Skip to main content

Wave reflections and the pathophysiology of hypertension

  • Chapter
The Arterial System in Hypertension

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 144))

  • 74 Accesses

Abstract

Cardiovascular research pioneers recognized the changes that occur in the arterial pulse wave as it travels from the heart to the periphery. In 1928 Dr. Carl Wiggers wrote: In its passage to the periphery, this fundamental wave is altered in contour in several ways, viz: (a) by the depression of waves through friction and damping, (b) by the introduction of natural or free vibrations in different regions of the arterial system, (c) by the amplification or annihilation of centrifugal by reflected waves having the same or opposite phases respectively, and (d) by the transmission of vibrations and waves through the arterial system at differing velocities [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wiggers CJ. The pressure pulses in the cardiovascular system. New York: Longmans, Green and Co., 1928: 73.

    Google Scholar 

  2. O’Rourke MF. Arterial function in health and disease. Edinburgh: Churchill Livingstone, 1982.

    Google Scholar 

  3. O’Rourke MF, Kelly RP, Aviolo AP. The arterial pulse. Philadelphia: Lea & Febiger, 1992.

    Google Scholar 

  4. O’Rourke MF. The arterial pulse in health and disease. Am Heart J 1971; 82: 867.

    Google Scholar 

  5. Brown BR, Anderson BT, Queen JG, Murgo JP. New techniques in cardiac catheterization: the advantages of multisensor catheters. Analyzer 1975; 5: 13–18.

    Google Scholar 

  6. Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Manipulation of ascending aortic pressure and flow wave reflections with the Valsalva maneuver-relationship to input impedance. Circ 1981; 63: 122–132.

    Article  CAS  Google Scholar 

  7. Van den Bos GC, Westerhof N, Randall OS. Pulse wave reflection: can it explain the differences between systemic and pulmonary pressure and flow waves? Circ Res 1982; 51: 479–485.

    Article  PubMed  Google Scholar 

  8. Milnor, W. Hemodynamics. 2nd ed. Baltimore: Williams and Wilkins, 1990: 204–220.

    Google Scholar 

  9. Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries. London: Edward Arnold, 1990.

    Google Scholar 

  10. Westerhof N, Sipkema P, Van den Bos GC, Elizinga G. Forward and backward waves in the arterial system. Cardiov Res 1972; 6: 648–656.

    Article  CAS  Google Scholar 

  11. Sipkema P, Westerhof N. Effective length of the arterial system. Ann Biomed Eng 1975; 3: 296.

    Article  PubMed  CAS  Google Scholar 

  12. Latham RD, Sipkema R, Westerhof N, Rubal BJ. Aortic input impedance during Mueller maneuver: an evaluation of ‘effective length’ J Appl Physiol 1988; 65(4): 1604–1610.

    PubMed  CAS  Google Scholar 

  13. O’Rourke MF, Yaginuma T. Wave reflections and the arterial pulse. Arch Intera Med 1984; 144: 366–371.

    Article  Google Scholar 

  14. Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta. Circ 1985; 72: 1257–1269.

    Article  CAS  Google Scholar 

  15. Latham RD. Pulse propagation in the systemic arterial tree. In: Westerhof N, Gross D, editors. Vascular dynamics. Plenum Publishing Corp, 1989; 49–67.

    Google Scholar 

  16. Latham RD. Arterial dynamics: a comment on arterial wave reflection. In: HEDJ Ter Keurs, Tyberg JV, editors. Mechanics of Circulation. Boston: Martinus Nijhoff, 1987: 261–264.

    Chapter  Google Scholar 

  17. Latham RD, Rubal BJ, Westerhof N, Sipkema P, Walsh RA. Nonhuman primate model for regional wave travel and reflections along aortas. Am J Physiol 1987; 253: H299–H306.

    PubMed  CAS  Google Scholar 

  18. O’Rourke MF. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J Appl Physiol 1967; 23: 139.

    PubMed  Google Scholar 

  19. Latham RD. Technique of micromanometric catheterization of the descending aorta in man: a method to study regional arterial dynamics. Heart Vessels 1987; 3: 166–169.

    Article  PubMed  CAS  Google Scholar 

  20. Murgo JP. Westerhof N, Giolma JP, Altobell SA. Aortic input impedance in normal man: relationship to pressure waveforms. Circ 1980; 62: 105–116.

    Article  CAS  Google Scholar 

  21. Kelly RP, Haywood C, Ganis J, Daley J, Aviola A, O’Rourke M. Non-invasive registration of the arterial pressure waveform using high fidelity applanation tonometry. J Vasc Med Biol 1989; 1(3): 142–149.

    Google Scholar 

  22. Drzewiecki GM, Melbin J. Noordergraaf A. Arterial tonometry: review and analysis. J Biomech 1983; 16(2): 141–153.

    Article  PubMed  CAS  Google Scholar 

  23. Levenson JA, Peronneau PP, Simon AC. Pulsed Doppler: determination of diameter, blood flow velocity and volume flow of brachial artery in man. Cardiov Res 1981; 15: 164.

    Article  CAS  Google Scholar 

  24. Luchsinger PC, Snell RE, Patel DJ, Fry DL. Instantaneous pressure distribution along the human aorta. Cir Res 1964; 15: 510.

    Article  Google Scholar 

  25. Mills CJ, Gabe IT, Gault JH, et al. Pressure-flow relationships and vascular impedance in man. Cardiov Res 1970; 4: 405.

    Article  CAS  Google Scholar 

  26. Merillow JP, Fontenier GJ, Lenallut JF, et al. Aortic input impedance in normal man and arterial hypertension: its modification during changes in aortic pressure. Cardiov Res 1982; 16: 646–656.

    Article  Google Scholar 

  27. Latham RD. Rubal BJ, Sipkema P, et al. Ventricular/vascular coupling and regional arterial dynamics in the chronically hypertensive baboon: correlation with cardiovascular structural adaptation Circ Res 1988; 63: 798–811.

    Article  PubMed  CAS  Google Scholar 

  28. Mooser V, Etienne JD, Farine PA, et al. Non-invasive measurement of internal diameter of peripheral arteries during the cardiac cycle. J Hypertension 1988; 6(Suppl 4): S179–S181.

    CAS  Google Scholar 

  29. Robinson B. The carotid pulse. II: Relation of external recordings to carotid, aortic and brachial pulses. Br Heart J 1963; 25: 61–68.

    Article  PubMed  CAS  Google Scholar 

  30. Freis ED, Heath WC, Luchsinger PC, Snell RE. Changes in the carotid pulse which occur with age and hypertension. Am Heart J 1966; 71(6): 757–765.

    Article  PubMed  CAS  Google Scholar 

  31. Lieberman JS. Instrumental methods in the study of vascular disease. Am Heart J 1980; 99: 517–527.

    Article  PubMed  CAS  Google Scholar 

  32. Drzewiecki GM, Melbin J, Noodergraaf A. Analytical comparison of transcutaneous pulse recordings. In Hansen EW, editor, 10th Annual Northeast Bioengineering Conference. New Hampshire: Hartmouth, 1982: 121–126.

    Google Scholar 

  33. Wesseling KH, Settels JJ, Van der Hoeven MA, Nigboer JA, Butijn MWT, Dorlas JC. Effects of peripheral vasoconstriction on the measurement of the blood pressure in the finger. Cardio 1985; 19: 139–145.

    CAS  Google Scholar 

  34. Egmond J van, Hasenbos M, Crul JF. Invasive versus noninvasive measurement of arterial pressure. Br J Anesth 1985; 57: 434–444.

    Article  Google Scholar 

  35. Imholz BPM, van Montfrans GA, Settels JJ, van der Hoeven GM, Karemaker JM, Wieling W. Continuous noninvasive blood pressure monitoring; reliability of Finapres™ device during the Valsalva maneuver. Cardiov Res 1988; 22: 390–397.

    Article  CAS  Google Scholar 

  36. Karemaker JM, Latham RD. Parabolic flight profile determines the effects of microgravity on the cardiovascular system. The Physiologist 1991; 34(4): 237.

    Google Scholar 

  37. Simon ACh, Levenson JA, Safar ME. Hemodynamic Mechanisms of and therapeutic approach to systolic hypertension. J Cardiov Ph 1985; 7: S22–S27.

    Article  Google Scholar 

  38. Freis, ED. Hemodynamics of hypertension. Physiol Rev 1960; 40: 27–54.

    PubMed  CAS  Google Scholar 

  39. Ting CT, Brin KP, Lin SJ, et al. Arterial hemodynamics in human hypertension, J Clin Invest 1986; 78: 1462–1471.

    Article  PubMed  CAS  Google Scholar 

  40. Nichols WW, Conti CR, Walker WE, Milnor WR. Input impedance of the systemic circulation in man. Circ Res 1977; 40: 451–458.

    Article  PubMed  CAS  Google Scholar 

  41. O’Rourke MF. Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension 1990; 15: 339–347.

    Article  PubMed  Google Scholar 

  42. Latson TW, Yin FCP, Hunter WC. The effects of finite wave velocity and discrete reflections on ventricular loading. In: Yin F, editor. Ventricular/vascular coupling: clinical, physiological and engineering aspects. New York: Springer-Verlag Inc., 1986; 334–383.

    Google Scholar 

  43. Li JK Jr. Increased arterial pulse wave reflections and pulsatile energy loss in acute hypertension. Angilogy 1989; 40: 730–735.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Latham, R.D., Slife, D.M. (1993). Wave reflections and the pathophysiology of hypertension. In: Safar, M.E., O’Rourke, M.F. (eds) The Arterial System in Hypertension. Developments in Cardiovascular Medicine, vol 144. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0900-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0900-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4389-2

  • Online ISBN: 978-94-011-0900-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics