Skip to main content

A subsystems-based approach to the identification of drug targets in bacterial pathogens

  • Chapter
Systems Biological Approaches in Infectious Diseases

Part of the book series: Progress in Drug Research ((PDR,volume 64))

Abstract

This chapter describes a three-stage approach to target identification based upon subsystem analysis. Subsystems analysis focuses on related metabolic pathways as a unit and is a biochemically-informed approach to target selection. The process involves three stages of analysis; the first stage, selection of the target subsystem, is guided by information about its essentiality and on the predicted vulnerability of the targeted pathway or enzyme to inhibition. The second stage involves analysis of the target subsystem by means of comparative genomics, including genome context analysis and metabolic reconstruction. The third stage evaluates the selection of the specific target genes within the subsystem by target prioritization and validation. The whole process allows for a careful consideration of spectrum, drugability, biological rationale and the metabolic role of the specific target within the context of an integrated circuit within a specific metabolic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R et al (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33: 5691–5702

    Article  PubMed  CAS  Google Scholar 

  2. Ye Y, Osterman A, Overbeek R, Godzik A (2005) Automatic detection of subsystem/pathway variants in genome analysis. Bioinformatics 21: i1–i9

    Article  Google Scholar 

  3. Schmid MB, Kapur N, Isaacson DR, Lindroos P, Sharpe C (1989) Genetic analysis of temperature-sensitive lethal mutants of Salmonella typhimurium. Genetics 123: 625–633

    PubMed  CAS  Google Scholar 

  4. Moir DT, Shaw KJ, Hare RS, Vovis GF (1999) Genomics and antimicrobial drug discovery. Antimicrob Agents Chemother 43: 439–446

    PubMed  CAS  Google Scholar 

  5. Galperin MY, Koonin EV (1999) Searching for drug targets in microbial genomes. Curr Opin Biotechnol 10: 571–578

    Article  PubMed  CAS  Google Scholar 

  6. Read TD, Gill SR, Tettelin H, Dougherty BA (2001) Finding drug targets in microbial genomes. Drug Discovery Today 6: 887–892

    Article  PubMed  CAS  Google Scholar 

  7. Ji Y (2002) The role of genomics in the discovery of novel targets for antibiotic therapy. Pharmacogenomics 3: 315–323

    Article  PubMed  CAS  Google Scholar 

  8. Lehoux DE, Sanschagrin F, Levesque RC (2001) Discovering essential and infection-related genes. Curr Opin Microbiol 4: 515–519

    Article  PubMed  CAS  Google Scholar 

  9. Yin D, Fox B, Lonetto ML, Etherton MR, Payne DJ, Holmes DJ, Rosenberg M, Ji Y (2004) Identification of antimicrobial targets using a comprehensive genomic approach. Pharmacogenomics 5: 101–113

    Article  PubMed  CAS  Google Scholar 

  10. Osterman A, Overbeek R (2003) Missing genes in metabolic pathways: a comparative genomics approach. Curr Opin Chem Biol 7: 238–251

    Article  PubMed  CAS  Google Scholar 

  11. Koonin EV, Mushegian AR, Bork P (1996) Non-orthologous gene displacement. Trends Genet 12: 334–336

    Article  PubMed  CAS  Google Scholar 

  12. Galperin MY, Koonin EV (2001) Chapter 15: Comparative Genome Analysis. In: A Baxevanis, F Ouellette (eds): Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Second Edition. Wiley-Liss Inc. pp 359–392

    Google Scholar 

  13. Kremer LS, Besra GS (2002) Current status and future development of antitubercular chemotherapy. Expert Opin Investig Drugs 11: 1033–1049

    Article  PubMed  CAS  Google Scholar 

  14. Palsson BO, Price ND, Papin JA (2003) Development of network-based pathway definitions: the need to analyze real metabolic networks. Trends Biotechnol 21: 195–198

    Article  PubMed  CAS  Google Scholar 

  15. Burgard AP, Nikolaev EV, Schilling CH, Maranas CD (2004) Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res 14(2): 301–312

    Article  PubMed  CAS  Google Scholar 

  16. Edwards JS, Palsson BO (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1: 1

    Article  PubMed  CAS  Google Scholar 

  17. Thiele I, Vo TD, Price ND, Palsson BO (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single-and double-deletion mutants. J Bacteriol 187: 5818–5830

    Article  PubMed  CAS  Google Scholar 

  18. Becker SA, Palsson BO (2005) Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 5: 8

    Article  PubMed  Google Scholar 

  19. Forster J, Famili I, Palsson BO, Nielsen J (2003) Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. Omics 7: 193–202

    Article  PubMed  Google Scholar 

  20. Haft DH, Selengut JD, Brinkac LM, Zafar N, White O (2005) Genome Properties: a system for the investigation of prokaryotic genetic content for microbiology, genome annotation and comparative genomics. Bioinformatics 21: 293–306

    Article  PubMed  CAS  Google Scholar 

  21. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32 Database issue: D277–280

    Article  PubMed  CAS  Google Scholar 

  22. (2005) Get ready to GO! A biologist’s guide to the Gene Ontology. Brief Bioinform 6: 298–304

    Google Scholar 

  23. Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M, Pick J, Rhee SY, Karp PD (2004) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 32: D438–442

    Article  PubMed  CAS  Google Scholar 

  24. Arigoni F, Talabot F, Peitsch M, Edgerton MD, Meldrum E, Allet E, Fish R, Jamotte T, Curchod ML, Loferer H (1998) A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 16: 851–856

    Article  PubMed  CAS  Google Scholar 

  25. Ji Y, Zhang B, Van SF, Horn, Warren P, Woodnutt G, Burnham MK, Rosenberg M (2001) Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293: 2266–2269

    Article  PubMed  CAS  Google Scholar 

  26. Thanassi JA, Hartman-Neumann SL, Dougherty TJ, Dougherty BA, Pucci MJ (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res 30: 3152–3162

    Article  PubMed  CAS  Google Scholar 

  27. Forsyth RA, Haselbeck RJ, Ohlsen KL, Yamamoto RT, Xu H, Trawick JD, Wall D, Wang L, Brown-Driver V, Froelich JM et al (2002) A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43: 1387–1400

    Article  PubMed  CAS  Google Scholar 

  28. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 77–84

    Article  PubMed  CAS  Google Scholar 

  29. Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA 93: 10268–10273

    Article  PubMed  CAS  Google Scholar 

  30. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512

    Article  PubMed  CAS  Google Scholar 

  31. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley GM et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403

    Article  PubMed  CAS  Google Scholar 

  32. Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286: 2165–2169

    Article  PubMed  CAS  Google Scholar 

  33. Ross-Macdonald P, Coelho PS, Roemer T, Agarwal S, Kumar A, Jansen R, Cheung KH, Sheehan A, Symoniatis D, Umansky L et al (1999) Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402: 413–418

    Article  PubMed  CAS  Google Scholar 

  34. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901–906

    Article  PubMed  CAS  Google Scholar 

  35. Akerley BJ, Rubin EJ, Novick VL, Amaya K, Judson N, Mekalanos JJ (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Nat Acad Sci USA 99: 966–971

    Article  PubMed  CAS  Google Scholar 

  36. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100: 4678–4683

    Article  PubMed  CAS  Google Scholar 

  37. Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS et al (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185: 5673–5684

    Article  PubMed  CAS  Google Scholar 

  38. Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Willo, Kaul R, Raymond C, Levy R et al (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Nat Acad Sci USA 100: 14339–14344

    Article  PubMed  CAS  Google Scholar 

  39. Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Nat Acad Sci USA 100: 12989–12994

    Article  PubMed  CAS  Google Scholar 

  40. Potvin E, Lehoux DE, Kukavica-Ibrulj I, Richard KL, Sanschagrin F, Lau GW, Levesque RW (2003) In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5: 1294–1308

    Article  PubMed  CAS  Google Scholar 

  41. Herbert MA, Hayes S, Deadman ME, Tang CM, Hood DW, Moxon ER (2002) Signature tagged mutagenesis of Haemophilus influenzae identifies genes required for in vivo survival. Microb Pathog 33: 211–223

    Article  PubMed  CAS  Google Scholar 

  42. Schmid MB (1998) Novel approaches to the discovery of antimicrobial agents. Curr Opin Chem Biol 2: 529–534

    Article  PubMed  CAS  Google Scholar 

  43. Yin D, Ji Y (2002) Genomic analysis using conditional phenotypes generated by antisense RNA. Curr Opin Microbiol 5: 330–333

    Article  PubMed  CAS  Google Scholar 

  44. Zhang R, Ou HY, Zhang CT (2004) DEG: a database of essential genes. Nucleic Acids Res 32 Database issue: D271–272

    Article  PubMed  CAS  Google Scholar 

  45. Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002) Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res 12: 962–968

    Article  PubMed  CAS  Google Scholar 

  46. Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Rev Microbiol 1: 127–136

    Article  CAS  Google Scholar 

  47. Gil R, Silva FJ, Pereto J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68: 518–537, table of contents

    Article  PubMed  CAS  Google Scholar 

  48. Gerdes SY, Scholle MD, D’Souza M, Bernal A, Baev MV, Farrell M, Kurnasov OV, Daugherty MD, Mseeh F, Polanuyer BM et al (2002) From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J Bacteriol 184: 4555–4572

    Article  PubMed  CAS  Google Scholar 

  49. Michal G (1999) Biochemical pathways: An atlas of biochemistry and molecular biology. John Wiley & Sons, Inc. New York, USA

    Google Scholar 

  50. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29: 22–28

    Article  PubMed  CAS  Google Scholar 

  51. Selkov E, Maltsev N, Olsen GJ, Overbeek R, Whitman WB (1997) A reconstruction of the metabolism of Methanococcus jannaschii from sequence data. Gene 197: GC11–26

    Article  PubMed  CAS  Google Scholar 

  52. Bono H, Ogata H, Goto S, Kanehisa M (1998) Reconstruction of amino acid biosynthesis pathways from the complete genome sequence. Genome Res 8: 203–210

    PubMed  CAS  Google Scholar 

  53. Galperin MY (2004) The Molecular Biology Database Collection: 2004 update. Nucleic Acids Res 32 Database issue: D3–22

    Article  PubMed  CAS  Google Scholar 

  54. Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5: 76

    Article  PubMed  Google Scholar 

  55. Haferkamp I, Schmitz-Esser S, Linka N, Urbany C, Collingro A, Wagner M, Horn M, Neuhaus HE (2004) A candidate NAD+ transporter in an intracellular bacterial symbiont related to Chlamydiae. Nature 432: 622–625

    Article  PubMed  CAS  Google Scholar 

  56. Bieganowski P, Pace HC, Brenner C (2003) Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. J Biol Chem 278: 33049–33055

    Article  PubMed  CAS  Google Scholar 

  57. Bellinzoni M, Buroni S, Pasca MR, Guglierame P, Arcesi F, De Rossi E, Riccardi G (2005) Glutamine amidotransferase activity of NAD+ synthetase from Mycobacterium tuberculosis depends on an amino-terminal nitrilase domain. Res Microbiol 156: 173–177

    PubMed  CAS  Google Scholar 

  58. Willison JC, Tissot G (1994) The Escherichia coli efg gene and the Rhodobacter capsulatus adgA gene code for NH3-dependent NAD synthetase. J Bacteriol 176: 3400–3402

    PubMed  CAS  Google Scholar 

  59. Bieganowski P, Brenner C (2003) The reported human NADsyn2 is ammonia-dependent NAD synthetase from a pseudomonad. J Biol Chem 278: 33056–33059

    Article  PubMed  CAS  Google Scholar 

  60. Rizzi M, Nessi C, Mattevi A, Coda A, Bolognesi M, Galizzi A (1996) Crystal structure of NH3-dependent NAD+ synthetase from Bacillus subtilis. Embo J 15: 5125–5134

    PubMed  CAS  Google Scholar 

  61. Kang GB, Kim YS, Im YJ, Rho SH, Lee JH, Eom SH (2005) Crystal structure of NH3-dependent NAD+ synthetase from Helicobacter pylori. Proteins 58: 985–988

    Article  PubMed  CAS  Google Scholar 

  62. Kurnasov O, Goral V, Colabroy K, Gerdes S, Anantha S, Osterman A, Begley TP (2003) NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. Chem Biol 10: 1195–1204

    Article  PubMed  CAS  Google Scholar 

  63. Colabroy KL, Zhai H, Li T, Ge Y, Zhang Y, Liu A, Ealick SE, McLafferty FW, Begley TP (2005) The mechanism of inactivation of 3-Hydroxyanthranilate-3,4-dioxygenase by 4-Chloro-3-hydroxyanthranilate. Biochemistry 44: 7623–7631

    Article  PubMed  CAS  Google Scholar 

  64. Kurnasov O, Jablonski L, Polanuyer B, Dorrestein P, Begley T, Osterman A (2003) Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol Lett 227: 219–227

    Article  PubMed  CAS  Google Scholar 

  65. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297: 1551–1555

    Article  PubMed  CAS  Google Scholar 

  66. von Mering C, Zdobnov EM, Tsoka S, Ciccarelli FD, Pereira-Leal JB, Ouzounis CA, Bork P (2003) Genome evolution reveals biochemical networks and functional modules. Proc Natl Acad Sci USA 100: 15428–15433

    Article  Google Scholar 

  67. Huynen MA, Snel B, von Mering C, Bork P (2003) Function prediction and protein networks. Curr Opin Cell Biol 15: 191–198

    Article  PubMed  CAS  Google Scholar 

  68. Dandekar T, Sauerborn R (2002) Comparative genome analysis and pathway reconstruction. Pharmacogenomics 3: 245–256

    Article  PubMed  CAS  Google Scholar 

  69. Koonin EV, Galperin MY (2002) SEQUENCE — EVOLUTION — FUNCTION. Computational approaches in comparative genomics. Kluwer Academic Publishers, Boston, USA

    Google Scholar 

  70. Penfound T, Foster JW (1996) Biosynthesis and Recycling of NAD. In: Neihardt (ed.): Escherichia Coli and Salmonella. ASM pp 721–730

    Google Scholar 

  71. Mehl RA, Kinsland C, Begley TP (2000) Identification of the Escherichia coli nicotinic acid mononucleotide adenylyltransferase gene. J Bacteriol 182: 4372–4374

    Article  PubMed  CAS  Google Scholar 

  72. Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96: 2896–2901

    Article  PubMed  CAS  Google Scholar 

  73. Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) Use of contiguity on the chromosome to predict functional coupling. In Silico Biol 1: 93–108

    PubMed  CAS  Google Scholar 

  74. Zhang X, Kurnasov OV, Karthikeyan S, Grishin NV, Osterman AL, Zhang H (2003) Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. J Biol Chem 278: 13503–13511

    Article  PubMed  CAS  Google Scholar 

  75. Zhou T, Kurnasov O, Tomchick DR, Binns DD, Grishin NV, Marquez VE, Osterman AL, Zhang H (2002) Structure of human nicotinamide/nicotinic acid mononucleotide adenylyltransferase. Basis for the dual substrate specificity and activation of the oncolytic agent tiazofurin. J Biol Chem 277: 13148–13154

    Article  PubMed  CAS  Google Scholar 

  76. Berger F, Lau C, Dahlmann M, Ziegler M (2005) Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem 280(43): 36334–36341

    Article  PubMed  CAS  Google Scholar 

  77. Garavaglia S, D’Angelo I, Emanuelli M, Carnevali F, Pierella F, Magni G, Rizzi M (2002) Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. J Biol Chem 277: 8524–8530

    Article  PubMed  CAS  Google Scholar 

  78. Raffaelli N, Sorci L, Amici A, Emanuelli M, Mazzola F, Magni G (2002) Identification of a novel human nicotinamide mononucleotide adenylyltransferase. Biochem Biophys Res Commun 297: 835–840

    Article  PubMed  CAS  Google Scholar 

  79. Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S (2004) Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr Med Chem 11: 873–885

    Article  PubMed  CAS  Google Scholar 

  80. Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285: 751–753

    Article  PubMed  CAS  Google Scholar 

  81. Kurnasov OV, Polanuyer BM, Ananta S, Sloutsky R, Tam A, Gerdes SY, Osterman AL (2002) Ribosylnicotinamide kinase domain of NadR protein: Identification and implications in NAD biosynthesis. J Bacteriol 184: 6906–6917

    Article  PubMed  CAS  Google Scholar 

  82. Kemmer G, Reilly TJ, Schmidt-Brauns J, Zlotnik GW, Green BA, Fiske MJ, Herbert M, Kraiss A, Schlor S, Smith A et al (2001) NadN and e (P4) are essential for utilization of NAD and nicotinamide mononucleotide but not nicotinamide riboside in Haemophilus influenzae. J Bacteriol 183: 3974–3981

    Article  PubMed  CAS  Google Scholar 

  83. Zhu N, Roth JR (1991) The nadI region of Salmonella typhimurium encodes a bifunctional regulatory protein. J Bacteriol 173: 1302–1310

    PubMed  CAS  Google Scholar 

  84. Raffaelli N, Lorenzi T, Mariani PL, Emanuelli M, Amici A, Ruggieri S, Magni G (1999) The Escherichia coli NadR regulator is endowed with nicotinamide mononucleotide adenylyltransferase activity. J Bacteriol 181: 5509–5511

    PubMed  CAS  Google Scholar 

  85. Merdanovic M, Sauer E, Reidl J (2005) Coupling of NAD + biosynthesis and nicotinamide ribosyl transport: Characterization of NadR ribonucleotide kinase mutants of Haemophilus influenzae. J Bacteriol 187: 4410–4420

    Article  PubMed  CAS  Google Scholar 

  86. Sauer E, Merdanovic M, Mortimer AP, Bringmann G, Reidl J (2004) PnuC and the utilization of the nicotinamide riboside analog 3-aminopyridine in Haemophilus influenzae. Antimicrob Agents Chemother 48: 4532–4541

    Article  PubMed  CAS  Google Scholar 

  87. Martin PR, Shea RJ, Mulks MH (2001) Identification of a plasmid-encoded gene from Haemophilus ducreyi which confers NAD independence. J Bacteriol 183: 1168–1174

    Article  PubMed  CAS  Google Scholar 

  88. Singh SK, Kurnasov OV, Chen B, Robinson H, Grishin NV, Osterman AL, Zhang H (2002) Crystal structure of Haemophilus influenzae NadR protein. A bifunctional enzyme endowed with NMN adenyltransferase and ribosylnicotinimide kinase activities. J Biol Chem277: 33291–33299

    Article  PubMed  CAS  Google Scholar 

  89. Geerlof A, Lewendon A, Shaw WV (1999) Purification and characterization of phosphopantetheine adenylyltransferase from Escherichia coli. J Biol Chem 274: 27105–27111

    Article  PubMed  CAS  Google Scholar 

  90. Strauss E, Kinsland C, Ge Y, McLafferty FW, Begley TP (2001) Phosphopantothenoylcysteine synthetase from Escherichia coli. Identification and characterization of the last unidentified coenzyme A biosynthetic enzyme in bacteria. J Biol Chem 276: 13513–13516

    Article  PubMed  CAS  Google Scholar 

  91. Mishra P, Park PK, Drueckhammer DG (2001) Identification of yacE (coaE) as the structural gene for dephosphocoenzyme A kinase in Escherichia coli K-12. J Bacteriol 183: 2774–2778

    Article  PubMed  CAS  Google Scholar 

  92. Daugherty M, Polanuyer B, Farrell M, Scholle M, Lykidis A, de Crecy-Lagard V, Osterman A (2002) Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J Biol Chem 277: 21431–21439

    Article  PubMed  CAS  Google Scholar 

  93. Heath RJ, Rock CO (2000) A triclosan-resistant bacterial enzyme. Nature 406: 145–146

    Article  PubMed  CAS  Google Scholar 

  94. Zhang YM, Frank MW, Virga KG, Lee RE, Rock CO, Jackowski S (2004) Acyl carrier protein is a cellular target for the antibacterial action of the pantothenamide class of pantothenate antimetabolites. J Biol Chem 279: 50969–50975

    Article  PubMed  CAS  Google Scholar 

  95. Olland AM, Underwood KW, Czerwinski RM, Lo MC, Aulabaugh A, Bard J, Stahl ML, Somers WS, Sullivan FX, Chopra R (2002) Identification, characterization, and crystal structure of Bacillus subtilis nicotinic acid mononucleotide adenylyltransferase. J Biol Chem 277: 3698–3707

    Article  PubMed  CAS  Google Scholar 

  96. Jayaram HN, Cooney DA, Grusch M, Krupitza G (1999) Consequences of IMP dehydrogenase inhibition, and its relationship to cancer and apoptosis. Curr Med Chem 6: 561–574

    PubMed  CAS  Google Scholar 

  97. Clifton G, Bryant SR, Skinner CG (1970) N’-(substituted) pantothenamides, antimetabolites of pantothenic acid. Arch Biochem Biophys 137: 523–528

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag

About this chapter

Cite this chapter

Osterman, A.L., Begley, T.P. (2007). A subsystems-based approach to the identification of drug targets in bacterial pathogens. In: Boshoff, H.I., Barry, C.E. (eds) Systems Biological Approaches in Infectious Diseases. Progress in Drug Research, vol 64. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7567-6_6

Download citation

Publish with us

Policies and ethics