Skip to main content

Anthropological Analysis of the Lower Extremity

Determining Sex, Race, and Stature From Skeletal Elements

  • Chapter
Forensic Medicine of the Lower Extremity

Part of the book series: Forensic Science and Medicine ((FSM))

Abstract

Human remains in an advanced state of decomposition, fragmentation or incineration, or remains that are comingled often present challenges for coroners, pathologists, and law enforcement agencies. These agencies often turn to anthropologists for their expertise in the analysis of human remains. For a variety of reasons—including coverage with clothing and footwear, the amount of tissue, and the large size of the bones—the leg and foot are frequently preserved and recovered in even the most extreme circumstances (e.g., from a shark’s stomach) (1). The human lower extremity possesses at least 30 skeletal elements, including sesamoid bones. If these remains are analyzed thoroughly, they can be used to assess an individual’s age at death, sex, ancestry, and stature. This baseline biological information, known by physical anthropologists as the biological profile, can narrow the search for missing persons. Methods of determining the age at death are discussed elsewhere in this volume. The focus of this chapter is on the remaining three aspects of the biological profile: sex, ancestry, and stature. Some anthropologists complete the biological profile in the following order: ancestry, sex, age, and stature, whereas others prefer the order of age, sex, ancestry, and stature. In all probability, most analyses occur in an integrated manner as the experienced anthropologist examines a set of skeletal remains. In this chapter, both morphological and metric methods of analysis are addressed and problems and pitfalls associated with some of the approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rathbun TA, Rathbun BC. Human remains recovered from a shark’s stomach in South Carolina. In: Haglund WD, Sorg MH, ed. Forensic taphonomy: the postmortem fate of human remains. Boca Raton, Fla: CRC Press, 1997:449–458.

    Google Scholar 

  2. Cook DC, Walker PL. Brief communication: gender and sex—vive la difference. Am J Phys Anthropol 1998;106:255–259.

    Article  PubMed  Google Scholar 

  3. Saunders SR and Yang D. Sex determination: XX or XY from the human skeleton. In: Fairgrieve SI, ed. Forensic Osteological Analysis: A Book of Case Studies. Springfield, Ill: Charles C. Thomas, 1999: 36–59.

    Google Scholar 

  4. Ubelaker DH. Human Skeletal Remains: Excavation, Analysis, Interpretation, 2nd ed. Washington, DC: Taraxacum, 1989, pp. 52–55.

    Google Scholar 

  5. Brothwell DR. Digging Up Bones. 3rd ed. Ithaca, NY: Cornell University Press, 1981, pp. 59–63.

    Google Scholar 

  6. Stewart TD. Hrdlicka’s Practical Anthropometry. 3rd ed. Editor. Philadelphia, Pa: Wistar Institute, 1947.

    Google Scholar 

  7. Boyd JD, Trevor JC. Problems in reconstruction. In: Modern Trends in Forensic Medicine. Simpson, K., ed. London: Butterworth, 1953, pp. 133–153.

    Google Scholar 

  8. Walsh-Haney H, Katzmarzk C, Falsetti AB. Identification of human skeletal remains: was he a she or she a he? In: Fairgrieve SI, ed. Forensic Osteological Analysis: A Book of Case Studies. Springfield: Charles C. Thomas, 1999, pp. 17–35.

    Google Scholar 

  9. White TD. Human Osteology. New York, NY: Academic Press, 2000.

    Google Scholar 

  10. Iscan MY, Miller-Shaivitz P. Determination of sex from the tibia. Am J Phys Anthropol 1984;64: 53–59.

    Article  PubMed  CAS  Google Scholar 

  11. Hanihara K. Sexual diagnosis of Japanese long bones by means of discriminant function. J Anthrop Soc Nippon 1958;66:187–196. (In Japanese, English summary).

    Google Scholar 

  12. Brace CL. Region does not mean ‘race’: reality versus convention in forensic anthropology. J Forensic Sci 1995;40:171–175.

    PubMed  CAS  Google Scholar 

  13. Belcher R, Williams F and Armelagos GJ. Misidentification of meroitic Nubians using FORDISC 2.0. Paper presented (April 2002) at: the American Association of Physical Anthropology, 2002; Buffalo, NY.

    Google Scholar 

  14. Sauer NJ. Forensic anthropology and the concept of race: if races don’t exist, why are forensic anthropologists so good at identifying them? Soc Sci Med 1992;34:107–111.

    Article  PubMed  CAS  Google Scholar 

  15. Giles E. Discriminant function sexing of the human skeleton. In: Personal Identification in Mass Disasters. Stewart TD, ed. Washington, DC: National Museum of Natural History, 1970, pp. 99–107.

    Google Scholar 

  16. Gilbert BM. Anterior femoral curvature: its probable basis and utility as a criterion of racial assessment. Am J Phys Anthropol 1976;45:601–604.

    Article  PubMed  CAS  Google Scholar 

  17. Krogman WM, Iscan MY. The Human Skeleton In Forensic Medicine. Springfield: Charles C. Thomas, 1986.

    Google Scholar 

  18. St. Hoyme LE, Iscan MY. Determination of sex and race: accuracy and assumptions. In: Reconstruction of Life From the Skeleton. Krogman WM, Iscan MY, eds. New York: Alan R. Liss, 1989, pp. 53–94.

    Google Scholar 

  19. Iscan MY, Cotton TS. Race determination from the post cranial skeleton. In: Skeletal Race and Identification: New Approaches in Forensic Anthropology. Gill GW, Rhine JS, eds Albuquerque, NM: Maxwell Museum Technical Services, University of New Mexico Press, 1986, pp. 74–106.

    Google Scholar 

  20. Fully G. Une Nouvelle Methode de Determination de la Taille. Annales de Medecine Legale 1956;35:266–273.

    Google Scholar 

  21. Stewart TD. Essentials of Forensic Anthropology. Springfield: Charles C. Thomas, 1979.

    Google Scholar 

  22. El-Najjar MY, McWilliams KR. Forensic Anthropology. Springfield: Charles C. Thomas, 1978.

    Google Scholar 

  23. Dwight T. Methods of estimating the height from parts of the skeleton. Med Rec NY 1894;46: 293–296.

    Google Scholar 

  24. Sciulli PW, Schneider KN, Mahaney MC. Stature estimation in prehistoric Ohio Native Americans. Am J Phys Anthropol 1991;83:275–280.

    Article  Google Scholar 

  25. Lundy JK. Regression equations for estimating living stature from long limb bones in the South African Negro. S Afr J Sci 1983;79:337–338.

    Google Scholar 

  26. Lundy JK. A report on the use of Fully’s anatomical method to estimate stature in military skeletal remains. J Forensic Sci 1988;33:534–539.

    PubMed  CAS  Google Scholar 

  27. Sokal RR, Rohlf FJ. Biometry. New York, NY: WH Freeman and Co, 1981.

    Google Scholar 

  28. Zar JH. Biostatistical Analysis. Upper Saddle River, NJ: Prentice Hall, 1999.

    Google Scholar 

  29. Genoves S. Proportionality of long bones and their relation to stature among Mesoamericans. Am J Phys Anthropol 1967;26:67–78.

    Article  PubMed  CAS  Google Scholar 

  30. Konigsberg LW, et al. Stature estimation and calibration: Bayesian and maximum likelihood perspectives in physical anthropology. Yearbook of Phys Anthropol 1998;41:65–91.

    Article  Google Scholar 

  31. Steele DG, McKern TW. A method for assessment of maximum long bone length and living stature from fragmentary long bones. Am J Phys Anthropol 1969;31:215–228.

    Article  PubMed  CAS  Google Scholar 

  32. Steele DG. Estimation of stature from fragments of long limb bones. Personal Identification in Mass Disasters. Washington, DC: Smithsonian Institute, 1970, pp. 85–97.

    Google Scholar 

  33. Simmons T, et al. Stature estimation from fragmentary femora: a revision of the Steele method. J Forensic Sci 1990;35:628–636.

    PubMed  CAS  Google Scholar 

  34. Holland T. Estimation of adult stature from fragmentary tibias. J Forensic Sci 1992;37:1223–1229.

    PubMed  CAS  Google Scholar 

  35. Jacobs K. Estimating femur and tibia length from fragmentary bones: an evaluation of Steele’s (1970) method using a prehistoric European sample. Am J Phys Anthropol 1992;89:333–345.

    Article  PubMed  CAS  Google Scholar 

  36. Giles E, Hutchinson D. Stature and age-related bias in self-reported stature. J Forensic Sci 1991;36:765–780.

    PubMed  CAS  Google Scholar 

  37. Himes JH, Roche AF. Reported versus measured adult statures. Am J Phys Anthropol 1982;58: 335–341.

    Article  PubMed  CAS  Google Scholar 

  38. Galloway A. Estimating actual height in the older individual. J Forensic Sci 1988;33:126–136.

    PubMed  CAS  Google Scholar 

  39. McCullough JM, McCullough CS. Age-specific variation in the secular trend for stature: a comparison of samples from industrialized and nonindustrialized regions. Am J of Phys Anthropol 1984;65:169–180.

    Article  CAS  Google Scholar 

  40. Jantz LM, Jantz RL. Secular change in long bone length and proportion in the United States: 1800–1970. Am J Phys Anthropol 1999;110:57–67.

    Article  PubMed  CAS  Google Scholar 

  41. Klepinger LL. Stature, maturation, variation, and secular trends in forensic anthropology. J Forensic Sci 2001;46:788–790.

    PubMed  CAS  Google Scholar 

  42. Meadows L, Jantz R. Allometric secular change in the long bones from the 1800s to the present. J Forensic Sci 1995;40:762–767.

    PubMed  CAS  Google Scholar 

  43. Ulijasek SJ. Secular trends in growth: the narrowing of ethnic differences in stature. Nutrition Bulletin: 2001;26:43–51.

    Article  Google Scholar 

  44. Trotter M. Estimation of stature from intact long limb bones. In: Personal Identification in Mass Disasters. Stewart, TD, ed. Washington, DC: Smithsonian Institute, 1970, pp. 71–83.

    Google Scholar 

  45. Costa DL, Steckel RH. Long term trends in health, welfare and economic growth in the United States. In: Health and Welfare During Industrialization. Steckel RH, Floud R, eds. Chicago: University of Chicago Press, 1997, pp. 47–89.

    Google Scholar 

  46. Kirby R. Human heights and the standard of living. School of Social and International Studies: Sunderland University. 2000. Available at: http://humanities.uwe.ac.uk/corehistorians/social/cores/kirbycor.htm.

  47. Steckel RH. Height and health in the United States: 1710–1950. In: Stature, Living Standards and Economic Development: Essays in Anthropometric History. Komlos J, ed. Chicago: University of Chicago Press, 1994, pp. 153–170.

    Google Scholar 

  48. McKinley J. The analysis of cremated bone. In: Human Osteology in Archaeology and Forensic Science. Cox M, Mays S, eds. London: Greenwich Medical Media Ltd., 2002, pp. 403–424.

    Google Scholar 

  49. Jantz RL, Hunt DR, Meadows L. The measure and mismeasure of the tibia: implications for stature estimation. J Forensic Sci 1995;40:758–761.

    PubMed  CAS  Google Scholar 

  50. Trotter M, Gleser G. A re-evaluation of estimation of stature based on measurements of stature taken during life and of long bones after death. Am J Phys Anthropol 1958;16:79–123.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Asala SA. Sex determination from the head of the femur of South African whites and blacks. Forensic Sci Int 2001;117:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Alunni-Perret V. et al. Reexamination of a measurement for sexual determination using the supero-inferior femoral neck diameter in a modern European population. J Forensic Sci 2003;48:1–4.

    Google Scholar 

  • Bidmos MA, Asala SA. Discriminant function sexing of the calcaneus of the South African white population. J Forensic Sci 2003;48:1213–1218.

    PubMed  Google Scholar 

  • Bidmos MA, Dayal MR. Sex determination from the talus of South African whites by discriminant function analysis. Am J Forensic Med & Pathol 2003;24:322–328.

    Article  Google Scholar 

  • Bidmos MA, Asala SA. Adult stature estimation from the calcaneus of South African blacks. Poster presented at: 72nd meeting of the American Association of Physical Anthropologists; Tempe, Arizona; April 25, 2003.

    Google Scholar 

  • Boldsen JA. Statistical evaluation of the basis for predicting stature from lengths of long bones in European populations. Am J Phys Anthropol 1984;65:305–311.

    Article  PubMed  CAS  Google Scholar 

  • Byers S, Akoshima K, Curran B. Determination of adult stature from metatarsal length. Am J Phys Anthropol 1989;79:275–281.

    Article  PubMed  CAS  Google Scholar 

  • Craig E. Intercondylar shelf angle: a new method to determine race from the distal femur. J Forensic Sci 1995;40:777–782.

    PubMed  CAS  Google Scholar 

  • De Mendonca MC. Estimation of height from the length of long bones in a Portuguese adult population. Am J Phys Anthropol 2000;112:39–48.

    Article  PubMed  Google Scholar 

  • Dupertuis CW, Hadden JA. On the reconstruction of stature from long bones. Am J Phys Anthropol 1959;9:15–54.

    Article  Google Scholar 

  • Feldesman M, Fountain R. ‘Race’ specificity and the femur/stature ratio. Am J Phys Anthropol 1996; 100:207–224.

    Article  PubMed  CAS  Google Scholar 

  • Giles E. Corrections for age in estimating older adults’ stature from long bones. J Forensic Sci 1991; 36:898–901.

    PubMed  CAS  Google Scholar 

  • Giles E. Modifying stature estimation from the femur and tibia. J Forensic Sci 1993;38:758–760.

    PubMed  CAS  Google Scholar 

  • Giles E, Klepinger L. Confidence intervals for estimates based on linear regression in forensic anthropology. J Forensic Sci 1988;33:1218–1222.

    PubMed  CAS  Google Scholar 

  • Gill G. Racial variation in the proximal and distal femur: heritability and forensic utility. J Forensic Sci 2001;46:791–799.

    PubMed  CAS  Google Scholar 

  • Gill G. Challenge on the frontier: discerning American Indians from whites osteologically. J Forensic Sci 1995;40:783–788.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Reimers E et al. Sex determination by discriminant function analysis of the right tibia in the prehistoric populations of the Canary Islands. Forensic Sci Int 2000;108:165172.

    Article  Google Scholar 

  • Holliday TW, Falsetti AB. A new method for discriminating African-American from European-American skeletons using postcranial osteometrics reflective of body shape. J Forensic Sci 1999;44:926–930.

    PubMed  CAS  Google Scholar 

  • Introna F Jr, et al. Sex determination by discriminant analysis of calcanei measurements. J Forensic Sci 1997;42:725–728.

    PubMed  Google Scholar 

  • Iscan MY. Discriminant function sexing of the tibia. J Forensic Sci 1984;29:1087–1093.

    PubMed  CAS  Google Scholar 

  • Iscan, MY, et al. Sex determination from the tibia: standards for contemporary Japan. J Forensic Sci 1994;39:785–792.

    PubMed  CAS  Google Scholar 

  • Iscan MY, Shihai D. Sexual dimorphism in the Chinese femur. Forensic Sci Int 1995;74:79–87.

    Article  PubMed  CAS  Google Scholar 

  • Jantz RL. Modification of the Trotter and Glesar female stature estimation formulae. J Forensic Sci 1992; 37:1230–1235.

    PubMed  CAS  Google Scholar 

  • King CA, et al. Metric and comparative analysis of sexual dimorphism in the Thai femur. J Forensic Sci 1998;43:954–958.

    PubMed  CAS  Google Scholar 

  • Lundy JK, Feldesman MR. Revised equations for estimating living stature from the long bones of the South African Negro. S Afr J Sci 1987;83:54–55.

    Google Scholar 

  • Manouvrier L. Determination de la Taille D’apres Les Grands os des Membres. Revue Mensuelle L’Ecole D’Anthropologie de Paris 1892;2:225–233.

    Google Scholar 

  • Mohanty NK. Prediction of height from percutaneous tibial length amongst Oriya population. Forensic Sci Int 1998;98:137–141.

    Article  PubMed  CAS  Google Scholar 

  • Munoz J, et al. Stature estimation from radiographically determined long bone length in a Spanish population sample. J Forensic Sci 2001;46:363–366.

    PubMed  CAS  Google Scholar 

  • Murphy AMC. The talus: sex assessment of prehistoric New Zealand Polynesian skeletal remains. Forensic Sci Int 2002;128:155–158.

    Article  PubMed  CAS  Google Scholar 

  • Murphy AMC. The calcaneus: sex assessment of prehistoric New Zealand Polynesian skeletal remains. Forensic Sci Int 2002;129:205–208.

    Article  PubMed  CAS  Google Scholar 

  • Ousley S. Should we estimate biological or forensic stature? J Forensic Sci 1995; 40:768–773.

    Google Scholar 

  • Pelin IC, Duyar I. Estimating stature from tibia length: a comparison of methods. J Forensic Sci 2003; 48:1–5.

    Google Scholar 

  • Reipert T. et al. Estimation of sex on the basis of radiographs of the calcaneus. Forensic Sci Int 1996; 77:133–140.

    Article  Google Scholar 

  • Robling AG, Ubelaker DH. Sex estimation from the metatarsals. J Forensic Sci 1997;42:1062–1069.

    PubMed  CAS  Google Scholar 

  • Ross AH, Konisgsberg L. New formulae for estimating stature in the Balkans. J Forensic Sci 2002; 47:165–167.

    PubMed  Google Scholar 

  • Safont S, et al. Sex assessment on the basis of long bone circumference. Am J Phys Anthropol 2000; 113:317–328.

    Article  PubMed  CAS  Google Scholar 

  • Seidemann R, et al. The use of the supero-inferior femoral neck diameter as a sex assessor. Am J Phys Anthropol 1998;107:305–313.

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Singh SP. Identification of sex from tarsal bones. Acta Anat. 1975;93:568–573.

    Article  PubMed  CAS  Google Scholar 

  • Smith SL. Attribution of foot bones to sex and population groups. J Forensic Sci 1997;42:186–195.

    PubMed  CAS  Google Scholar 

  • Steyn M, Iscan MY. Sex determination from the femur and tibia in South African whites. Forensic Sci Int 1997;90:111–119.

    Article  PubMed  CAS  Google Scholar 

  • Stojanowski CM, Seidemann RM. A reevaluation of the sex prediction accuracy of the minimum supero-inferior femoral neck diameter for modern individuals. J Forensic Sci 1999;44:1215–1218.

    PubMed  CAS  Google Scholar 

  • Taylor JV, et al. Metropolitan forensic anthropology team (MFAT): studies in identification: 1. Race and sex assessment by discriminant function analysis of the postcranial skeleton. J Forensic Sci 1984;29:798–805.

    PubMed  CAS  Google Scholar 

  • Trotter M, Gleser G. The effect of aging on stature. Am J Phys Anthropol 1951;9:311–324.

    Article  PubMed  CAS  Google Scholar 

  • Trudell MB. Anterior femoral curvature revisited: race assessment from the femur. J Forensic Sci 1999; 44:700–707.

    PubMed  Google Scholar 

  • Wright LE, Vasquez MA. Estimating the length of incomplete long bones: forensic standards from Guatemala. Am J Phys Anthropol 2003;120:233–251.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Tatarek, N.E., Sciulli, P.W. (2005). Anthropological Analysis of the Lower Extremity. In: Rich, J., Dean, D.E., Powers, R.H. (eds) Forensic Medicine of the Lower Extremity. Forensic Science and Medicine. Humana Press. https://doi.org/10.1385/1-59259-897-8:069

Download citation

  • DOI: https://doi.org/10.1385/1-59259-897-8:069

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-269-8

  • Online ISBN: 978-1-59259-897-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics