: a National Biotherapy Study Group trial. J Clin Oncol 9:1233–1240, 1991.

    PubMed  CAS  Google Scholar 

  61. Kammula US, White DE, Rosenberg SA: Trends in the safety of high dose bolus interleukin-2 administration in patients with metastatic cancer. Cancer 83: 797–805, 1998.

    Article  PubMed  CAS  Google Scholar 

  62. Kilbourn R, Owen-Schaub L, Crommens D et al: NG-methyl-L-arginine, an inhibitor of nitric oxide formation, reverses IL-2 mediated hypotension in dogs. J Appl Physiol 76:1130–1137, 1994.

    PubMed  CAS  Google Scholar 

  63. Kilbourn R, Fonseca G, Trissel L, Griffith O: Strategies to reduce side effects of interleukin-2: Evaluation of the antihypotensive agent NG-monomethyl-L-arginine. Cancer J Sci Am 6(suppl 1):S21–S30, 2000.

    PubMed  Google Scholar 

  64. Lotze MT, Dallal RM, Kirkwood JM, et al: Cutaneous melanoma, in: Cancer Principles and Practices of Oncology (6th ed.). V.T. Devita, Jr., S. Hellman and S.A. Rosenberg, eds, Lippinocott Williams and Wilkins, Philadelphia: 2050–2051, 2001.

    Google Scholar 

  65. Guirguis L, Yang J, White D, et al: Safety and efficacy of high-dose interleukin-2 therapy in patients with brain metastases. J of lmmunother 25(1): 82–87, 2002.

    Article  CAS  Google Scholar 

  66. Ettinghausen SE, Rosenberg SA. Immunotherapy of murine sarcomas using lymphokine activated killer cells: optimization of the schedule and route of administration of recombinant interleukin 2. Cancer Res 46: 2784–2792, 1986.

    PubMed  CAS  Google Scholar 

  67. Lotze MT, Matory YL, Ettinghausen SE et al: Half-life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL-2. J Immonol 135:2865–2875, 1985.

    CAS  Google Scholar 

  68. Yang JC, Rosenberg SA: An ongoing prospective randomized comparison of interleukin-2 regimens for the treatment of metastatic renal cell cancer. Cancer J Sci Am 3:S79–S84, 1997.

    PubMed  Google Scholar 

  69. Yang JC, Sherry RM, Steinberg SM, et al: Randomized Study of high-dose and low-dose interleukin-2 in patients with metastatic renal cell carcinoma. J Clin Oncol 21(16): 3127–3132, 2003.

    Article  PubMed  CAS  Google Scholar 

  70. Atkins MB: Interleukin-2 in metastatic melanoma: what is the current role? Cancer J Sci Am (suppl l): S8–S10, 2000.

    Google Scholar 

  71. Dillman RO, Church C, Barth NM, et al: Long-term survival after continuous infusion interleukin-2. Cancer Biother Radiopharm 12: 243–248, 1997.

    PubMed  CAS  Google Scholar 

  72. Atkins MB: Interleukin-2: clinical applications. Seminars in Oncology 29(3 suppl 7): 12–17, 2002.

    Article  PubMed  CAS  Google Scholar 

  73. Weinreich D, Rosenberg S: Response rates of patients with metastatic melanoma to high-dose intravenous interleukin-2 after prior exposure to alpha-interferon or low-dose interleukin-2. J of Immunother 25(2): 185–187, 2002.

    Article  CAS  Google Scholar 

  74. McDermott D, Mier J, Lawrence D, et al: A phase II pilot trial of concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2 and interferon alpha-2B in patients with metastatic melanoma. Clin Cancer Res 6:2201–2208, 2000.

    PubMed  CAS  Google Scholar 

  75. Johnston S, Constenla D, Moore J et al: Randomized phase II trial of BCDT (carmustine, cisplatin, dacarbazine and tamoxifen) with or without interferon-alpha and interleukin-2 in patients with metastatic melanoma. Br J Cancer 77:1280–1286, 1998.

    PubMed  CAS  Google Scholar 

  76. Belldegrun A, deKernion JB. Renal Tumors. in: Walsh PC, Retik AB, Vaughan ED et al;, eds. Campbell's Urology (7th ed.) Philadelphia, WB Saunders Co: 2283–2326, 1998.

    Google Scholar 

  77. Belldegrun A, Shvarts O, Figlin R: Expanding the indications for surgery and adjuvant interleukin-2-based immunotherapy in patients with advanced renal cell carcinoma. Cancer J Sci Am 6(suppl 1): S88–S92, 2000.

    PubMed  Google Scholar 

  78. Lotze MT, Shurin M, Esche C, et al: Interleukin-2: developing additional cytokine gene therapies using fibroblasts or dendritic cells to enhance tumor immunity. Cancer J Sci Am 6(suppl 1): S61–S66, 2000.

    PubMed  Google Scholar 

  79. Stift A, Friedl P, Dubsky T, et al: Dendritic cell-based vaccination in solid cancer. J Clin Oncol 21(1):135–142, 2003.

    Article  PubMed  CAS  Google Scholar 

  80. Steinman RM, Adams JC, Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen. J Exp Med 141: 804–820, 1975.

    PubMed  CAS  Google Scholar 

  81. Chen B, Shi Y, Smith JD, et al: The role of tumor necrosis factor alpha in modulating the quantity of peripheral blood-derived, cytokine-driven human dendritic cells and its role in enhancing the quality of dendritic cell function in presenting soluble antigens to CD4+ T cells in vitro. Blood 91: 4652–4661, 1998.

    PubMed  CAS  Google Scholar 

  82. Vakkila J, Hurme M: Both dendritic cells and monocytes induce autologous and allogeneic T cells receptive to IL-2. Scand J Immunol 31: 75–83, 1990.

    PubMed  CAS  Google Scholar 

  83. Fields RC, Shimizu K, Mule JJ: Murine dendritic cells pulsed with whole tumor lysates mediate potent immune responses in vitro and in vivo. Proc Natl Acad Sci USA 95: 9482–9487, 1998.

    Article  PubMed  CAS  Google Scholar 

  84. Shimizu K, Fields R, Redman B et al: Potentiation of immunologic responsiveness to dendritic cell-based tumor vaccines by recombinant interleukin-2. Cancer J Sci Am 6(suppl 1): S67–S75, 2000.

    PubMed  Google Scholar 

  85. Rosenberg SA, Yang JC, Schwartzentruber DJ et al: Impact of cytokine administration on the generation of antitumor reactivity in patients with melanoma receiving a peptide vaccine. J Immunol 163: 1690–1695, 1999.

    PubMed  CAS  Google Scholar 

  86. Spiess PJ, Yang JC, Rosenberg SA: In vivo antitumor activity of tumor-infiltrating lymphocytes expanded in recombinant interleukin-2. J Natl Cancer Inst 79: 1067, 1987.

    PubMed  CAS  Google Scholar 

  87. Dudley ME, Wunderlich JR, Robbins PF, et al: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594): 850–854, 2002.

    Article  PubMed  CAS  Google Scholar 

  88. Agarwala S: New applications of cancer immunotherapy. Seminars in Oncology 29(3 suppl 7): 1–4, 2002.

    Article  PubMed  Google Scholar 

  89. Naredi P: Histamine as an adjuvant to immunotherapy. Seminars in Oncology 29(3 suppl 7): 31–34, 2002.

    Article  PubMed  CAS  Google Scholar 

  90. Huland E, Heinzer H, Huland H et al: Overview of interleukin-2 inhalation therapy. Cancer J Sci Am 6(suppl 1): S104–S112, 2000.

    PubMed  Google Scholar 

  91. Berman RM, Suzuki T, Tahara H et al: Systemic administration of cellular interleukin-10 induces an effective, specific and long-lived immune response against established tumors in mice. J Immunol 157: 231–238, 1996.

    PubMed  CAS  Google Scholar 

  92. Suzuki T. Tahara H, Robbins P et al Viral interleukin 10, the human herpes virus 4 cellular IL-10 homologue, induces local energy to allogeneic and syngeneic tumors. J Exp Med 182: 477–486, 1995.

    Article  PubMed  CAS  Google Scholar 

  93. Pawelec G, Hambrecht A, Tehbein A et al: Interleukin 10 protects activated human T lymphocytes against growth factor withdrawal-induced cell death but only anti-fas antibody can prevent activation-induced cell death. Cytokine 8: 877–881, 1996.

    Article  PubMed  CAS  Google Scholar 

  94. Osaki T, Peron J, Cai Q et al: Interferon-gamma-inducing factor/interleukin-18 administration mediates interleukin-12 and interferon-gamma independent antitumor effects. J Immunology 160(4): 1742–1749, 1998.

    CAS  Google Scholar 

  95. Tsutsui H, Nakanishi K, Matsui K et al: IFN-gamma-inducing factor upregulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J Immunol 157:3967–3973, 1996.

    PubMed  CAS  Google Scholar 

  96. Aronson F, Libby P, Brandon E, et al: Interleukin-2 rapidly induces natural killer cell adhesion to human endothelial cells: a potential mechanism for endothelial injury. J Immunol 141: 158, 1988.

    PubMed  CAS  Google Scholar 

  97. Mule JJ, Asher A, McIntosh J, et al: Antitumor effect of recombinant tumor necrosis factor-alpha against murine sarcomas at visceral sites: tumor size influences the response to therapy. Cancer Immunol Immunother 26: 202–208, 1988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Eklund, J.W., Kuzel, T.M. (2005). Interleukin-2 in the Treatment of Renal Cell Carcinoma and Malignant Melanoma. In: Platanias, L.C. (eds) Cytokines and Cancer. Cancer Treatment and Research, vol 126. Springer, Boston, MA. https://doi.org/10.1007/0-387-24361-5_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-24361-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24360-3

  • Online ISBN: 978-0-387-24361-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics