Skip to main content

Structure and function of the arterial system in hypertension

  • Chapter
The Arterial System in Hypertension

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 144))

Abstract

Arteries act as conduits for blood, but this is not their only function; much of their specialized structure is dependent on the essential physiological role they have to play in the circulation. They develop under two sets of influences: genetic factors mainly control the morphological pattern of the circulation, and haemodynamic factors control the form of the vessel wall. The haemodynamic factors, permit wall modifications that preserve certain mechanical properties [1–5]. The necessity to preserve these properties, an essential part of the wall function, determines much of the vascular response to hypertension and probably the interindividual variation in vessel wall thickness, in direct relationship to individual blood pressure, as mentioned in Chapter 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry CL. Organogenesis of the arterial wall. In: Camilleri JP, Berry CL, Fiessinger JN, Bariety J, editors. Diseases of the arterial wall. London: Springer-Verlag, 1989: 55–70.

    Chapter  Google Scholar 

  2. Berry CL, Sosa-Melgarejo JA, Greenwald SE. The relationship between wall tension, lamellar thickness and intercellular junctions in the fetal and adult aorta its relevance to the pathology of dissecting aneurysm. J Pathol 1993; 169: 15–20.

    Article  PubMed  CAS  Google Scholar 

  3. Glagov S, Zarins CK, Giddens, Kun. Mechanical Factors in the pathogenesis, localization and evolution of atherosclerosis. In: Camilleri JP, Berry CL, Fiessinger JN, Bariety J, editors. Diseases of the arterial wall. London: Springer Verlag, 1989: 217–234.

    Chapter  Google Scholar 

  4. Doyle JM, Dobrin PB. Stress gradients in the walls of large arteries. J Biomech 1973; 16: 631–639.

    Article  Google Scholar 

  5. Apter JT, Rabinowitz M, Cumming MT. Correlation of visco-elastic properties of large arteries with microscopic structure. Circ Res 1966; 19: 104–121.

    Article  CAS  Google Scholar 

  6. Wagner DD, Olmstead JB, Marder VJ. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol 1982; 95: 355–360.

    Article  PubMed  CAS  Google Scholar 

  7. Ghadially FN. Ultrastructural Pathology of the cell and matrix. 3rd ed. London: But-terworths, 1988.

    Google Scholar 

  8. Huttner I, Gabbiani G. Vascular endothelium: recent advances and unanswered questions. Lab Invest 1982; 47: 409–411.

    PubMed  CAS  Google Scholar 

  9. Cowin P, Kapprell H-P, Franke WW. The complement of desmosomal plaque proteins in different cell types. J Cell Biol 1985; 101: 1442–1454.

    Article  PubMed  CAS  Google Scholar 

  10. Davies PF. Biology of disease: vascular cell interactions with special reference to the pathogenesis of atherosclerosis. Lab Invest 1986; 55: 5–24.

    PubMed  CAS  Google Scholar 

  11. Sosa-Melgarejo JA, Berry CL. Myoendothelial contacts in the thoracic aorta of rat fetuses. J Pathol 1992; 166: 311–316.

    Article  PubMed  CAS  Google Scholar 

  12. Huttner I, Boutet M, Rona G, More RH. Studies on protein passage through arterial endothelium: III. Effect of blood pressure levels on the passage of fine structural protein tracers through rat arterial endothelium. Lab Invest 1973; 29: 536–546.

    PubMed  CAS  Google Scholar 

  13. Nagy Z, Mathieson G, Huttner I. Opening of tight junctions in cerebral endothelium: II. Effect of pressure pulse induced acute arterial hypertension. J Comp Neurol 1979; 185: 579–586.

    Article  PubMed  CAS  Google Scholar 

  14. Thorgeirsson G. Robertson AL. The vascular endothelium — pathobiologic significance. A review. Am J Pathol 1978; 93: 803–848.

    PubMed  CAS  Google Scholar 

  15. Wolinsky H, Glagov S. A lamellar unit of aortic medial structure and function in mammals. Circ Res 1967; 20: 99–111.

    Article  PubMed  CAS  Google Scholar 

  16. Grunstein M. Uber den Bau der grosseren menschlichen Arterien in verschidenen Altersstufen. Arch Mikr Anat 1896; 47: 583–654.

    Article  Google Scholar 

  17. Knieriem HJ, Hueber A. Quantitative morphological studies of the human aorta. Beitr Path Anat 1970; 140: 280–297.

    CAS  Google Scholar 

  18. Somlyo AP. Ultrastructure of vascular smooth muscle. In: Bohr DF, Somlyo AP, Sparks HV, editors. Handbook of physiology, section 2: the cardiovascular system, Vol II: vascular smooth muscle. Bethesda: American Physiological Society, 1980: 33–67.

    Google Scholar 

  19. Gabbiani G, Schmid E, Winter S, et al. Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin. Proc Natl Acad Sci USA 1981; 78: 298–302.

    Article  PubMed  CAS  Google Scholar 

  20. Kocher O, Skalli O, Bloom WS, Gabbiani G. Cytoskeleton of rat aortic smooth muscle cells. Normal conditions and experimental intimai thickening. Lab Invest 1984; 50: 645–662.

    PubMed  CAS  Google Scholar 

  21. Kocher O, Skalli O, Cerutti D, Gabbiani F, Gabbiani G. Cytoskeletal features of rat aortic cells during development. An electron microscopic, immunohistochemical, and biochemical study. Circ Res 1985; 56: 829–838.

    Article  PubMed  CAS  Google Scholar 

  22. Osborn M, Caselitz J, Weber K. Heterogeneity of intermediate filament expression in vascular smooth muscle: a gradient in desmin positive cells from the rat aortic arch to the level of the arterial iliac communis. Differentiation 1981; 20: 196–202.

    Article  PubMed  CAS  Google Scholar 

  23. Schmid E, Osborn M, Rungger-Brandle E, Gabbiani G, Weber K, Franke WW. Distribution of vimentin and desmin filaments in smooth muscle tissue of mammalian and avian aorta. Exp Cell Res 1982; 137: 329–340.

    Article  PubMed  CAS  Google Scholar 

  24. Geiger B, Volk T, Volverg T. Molecular heterogeneity of adherens junctions. J Cell Biol 1985; 101: 1523–1531.

    Article  PubMed  CAS  Google Scholar 

  25. Gabella G. Structure of smooth muscle. In: Bulbring E, Brading AF, Jones AW, Tomita T, editors. Smooth muscle. An assessment of current knowledge. London: Edward Arnold, 1981: 24–31.

    Google Scholar 

  26. Gabella G. Structural apparatus for force transmission in smooth muscle cells. Physiol Rev 1984; 64: 455–477.

    PubMed  CAS  Google Scholar 

  27. Sosa-Melgarejo JA, Berry CL. Intercellular contacts in the media of the thoracic aorta of rat fetuses treated with B-aminopropionitrile. J Pathol 1991; 164: 159–165.

    Article  PubMed  CAS  Google Scholar 

  28. Henderson RM, Duchon G, Daniel EE. Cell contacts in duodenal smooth muscle layers. Am J Physiol 1971; 221: 564–574.

    PubMed  CAS  Google Scholar 

  29. Staehelin LA, Hull BE. Junctions between living cells. Scient Am 1978; 238: 140–152.

    Article  Google Scholar 

  30. Sosa-Melgarejo JA, Berry CL. Contact relationships between vascular smooth muscle cells. An in-vivo and in-vitro study. J Pathol 1989; 157: 213–217.

    Article  PubMed  CAS  Google Scholar 

  31. Daniel EE, Daniel VP, Duchon G, et al. Is the nexus necessary for cell to cell coupling of smooth muscle? J Membr Biol 1976; 28: 207–239.

    Article  PubMed  CAS  Google Scholar 

  32. Furchgott RF, Zawadzki JV. The obl igatory role of endothelial cells in the relaxation of arterial smooth muscle by acetilcholine. Nature 1980; 288: 373–376.

    Article  PubMed  CAS  Google Scholar 

  33. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–526.

    Article  PubMed  CAS  Google Scholar 

  34. Snydner SH, Bredt DS. Biological roles of nitric oxide. Sci Am 1992; 266: 28–35.

    Google Scholar 

  35. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411–415.

    Article  PubMed  CAS  Google Scholar 

  36. Simonson MS, Dunn MJ. Endothelins: a family of regulatory peptides. Hypertension 1991; 17: 856–863.

    Article  PubMed  CAS  Google Scholar 

  37. Di Corletto PE, Bowen Pope DF. Cultured endothelial cells produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci USA 1983; 80: 1919–1923.

    Article  Google Scholar 

  38. Castellot JJ, Vhoay J, Lormeau J-C, Petitou M, Sache E, Karnovsky MJ. Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. II. Evidence for a pentasaccharide sequence that contains a 3-O-sulfate group. J Cell Biol 1986; 102: 1979–1984.

    Article  PubMed  CAS  Google Scholar 

  39. Davies PF, Truskey GA, Warren HB, O’Connor SE, Eisenhaure BH. Metabolic co-operation between vascular endothelial cells and smooth muscle cells in co-culture: changes in low density lipoprotein metabolism. J Cell Biol 1985; 101: 871–879.

    Article  PubMed  CAS  Google Scholar 

  40. Rhodin JAG. The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastruct Res 1967; 18: 181–223.

    Article  PubMed  CAS  Google Scholar 

  41. Rhodin JAG. Ultrastructure of mammalian venous capillaries, venules and small collecting veins. J Ultrastruct Res 1968; 25: 452–500.

    Article  PubMed  CAS  Google Scholar 

  42. Sosa-Melgarejo JA, Berry CL, Dodd S. Myoendothelial contacts in the small arterioles of human kidney. Virchows Archiv A 1988; 413: 183–187.

    Article  CAS  Google Scholar 

  43. Sosa-Melgarejo JA, Berry CL. Myoendothelial contacts in arteriolosclerosis. J Pathol 1992; 166: 311–316.

    Article  PubMed  CAS  Google Scholar 

  44. Spagnoli LG, Villaschi S, Neri L, Palmieri G. Gap junction in myo-endothelial bridges of rabbit carotid arteries. Experientia 1982; 38: 124–125.

    Article  PubMed  CAS  Google Scholar 

  45. Dahl E. The innervation of the cerebral arteries. J Anat 1973; 115: 53–63.

    PubMed  CAS  Google Scholar 

  46. Johnson PC. The myogenic response. In: Bohr DF, Somlyo AP, Sparks HV Jr. editors. Handbook of Physiology; section II. The cardiovascular system; vol 2: Vascular smooth muscle. Bethesda: American Physiological Society, 1980: 409–442.

    Google Scholar 

  47. Huttner I, Costabella PM, Chastonay CD, Gabbiani G. Volume, surface, and junctions of rat aortic endothelium during experimental hypertension. Lab Invest 1982; 46: 489–504.

    PubMed  CAS  Google Scholar 

  48. Berry CL, Greenwald SE. Effects of hypertension on the static mechanical properties and chemical composition of the rat aorta. Cardiovasc Res 1976; 10: 437–451.

    Article  PubMed  CAS  Google Scholar 

  49. Wiener J, Loud AD, Giacomelli F, Anversa P. Morphometric analysis of hypertension induced hypertrophy of rat thoracic aorta. Am J Pathol 1977; 88: 619–634.

    PubMed  CAS  Google Scholar 

  50. Levy BI, Michel JB, Salzman JL et al. Effect of chronic inhibition of converting enzyme on mechanical and structural properties of arteries in rat renovascular hypertension. Circ Res 1988; 63: 227–239.

    Article  PubMed  CAS  Google Scholar 

  51. Berry CL, Henrichs KJ. Morphometric investigation of hypertrophy in the arteries of DOCA-hypertensive rats. J Pathol 1982; 136: 85–94.

    Article  PubMed  CAS  Google Scholar 

  52. Ooshima A, Fuller GC, Cardinale G, Spector S, Udenfriend S. Collagen biosynthesis in blood vessels of brain and other tissues of the hypertensive rat. Science 1975; 190: 898–900.

    Article  PubMed  CAS  Google Scholar 

  53. Berry CL, Sosa-Melgarejo JA. Nexus junctions between vascular smooth muscle cells in the media of the thoracic aorta in normal and hypertensive rats. A freeze-fracture study. J Hypert 1989; 7: 507–513.

    Article  CAS  Google Scholar 

  54. Sosa-Melgarejo JA, Berry CL, Robinson NA. Effects of hypertension on the intercellular contacts between smooth muscle cells in rat thoracic aorta. J Hypert 1991; 9: 475–480.

    Article  CAS  Google Scholar 

  55. Sosa-Melgarejo JA, Robinson N, Berry CL. Changes in number and type of cell to cell and cell to stroma contacts in vascular smooth muscle cells in hypertension. Path Res Pract 1989; 185-181: 152A.

    Google Scholar 

  56. Wolinsky H, Glagov S. Nature of species differences in the medial distribution of aortic vasa vasorum in mammals. Circ Res 1967; 20: 409–421.

    Article  PubMed  CAS  Google Scholar 

  57. Heistad DD, Marcus ML, Law EG, Armstrong ML, Ehrhardt JC, Abbound FM. Regulation of blood flow to the aortic media in dogs. J Clin Invest 1978; 62: 133–140.

    Article  PubMed  CAS  Google Scholar 

  58. Martin JF, Booth RF, Moncada S. Arterial wall hypoxia following hyperfusion through the vasa vasorum is an initial lesion in atherosclerosis. Eur J Clin Invest 1990; 20: 588–592

    Article  PubMed  CAS  Google Scholar 

  59. Tozzi CA, Poiani GJ, Harangozo AM, Boyd CD, Riley DJ. Pressure-induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium. J Clin Invest 1989; 84: 1005–1012.

    Article  PubMed  CAS  Google Scholar 

  60. Geiger B, Avnur Z, Volverg T, Volk T. Molecular domains of adherens junctions. In: Edelman GM, Thiery JP, editors. The cell in contact, Adhesions and junctions as morpho-genetic determinants. New York: Wiley, 1985: 461–489.

    Google Scholar 

  61. Mulvany MJ. Do resistance vessel abnormalities contribute to the elevated blood pressure of spontaneously hypertensive rats? Blood vessels 1983; 20: 1–22.

    PubMed  CAS  Google Scholar 

  62. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347–504.

    PubMed  CAS  Google Scholar 

  63. Berry CL, Greenwald SE, Rivett J. Static mechanical properties of the developing and mature rat aorta. Cardiovasc Res 1982; 9: 669–678.

    Article  Google Scholar 

  64. Greenwald SE, Berry CL. The effect of alterations in scleroprotein content on thestatic elastic properties of the arterial wall. Adv Physiol Sci 1980; 8: 203–212.

    Google Scholar 

  65. Pickering GW. Hypertension. London: Churchill, 1968.

    Google Scholar 

  66. Schlatmann TJ, Becker AE. Histological changes in the normal ageing aorta: implications for dissecting aortic aneurysm. Am J Cardiol 1977; 39: 13–20.

    Article  PubMed  CAS  Google Scholar 

  67. Carlson RG, Lillehei CW, Edwards JE. Cystic medial necrosis of the ascending aorta in relation to age and hypertension. Am J Cardiol 1970; 25: 411–415.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berry, C.L., Sosa-Melgarejo, J.A. (1993). Structure and function of the arterial system in hypertension. In: Safar, M.E., O’Rourke, M.F. (eds) The Arterial System in Hypertension. Developments in Cardiovascular Medicine, vol 144. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0900-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0900-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4389-2

  • Online ISBN: 978-94-011-0900-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics