Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 17))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J Acoust Soc Am 49:1131–1139.

    Article  PubMed  Google Scholar 

  • Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol (Lond) 388:323–347.

    CAS  Google Scholar 

  • Borg E, Counter SA (1989) The middle-ear muscles. Sci Am 261:74–80.

    Article  CAS  PubMed  Google Scholar 

  • Borg E, Zakrisson JE (1975) The activity of the stapedius muscle in man during vocalization. Acta Otolaryngol 79:325–333.

    CAS  PubMed  Google Scholar 

  • Borg E, Counter SA, Rösler, G (1984) Theories of middle-ear muscle function. In: Silman S (ed) The Acoustic Reflex. Orlando, FL: Academic Press, chapt 3, pp. 63–99.

    Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.

    CAS  PubMed  Google Scholar 

  • Cooper NP (1996) Two-tone suppression in cochlear mechanics. J Acoust Soc Am 99:3087–3098.

    Article  CAS  PubMed  Google Scholar 

  • Cooper NP (1998) Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea. J Physiol (Lond) 509:277–288.

    Article  CAS  Google Scholar 

  • Cooper NP (1999a) Vibration of reflective beads placed on the basilar membrane in the basal turn of the cochlea. J Acoust Soc Am 106:L59–L64.

    Article  CAS  PubMed  Google Scholar 

  • Cooper NP (1999b) An improved heterodyne laser interferometer for use in studies of cochlear mechanics. J Neurosci Methods 88:93–102.

    Article  CAS  PubMed  Google Scholar 

  • Cooper NP (2000) Basilar membrane vibrations in the basal turn of the gerbil cochlea. Assoc Res Otolaryngol Abstr 23:205.

    Google Scholar 

  • Cooper NP, Dong W (2001) Sound-evoked shifts in the baseline position of the apical cochlear partition. Assoc Res Otolaryngol Abstr 24:228.

    Google Scholar 

  • Cooper NP, Guinan JJ Jr (2002) Fast and slow olivocochlear efferent effects on basilar membrane motion involve different mechanisms. Assoc Res Otolaryngol Abstr 25:82.

    Google Scholar 

  • Cooper NP, Rhode WS (1992) Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: sharp tuning and nonlinearity in the absence of baseline position shifts. Hear Res 63:163–190.

    Article  CAS  PubMed  Google Scholar 

  • Cooper NP, Rhode WS (1995) Nonlinear mechanics at the apex of the guinea-pig cochlea. Hear Res 82:225–243.

    Article  CAS  PubMed  Google Scholar 

  • Cooper NP, Rhode WS (1996a) Fast travelling waves, slow travelling waves, and their interactions in experimental studies of apical cochlear mechanics. Aud Neurosci 2:289–299.

    Google Scholar 

  • Cooper NP, Rhode WS (1996b) Two-tone suppression in apical cochlear mechanics. Aud Neurosci 3:123–134.

    Google Scholar 

  • Cooper NP, Rhode WS (1997) Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea. J Neurophysiol 78: 261–270.

    CAS  PubMed  Google Scholar 

  • Cooper NP, Yates GK (1994) Nonlinear input-output functions derived from the responses of guinea-pig cochlear nerve fibres: variations with characteristic frequency. Hear Res 78:221–234.

    Article  CAS  PubMed  Google Scholar 

  • Cooper NP, Robertson D, Yates GK (1993) Cochlear nerve fiber responses to amplitude-modulated stimuli: variations with spontaneous rate and other response characteristics. J Neurophysiol 70:370–386.

    CAS  PubMed  Google Scholar 

  • Costalupes JA, Rich NC, Ruggero MA (1987) Effects of excitatory and non-excitatory suppressor tones on two-tone rate suppression in auditory nerve fibers. Hear Res 26:155–164.

    Article  CAS  PubMed  Google Scholar 

  • Dallos P (1985) Response characteristics of mammalian cochlear hair cells. J Neurosci 5:1591–1608.

    CAS  PubMed  Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.

    Article  CAS  PubMed  Google Scholar 

  • de Boer E (1991) Auditory physics: physical principles in hearing theory III. Phys Rep 203:125–231.

    Article  Google Scholar 

  • de Boer E (1996) Mechanics of the cochlea: modeling efforts. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 258–317.

    Google Scholar 

  • de Boer E, Nuttall AL (1997) The mechanical waveform of the basilar membrane. I. Frequency modulations (“glides”) in impulse responses and cross-correlation functions. J Acoust Soc Am 101:3583–3592.

    Article  PubMed  Google Scholar 

  • de Boer E, Nuttall AL (2000) The mechanical waveform of the basilar membrane. III. Intensity effects. J Acoust Soc Am 107:1497–1507.

    Article  PubMed  Google Scholar 

  • Delgutte B (1990) Two-tone rate suppression in auditory-nerve fibers: dependence on suppressor frequency and level. Hear Res 49:225–246.

    Article  CAS  PubMed  Google Scholar 

  • Dolan DF, Guo MH, Nuttall AL (1997) Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. J Acoust Soc Am 102:3587–3596.

    Article  CAS  PubMed  Google Scholar 

  • Evans EF, Borerwe TA (1982) Ototoxic effects of salicylates on the responses of single cochlear nerve fibres and on cochlear potentials. Br J Audiol 16:101–108.

    CAS  PubMed  Google Scholar 

  • Evans EF, Palmer AR (1980) Relationship between the dynamic range of cochlear nerve fibres and their spontaneous activity. Exp Brain Res 40:115–118.

    Article  CAS  PubMed  Google Scholar 

  • Fahey PF, Allen JB (1985) Nonlinear phenomena as observed in the ear canal and at the auditory nerve. J Acoust Soc Am 77:599–612.

    Article  CAS  PubMed  Google Scholar 

  • Fernàndez C (1952) Dimensions of the cochlea (guinea-pig). J Acoust Soc Am 24: 519–523.

    Article  Google Scholar 

  • Geisler CD, Nuttall AL (1997) Two-tone suppression of basilar membrane vibrations in the base of the guinea pig cochlea using “low-side” suppressors. J Acoust Soc Am 102:430–440.

    Article  CAS  PubMed  Google Scholar 

  • Geisler CD, Rhode WS, Kennedy DT (1974) Responses to tonal stimuli of single auditory nerve fibers and their relationship to basilar membrane motion in the squirrel monkey. J Neurophysiol 37:1156–1172.

    CAS  PubMed  Google Scholar 

  • Goldberg J, Brown P (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–616.

    CAS  PubMed  Google Scholar 

  • Guinan JJ Jr (1996) Physiology of olivocochlear efferents. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 435–502.

    Google Scholar 

  • Guinan JJ Jr, Gifford ML (1988) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF. Hear Res 37:29–45.

    Article  PubMed  Google Scholar 

  • Guinan JJ Jr, Peake WT (1967) Middle-ear characteristics of anesthetized cats. J Acoust Soc Am 41:1237–1261.

    Article  PubMed  Google Scholar 

  • Guinan JJ Jr, Stankovic KM (1996) Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory-nerve fibers. J Acoust Soc Am 100:1680–1690.

    Article  PubMed  Google Scholar 

  • Holley M (1996) Outer hair cell motility. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 386–434.

    Google Scholar 

  • Hubbard A, Mountain D (1993) Analysis and synthesis of cochlear mechanical function using models. In: Hawkins H, McMullen T, Popper AN, Fay RR (eds) Auditory Computation. New York: Springer-Verlag, pp. 63–120.

    Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.

    CAS  PubMed  Google Scholar 

  • Javel E (1996) Long-term adaptation in cat auditory-nerve fiber responses. J Acoust Soc Am 99:1040–1052.

    Article  CAS  PubMed  Google Scholar 

  • Javel E, Geisler CD, Ravindran A (1978) Two-tone suppression in auditory nerve of the cat: rate-intensity and temporal analyses. J Acoust Soc Am 63:1093–1104.

    Article  CAS  PubMed  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone BM, Patuzzi RB, Yates GK (1986) Basilar membrane measurements and the travelling wave. Hear Res 22:147–153.

    Article  CAS  PubMed  Google Scholar 

  • Joris PX, Yin TC (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91:215–232.

    Article  CAS  PubMed  Google Scholar 

  • Khanna SM, Hao LF (2000) Amplification in the apical turn of the cochlea with negative feedback. Hear Res 149:55–76.

    Article  CAS  PubMed  Google Scholar 

  • Khanna SM, Ulfendahl M, Steele CR (1998) Vibration of reflective beads placed on the basilar membrane. Hear Res 116:71–85.

    Article  CAS  PubMed  Google Scholar 

  • Kiang N, Watanabe T, Thomas C, Clark L (1965) Discharge patterns of single fibers in the cat’s auditory nerve. In: Research Monograph number 35. Cambridge, MA, MIT Press.

    Google Scholar 

  • Kim DO, Chang SO, Sirianni JG (1990) A population study of auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones. J Acoust Soc Am 87: 1648–1655.

    Article  CAS  PubMed  Google Scholar 

  • Kros C (1996) Physiology of mammalian cochlear hair cells. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 318–385.

    Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455.

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC (1980) Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear Res 3:45–63.

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC (1982) The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449.

    Article  CAS  PubMed  Google Scholar 

  • Lim DJ (1980) Cochlear anatomy related to cochlear micromechanics. A review. J Acoust Soc Am 67:1686–1695.

    Article  CAS  PubMed  Google Scholar 

  • Lonsbury-Martin BL, Meikle MB (1978) Neural correlates of auditory fatigue: frequency-dependent changes in activity of single cochlear nerve fibers. J Neurophysiol 41:987–1006.

    CAS  PubMed  Google Scholar 

  • Lütkenhoner B, Smith RL (1986) Rapid adaptation of auditory-nerve fibers: fine structure at high stimulus intensities. Hear Res 24:289–294.

    Article  PubMed  Google Scholar 

  • Mountain D, Hubbard A, McMullen T (1983) Electromechanical processes in the cochlea. In: de Boer E, Viergever M (eds) Mechanics of Hearing. Delft, The Netherlands: Delft University Press, pp. 11–18.

    Google Scholar 

  • Müller M, Robertson D (1991a) Shapes of rate-versus-level functions of primary auditory nerve fibres: test of the basilar membrane mechanical hypothesis. Hear Res 57:71–78.

    Article  PubMed  Google Scholar 

  • Müller M, Robertson D (1991b) Relationship between tone burst discharge pattern and spontaneous firing rate of auditory nerve fibres in the guinea pig. Hear Res 57:63–70.

    Article  PubMed  Google Scholar 

  • Müller M, Robertson D, Yates GK (1991) Rate-versus-level functions of primary auditory nerve fibres: evidence for square law behaviour of all fibre categories in the guinea pig. Hear Res 55:50–56.

    Article  PubMed  Google Scholar 

  • Murugasu E, Russell IJ (1995) Salicylate ototoxicity: the effects on basilar membrane displacement, cochlear microphonics, and neural responses in the basal turn of the guinea pig cochlea. Aud Neurosci 1:139–150.

    CAS  Google Scholar 

  • Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16: 325–332.

    CAS  PubMed  Google Scholar 

  • Narayan SS, Temchin AN, Recio A, Ruggero MA (1998) Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282:1882–1884.

    Article  CAS  PubMed  Google Scholar 

  • Nobili R, Mammano F (1996) Biophysics of the cochlea. II: stationary nonlinear phenomenology. J Acoust Soc Am 99:2244–2255.

    Article  CAS  PubMed  Google Scholar 

  • Nuttall AL, Dolan DF (1993) Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig. J Acoust Soc Am 93:390–400.

    Article  CAS  PubMed  Google Scholar 

  • Nuttall AL, Dolan DF (1996) Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig. J Acoust Soc Am 99:1556–1565.

    Article  CAS  PubMed  Google Scholar 

  • Nuttall AL, Kong WJ, Ren TY, Dolan DF (1995) Basilar membrane motion and position changes induced by direct current stimulation. In: Flock Å, Ottoson D, Ulfendahl M (eds) Active Hearing. Great Yarmouth, UK: Pergamon/Elsevier, pp. 283–294.

    Google Scholar 

  • Palmer AR, Evans EF (1980) Cochlear fibre rate-intensity functions: no evidence for basilar membrane nonlinearities. Hear Res 2:319–326.

    Article  CAS  PubMed  Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Pang XD, Guinan JJ Jr (1997) Effects of stapedius-muscle contractions on the masking of auditory-nerve responses. J Acoust Soc Am 102:3576–3586.

    Article  CAS  PubMed  Google Scholar 

  • Pang XD, Peake WT (1986) How do contractions of the stapedius muscle alter the acoustic properties of the middle ear? In: Allen J, Hall J, Hubbard A, Neely S, Tubis A (eds) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 36–43.

    Google Scholar 

  • Patuzzi RB (1996) Cochlear micromechanics and macromechanics. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 186–257.

    Google Scholar 

  • Patuzzi RB, Robertson D (1988) Tuning in the mammalian cochlea. Physiol Rev 68:1009–1082.

    CAS  PubMed  Google Scholar 

  • Patuzzi RB, Sellick PM, Johnstone BM (1984) The modulation of the sensitivity of the mammalian cochlea by low frequency tones. III. Basilar membrane motion. Hear Res 13:19–27.

    Article  CAS  PubMed  Google Scholar 

  • Patuzzi RB, Yates GK, Johnstone BM (1989) Outer hair cell receptor current and sensorineural hearing loss. Hear Res 42:47–72.

    Article  CAS  PubMed  Google Scholar 

  • Peterson LC, Bogert BP (1950) A dynamical theory of the cochlea. J Acoust Soc Am 22:369–381.

    Article  Google Scholar 

  • Recio A, Rhode WS (2000) Basilar membrane responses to broadband stimuli. J Acoust Soc Am 108:2281–2298.

    Article  CAS  PubMed  Google Scholar 

  • Recio A, Rich NC, Narayan SS, Ruggero MA (1998) Basilar-membrane responses to clicks at the base of the chinchilla cochlea. J Acoust Soc Am 103:1972–1989.

    Article  CAS  PubMed  Google Scholar 

  • Ren T, Nuttall AL (2001) Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea. Hear Res 151:48–60.

    Article  CAS  PubMed  Google Scholar 

  • Rhode WS, Cooper NP (1993) Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea pig cochleae. Hear Res 66:31–45.

    Article  CAS  PubMed  Google Scholar 

  • Rhode WS, Cooper NP (1996) Nonlinear mechanics in the apical turn of the chinchilla cochlea in vivo. Aud Neurosci 3:101–121.

    Google Scholar 

  • Rhode WS, Recio A (2000) Study of mechanical motions in the basal region of the chinchilla cochlea. J Acoust Soc Am 107:3317–3332.

    Article  CAS  PubMed  Google Scholar 

  • Rhode WS, Recio A (2001a) Multicomponent stimulus interactions observed in basilar-membrane vibration in the basal region of the chinchilla cochlea. J Acoust Soc Am 110:3140–3154.

    Article  CAS  PubMed  Google Scholar 

  • Rhode WS, Recio A (2001b) Basilar-membrane response to multicomponent stimuli in chinchilla. J Acoust Soc Am 110:981–994.

    Article  CAS  PubMed  Google Scholar 

  • Rhode WS, Smith PH (1985) Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hear Res 18:159–168.

    Article  CAS  PubMed  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352.

    CAS  PubMed  Google Scholar 

  • Robles L, Rhode WS, Geisler CD (1976) Transient response of the basilar membrane measured in squirrel monkeys using the Mossbauer effect. J Acoust Soc Am 59:926–939.

    Article  CAS  PubMed  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1991) Two-tone distortion in the basilar membrane of the cochlea. Nature 349:413–414.

    Article  CAS  PubMed  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1997) Two-tone distortion on the basilar membrane of the chinchilla cochlea. J Neurophysiol 77:2385–2399.

    CAS  PubMed  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793.

    CAS  PubMed  Google Scholar 

  • Rosowski J (1994) Outer and middle ears. In: Fay RR, Popper AN (eds) Comparative Hearing: Mammals. New York: Springer-Verlag, pp. 172–247.

    Google Scholar 

  • Ruggero MA (1992) Physiology and coding of sound in the auditory nerve. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 34–93.

    Google Scholar 

  • Ruggero MA, Rich NC (1991) Furosemide alters organ of Corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci 11: 1057–1067.

    CAS  PubMed  Google Scholar 

  • Ruggero MA, Robles L, Rich NC (1992) Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. J Neurophysiol 68:1087–1099.

    CAS  PubMed  Google Scholar 

  • Ruggero MA, Rich NC, Recio A (1996a) The effect of intense acoustic stimulation on basilar-membrane vibrations. Aud Neurosci 2:329–345.

    Google Scholar 

  • Ruggero MA, Rich NC, Robles L, Recio A (1996b) The effects of acoustic trauma, other cochlear injury and death on basilar-membrane responses to sound. In: Axelsson A, Horchgrevink H, Hamernik R, Hellstrom P-A, Henderson D, Salvi R (eds) Scientific Basis of Noise-Induced Hearing Loss. New York: Thieme Medical, pp. 23–35.

    Google Scholar 

  • Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163.

    Article  CAS  PubMed  Google Scholar 

  • Russell IJ, Murugasu E (1997) Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities. J Acoust Soc Am 102:1734–1738.

    Article  CAS  PubMed  Google Scholar 

  • Russell IJ, Nilsen KE (1997) The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane. Proc Natl Acad Sci USA 94:2660–2664.

    Article  CAS  PubMed  Google Scholar 

  • Russell IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol (Lond) 284:261–290.

    CAS  Google Scholar 

  • Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 56:1835–1847.

    Article  CAS  PubMed  Google Scholar 

  • Sachs MB, Kiang NY (1968) Two-tone inhibition in auditory-nerve fibers. J Acoust Soc Am 43:1120–1128.

    Article  CAS  PubMed  Google Scholar 

  • Sachs MB, Winslow RL, Sokolowski BH (1989) A computational model for rate-level functions from cat auditory-nerve fibers. Hear Res 41:61–69.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder MR, Hall JL (1974) Model for mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 55:1055–1060.

    Article  CAS  PubMed  Google Scholar 

  • Sellick PM, Yates GK, Patuzzi RB (1983) The influence of Mossbauer source size and position on phase and amplitude measurements of the guinea pig basilar membrane. Hear Res 10:101–108.

    Article  CAS  PubMed  Google Scholar 

  • Sewell WF (1984) The effects of furosemide on the endocochlear potential and auditory-nerve fiber tuning curves in cats. Hear Res 14:305–314.

    Article  CAS  PubMed  Google Scholar 

  • Siegel JH (1992) Spontaneous synaptic potentials from afferent terminals in the guinea pig cochlea. Hear Res 59:85–92.

    Article  CAS  PubMed  Google Scholar 

  • Slepecky N (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 44–129.

    Google Scholar 

  • Smith RL, Zwislocki JJ (1975) Short-term adaptation and incremental responses of single auditory-nerve fibers. Biol Cybern 17:169–182.

    Article  CAS  PubMed  Google Scholar 

  • Sokolowski BH, Sachs MB, Goldstein JL (1989) Auditory nerve rate-level functions for two-tone stimuli: possible relation to basilar membrane nonlinearity. Hear Res 41:115–123.

    Article  CAS  PubMed  Google Scholar 

  • Spoendlin H (1967) The innervation of the organ of Corti. J Laryngol Otol 81: 717–738.

    CAS  PubMed  Google Scholar 

  • Stypulkowski PH (1990) Mechanisms of salicylate ototoxicity. Hear Res 46:113–145.

    Article  CAS  PubMed  Google Scholar 

  • Teas DC, Konishi T, Wernick JS (1970) Effects of electrical current applied to cochlear partition on discharges in individual auditory-nerve fibers. II. Interaction of electrical polarization and acoustic stimulation. J Acoust Soc Am 47: 1527–1537.

    Article  CAS  PubMed  Google Scholar 

  • ter Kuile E (1900) Die Übertragung der Energie von der Grundmembran auf die Haarzellen. Pflügers Arch ges Physiol 79:146–157.

    Article  Google Scholar 

  • Ulfendahl M, Khanna SM, Flock A (1991) Effects of opening and resealing the cochlea on the mechanical response in the isolated temporal bone preparation. Hear Res 57:31–37.

    Article  CAS  PubMed  Google Scholar 

  • Ulfendahl M, Khanna SM, Fridberger A, Flock A, Flock B, Jager W (1996) Mechanical response characteristics of the hearing organ in the low-frequency regions of the cochlea. J Neurophysiol 76:3850–3862.

    CAS  PubMed  Google Scholar 

  • Viemeister NF (1988) Intensity coding and the dynamic range problem. Hear Res 34:267–274.

    Article  CAS  PubMed  Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Westerman LA, Smith RL (1984) Rapid and short-term adaptation in auditory nerve responses. Hear Res 15:249–260.

    Article  CAS  PubMed  Google Scholar 

  • Westerman LA, Smith RL (1985) Rapid adaptation depends on the characteristic frequency of auditory nerve fibers. Hear Res 17:197–198.

    Article  CAS  PubMed  Google Scholar 

  • Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hear Res 45:191–202.

    Article  CAS  PubMed  Google Scholar 

  • Yates GK (1987) Dynamic effects in the input/output relationship of auditory nerve. Hear Res 27:221–230.

    Article  CAS  PubMed  Google Scholar 

  • Yates GK (1990) Basilar membrane nonlinearity and its influence on auditory nerve rate-intensity functions. Hear Res 50:145–162.

    Article  CAS  PubMed  Google Scholar 

  • Yates GK (1991) Auditory-nerve spontaneous rates vary predictably with thresh-old. Hear Res 57:57–62.

    Article  CAS  PubMed  Google Scholar 

  • Yates GK, Robertson D, Johnstone BM (1985) Very rapid adaptation in the guinea pig auditory nerve. Hear Res 17:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Yates GK, Winter IM, Robertson D (1990) Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range. Hear Res 45:203–219.

    Article  CAS  PubMed  Google Scholar 

  • Young E, Sachs MB (1973) Recovery from sound exposure in auditory nerve fibers. J Acoust Soc Am 54:1535–1543.

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    Article  CAS  PubMed  Google Scholar 

  • Zinn C, Maier H, Zenner H, Gummer AW (2000) Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in-vivo guinea-pig cochlea. Hear Res 142:159–183.

    Article  CAS  PubMed  Google Scholar 

  • Zwicker E (1979) A model describing nonlinearities in hearing by active processes with saturation at 40dB. Biol Cybern 35:243–250.

    Article  CAS  PubMed  Google Scholar 

  • Zwicker E (1986) A hardware cochlear nonlinear preprocessing model with active feedback. J Acoust Soc Am 80:146–153.

    Article  CAS  PubMed  Google Scholar 

  • Zwicker E, Peisl W (1990) Cochlear preprocessing in analog models, in digital models and in human inner ear. Hear Res 44:209–216.

    Article  CAS  PubMed  Google Scholar 

  • Zwislocki JJ (1948) Theorie der Schneckenmechanik: qualitative und quantitative analyse. Acta Oto-Laryngol Suppl 72:1–76.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Cooper, N.P. (2004). Compression in the Peripheral Auditory System. In: Bacon, S.P., Fay, R.R., Popper, A.N. (eds) Compression: From Cochlea to Cochlear Implants. Springer Handbook of Auditory Research, vol 17. Springer, New York, NY. https://doi.org/10.1007/0-387-21530-1_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-21530-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00496-9

  • Online ISBN: 978-0-387-21530-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics