Skip to main content

Calcium phosphate and magnesium balance in patients with acute illness

  • Chapter
Critical Care Nephrology

Abstract

Calcium is an essential divalent cation involved in many biological functions, such as the structural support of the body, neuromuscular and cardiovascular functions, blood coagulation, intracellular signal transmission and enzymatic reactions. There are about 1.3 kg of calcium in a normal 70 kg adult, approximately 99% of which is present in bones and teeth, 1% in soft tissue cells and 0.1% in extracellular fluid (ECF). The normal concentration of total plasma calcium is 8.4–10.4 mg/dl. Total plasma calcium exists in two forms: a protein-bound (predominantly albumin-bound) fraction, accounting for about 40% and a non protein-bound or ultrafilterable fraction, accounting for about 60% of the total plasma calcium. About 90% of the ultrafilterable calcium is in ionized form, the only homeostatically controlled and physiologically active form of plasma calcium; the remaining 10% is chelated to various anions including bicarbonate, citrate and phosphate. Changes in plasma albumin concentration must be considered in the interpretation of total plasma calcium concentration: in general, for each 1 g/dl decrease (or increase) in plasma albumin, there is a decrease (or increase) of about 0.8–1 mg/dl in total plasma calcium. The calcium binding properties of plasma albumin are affected by blood pH. Consequently plasma levels of ionized calcium (Ca2+) may change, even if there are no alterations in total plasma concentration (and vice versa). Alkalosis increases the binding of calcium to albumin and thereby reduces plasma Ca2+ concentrations, whereas the Ca2+ concentration increases in the presence of acidosis. The changes in Ca2+ levels induced by pH are usually small [1], but their clinical implications are considerable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore F. Ionized calcium in normal serum, ultrafiltrates and whole blood determined by ion-exchange electrodes. J Clin Invest 1970; 49: 318–34.

    Article  PubMed  CAS  Google Scholar 

  2. Bourdeau JE, Attie MF. Calcium metabolism. In: Narins RG (ed). Clinical Disorders of Fluid and Electrolyte Metabolism. New York: McGraw-Hill, 1994: 243–306.

    Google Scholar 

  3. Zaloga GP, Chernow B. Hypocalcemia in critical illness. JAMA 1986; 256: 1924–9.

    Article  PubMed  CAS  Google Scholar 

  4. Davis RH, Fourmann P, Smith JWG. Prevalence of parathyroid insufficiency after thyroidectomy. Lancet 1961; 2: 1432–5.

    Article  PubMed  CAS  Google Scholar 

  5. Nusinowitz ML, Frame B, Kolb FO. The spectrum of the hypoparathyroidism states. A classification based on physiologic principles. Medicine 1976; 55: 105–19.

    Article  Google Scholar 

  6. Levi J, Massry SG, Coburn JW, Llach F, Kleeman CR. Hypocalcemia in magnesium depleted dogs: evidence for reduced responsiveness to parathyroid hormone and relative failure of parathyroid gland function. Metabolism 1974; 23: 323–35.

    Article  PubMed  CAS  Google Scholar 

  7. Hahn TJ. Drug-induced disorders of vitamin D and mineral metabolism. Clin Endocrinol Metab 1980; 9: 107–27

    Article  PubMed  CAS  Google Scholar 

  8. Bernestein D, Kleeman CR, Dowling JT, Maxwell MH. Steatorrhea, functional hypoparathyroidism, and metabolic bone defect. Arch Intern Med 1962; 109: 97–103.

    Article  Google Scholar 

  9. Goldstein DA, Haldiman B, Sherman D, Norman AW, Massry SG. Vitamin D metabolites and calcium metabolism in patients with nephrotic syndrome and normal renal function. J Clin Endocrinol Metab 1981; 52: 11621.

    Google Scholar 

  10. David DS. Mineral and bone homeostasis in renal failure: pathophysiology and management. In: David DS (ed). Calcium Metabolism in Renal Failure and Nephrolithiasis. New York: Wiley, 1977: 1–76.

    Google Scholar 

  11. Eisemberg E. Effect of intravenous phosphate on serum strontium and calcium. N Engl J Med 1970; 282: 88992.

    Google Scholar 

  12. Haldiman B, Goldstein DA, Akmal M, Massry SG. Renal function and blood levels of divalent ions in acute pancreatitis. A prospective study in 99 patients. Miner Electrolyte Metab 1980; 3: 190–9.

    Google Scholar 

  13. Purnell DC, Scholz DA, Smith LH, et al. Treatment of primary hyperparathyroidism. Am J Med 1974; 56: 800–9

    Article  PubMed  CAS  Google Scholar 

  14. Denlinger JK, Nahrwold ML, Gibbs PS, et al. Hypocalcemia during rapid blood trasfusion in anaesthetized man. Br J Anaesth 1976; 48: 995–9.

    Article  PubMed  CAS  Google Scholar 

  15. Broadus AE. Primary hyperparathyroidism viewed as a biohormonal disease process. Miner Electrolyte Metab 1982; 8: 199–214.

    PubMed  CAS  Google Scholar 

  16. Singer FR, Sharp CF, Rude RK. Pathogenesis of hypercalcemia in malignancy. Miner Electrolyte Metab 1979; 2: 161–78.

    Google Scholar 

  17. Max SJ, Spiegel AM, Brown EM et al. Divalent cation metabolism: familial hypocalciuric hypercalcemia versus typical primary hyperprathyroidism. Am J Med 1980; 65: 235–42

    Google Scholar 

  18. Paterson CR. Vitamin D poisoning: survey of causes in 21 patients with hypercalcemia. Lancet 1980; 1: 11645.

    Google Scholar 

  19. Barbour GL, Coburn JW, Slatopolsky E, Norman AW, Horst RL. Hypercalcemia in an anephric patient with sarcoidosis: Evidence for extra-renal generation of 1,25dihydroxy-vitamin D. N Engl J Med 1982; 305: 440–3.

    Article  Google Scholar 

  20. Orwoll ES. The milk-alkali syndrome: current concepts. Ann Intern Med 1982; 97: 242–8.

    PubMed  CAS  Google Scholar 

  21. Reinfestein EC, Albright F. Paget’s disease: Its pathologic physiology and the importance of this in the complications arising from fracture and immobilization. N Engl J Med 1944; 231: 343–55.

    Article  Google Scholar 

  22. Baxter JD, Bondy PK. Hypercalcemia of thyrotoxicosis. Ann Inter Med 1966; 65: 429–42.

    CAS  Google Scholar 

  23. Brickmann AS, Massry SG, Coburn JW. Changes in serum and urinary calcium during treatment with hydrochlorothiazide: studies on mechanisms. J Clin Invest 1972; 51: 945–54.

    Article  Google Scholar 

  24. Yanagawa N, Nakhoul F, Kurokawa K, Lee DBN. Physiology of phosphorus metabolism. In: Narins RG (ed). Clinical Disorders of Fluid and Electrolyte Metabolism. New York: McGraw-Hill, 1994: 307–372.

    Google Scholar 

  25. Ryback RS, Eckardt MH, Pautler CP. Clinical relationships between serum phosphorus and other blood chemistry values in alcoholics. Arch Intern Med 1980; 140: 637–77.

    Article  Google Scholar 

  26. Mostellar ME, Tuttle EP. The effects of alkalosis on plasma concentration and urinary excretion of organic phosphate in man. J Clin Invest 1964; 43: 138–49.

    Article  PubMed  CAS  Google Scholar 

  27. Silvis SE, Paragus PD Jr. Paresthesias, weakness, seizures, and hypophosphatemia in patients receiving hyperalimentation. Gastroenterology 1973; 62: 513.

    Google Scholar 

  28. Ritz E. Acute hypophosphatemia. Kidney Int 1982; 22: 84–94.

    Article  PubMed  CAS  Google Scholar 

  29. Lenquist S, Lindell B, Nordstrom H, Sjoberg HE. Hypophosphatemia in severe burns. A prospective study. Acta Chir Scand 1979; 145: 1–6.

    Google Scholar 

  30. Knochel JP. The clinical status of hypophosphatemia. N Engl Med 1985; 313: 447–9.

    Article  CAS  Google Scholar 

  31. Betro MG, Pain RW. Hypophosphatemia and hyperphosphatemia in a hospital population. Br Med J 1972; 1: 273–6

    Article  PubMed  CAS  Google Scholar 

  32. Slatopolsky E, Robson AM, Elkan I, Bricker NS. Control of phosphate excretion in uremic man. J Clin Invest 1968; 47: 1865–74

    Article  PubMed  CAS  Google Scholar 

  33. McCloskey EV, Yates AJ, Gray RE, Hamdy NA, Galloway J, Kanis JA. Diphosphonates and phosphate homeostasis in man. Clin Sci 1988; 74: 607–12.

    PubMed  CAS  Google Scholar 

  34. Allon M, Llach F. Hyperphosphatemia, hypocalcemia, and renal failure in a patient with acute leukemia. Am J Kidney Dis 1988; 11: 442–5.

    PubMed  CAS  Google Scholar 

  35. Koffler A, Friedler RM, Massry SG. Acute renal failure due to nontraumatic rhabdomyolysis. Ann Inter Med 1976; 85: 23–8.

    CAS  Google Scholar 

  36. O’Connor LR, Klein KL, Bethune JE. Hyperphosphatemia in lactic acidosis. N Engl J Med 1977; 297: 707–9

    Article  PubMed  Google Scholar 

  37. Ritz E. Phosphate removal during dialysis - does the membrane matter? Clin Nephrol 1994;42 Suppl No 1: S57–60.

    Google Scholar 

  38. Alfrey AC, Miller NL, Trow R. Effect of age and magnesium depletion on bone magnesium pools in rats. J Clin Invest 1974; 54: 1074–81.

    Article  PubMed  CAS  Google Scholar 

  39. Whang R, Flink EB, Dyckner T et al. Magnesium depletion as a cause of refractory potassium repletion. Arch Inter Med 1985; 145: 1686–9.

    Article  CAS  Google Scholar 

  40. Salem M, Munoz R, Chernow B. Hypomagnesemia in criticall illness. A common and clinically important problem. Crit Care Clin 1991; 7: 225–52.

    PubMed  CAS  Google Scholar 

  41. Rubeiz GJ, Thill-Baharozian M, Hardie D, Carlson RW. Association of hypomagnesemia and mortality in acutely ill medical patients. Crit Care Med 1993; 21: 203–9.

    Article  PubMed  CAS  Google Scholar 

  42. Shils ME. Experimental human magnesium depletion. Medicine 1969; 48: 61–85.

    Article  PubMed  CAS  Google Scholar 

  43. Booth CC, Babouris N, Hanna S, Maclntyre I. Incidence of hypomagnesemia in intestinal malabsorption. Br Med J 1963; 2: 141–4.

    Article  PubMed  CAS  Google Scholar 

  44. Bar RS, Wilson HE, Mazzaferri EL. Hypomagnesemia hypocalcemia secondary to renal magnesium wasting. Ann Inter Med 1975; 82: 646–9.

    CAS  Google Scholar 

  45. Coburn JW, Popovtzer M, Massry SG, Kleeman CR. The physicochemical state and renal handling of divalent ions in chronic renal failure. Arch Intern Med 1969; 124: 302–11.

    Article  PubMed  CAS  Google Scholar 

  46. Massry SG, Arieff AI, Coburn JW, Palmieri G, Kleeman CR. Divalent ion metabolism in patients with acute renal failure: studies on the mechanism of hypocalcemia. Kidney Int 1974; 5: 437–45.

    Article  PubMed  CAS  Google Scholar 

  47. Meneghini LF, Oster JR, Camacho JR, Gkonos PJ, Roos BA. Hypercalcemia in association with acute renal failure and rhabdomyolysis. Miner Electrolyte Metab 1993; 19: 1–16.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pontoriero, G., Locatelli, F., Ritz, E. (1998). Calcium phosphate and magnesium balance in patients with acute illness. In: Critical Care Nephrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5482-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5482-6_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6306-7

  • Online ISBN: 978-94-011-5482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics