Skip to main content

Analysis of Single Neuron Recordings

  • Chapter
  • First Online:
Wavelets in Neuroscience

Abstract

In this chapter, we consider several practical problems where wavelets provide information about the dynamics of neuronal systems that cannot be obtained with ordinary frequency or time domain methods. We discuss the possibility of studying intracellular dynamics and information encoding by individual neurons. We characterize the dynamical stability of the neuronal response and propose an approach to quantify wavelet coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.C. Tuckwell, Introduction to Theoretical Neurobiology (Cambridge University Press, Cambridge, 1988)

    Book  Google Scholar 

  2. E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science, 4th edn. (McGraw-Hill, New York, 2000)

    Google Scholar 

  3. V.A. Andreev, K.V. Indukaev, The problem of sub-Rayleigh resolution in interference microscopy. J. Russian Laser Res. 24, 220 (2003)

    Article  Google Scholar 

  4. V.P. Tychinskii, Coherent phase microscopy of intracellular processes. Phys. Usp. 44, 683 (2001)

    Article  Google Scholar 

  5. O.V. Sosnovtseva, A.N. Pavlov, N.A. Brazhe, A.R. Brazhe, L.A. Erokhova, G.V. Maksimov, E. Mosekilde, Interference microscopy under double-wavelet analysis: a new approach to studying cell dynamics. Phys. Rev. Lett. 94, 218103 (2005)

    Article  ADS  Google Scholar 

  6. N.A. Brazhe, A.R. Brazhe, A.N. Pavlov, L.A. Erokhova, A.I. Yusipovich, G.V. Maksimov, E. Mosekilde, O.V. Sosnovtseva, Unraveling cell processes: interference imaging weaved with data analysis. J. Biol. Phys. 32, 191 (2006)

    Article  Google Scholar 

  7. O.V. Sosnovtseva, A.N. Pavlov, E. Mosekilde, N.-H. Holstein–Rathlou, D.J. Marsh, Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation. Phys. Rev. E 70, 031915 (2004)

    Google Scholar 

  8. P.S. Addison, J.N. Watson, Secondary transform decoupling of shifted nonstationary signal modulation components. Int. J. Wavelets, Multiresolution Inf. Process. 2, 43 (2004)

    Google Scholar 

  9. A.N. Pavlov, V.A. Makarov, E. Mosekilde, O.V. Sosnovtseva, Application of wavelet-based tools to study the dynamics of biological processes. Brief. Bioinformatics 7, 375 (2006)

    Article  Google Scholar 

  10. A.R. Brazhe, N.A. Brazhe, A.N. Pavlov, G.V. Maksimov, E. Mosekilde, O.V. Sosnovtseva, Interference microscopy for cellular studies, in Handbook of Research on Systems Biology Applications in Medicine (IGI Global, 2008), pp. 653–669. ISBN: 978-1-60566-076-9

    Google Scholar 

  11. A. Szucs, G. Molnar, K. Rozsa, Periodic and oscillatory firing patterns in identified nerve cells of Lymnaea stagnalis L. Acta Biol. Hunger. 50, 269 (1999)

    Google Scholar 

  12. A. Schutt, T.H. Bullock, E. Basar, Odor input generates similar to 1.5 Hz and similar to 3 Hz spectral peaks in the helix pedal ganglion. Brain Res. 879, 73 (2000)

    Google Scholar 

  13. D. Landowne, L.B. Cohen, Changes in light scattering during synaptic activity in the electric organ of the skate Raia erinacea. Biol. Bull. 137, 407 (1969)

    Google Scholar 

  14. I. Darian-Smith, The trigeminal system, in Handbook of Sensory Physiology, ed. by A. Iggo (Springer, Berlin, 1973), p. 271

    Google Scholar 

  15. S.B. Mehta, D. Whitmer, R. Figueroa, B.A. Williams, D. Kleinfeld, Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biol. 5, 309 (2007)

    Article  Google Scholar 

  16. C.I. Moore, Frequency-dependent processing in the vibrissa sensory system. J. Neurophysiol. 91, 2390 (2004)

    Article  Google Scholar 

  17. J. Wolfe, D.N. Hill, S. Pahlavan, P.J. Drew, D. Kleinfeld, D.E. Feldman, Texture coding in the rat whisker system: slip–stick versus differential resonance. PLoS Biol. 6, 1661 (2008)

    Article  Google Scholar 

  18. E. Ahissar, P.M. Knutsen, Object localization with whiskers. Biol. Cybern. 98, 449 (2008)

    Article  MATH  Google Scholar 

  19. P.M. Knutsen, E. Ahissar, Orthogonal coding of object location. Trends Neurosci. 32, 101 (2009)

    Article  Google Scholar 

  20. N.P. Castellanos, E. Malmierca, A. Nuñez, V.A. Makarov, Corticofugal modulation of the tactile response coherence of projecting neurons in the gracilis nucleus. J. Neurophysiol. 98, 2537 (2007)

    Article  Google Scholar 

  21. E. Malmierca, N.P. Castellanos, V.A. Makarov, A. Nuñez, Corticofugal modulation of tactile responses of neurons in the spinal trigeminal nucleus. A mathematical analysis, in Advancing Artificial Intelligence Through Biological Process Applications, ed. by A.B. Porto, A. Pazos, W. Buño (Idea Group, Hershey, 2009)

    Google Scholar 

  22. E. Malmierca, N.P. Castellanos, A. Nuñez-Medina, V.A. Makarov, A. Nuñez, Neuron synchronization in the rat gracilis nucleus facilitates sensory transmission in the somatosensory pathway. Eur. J. Neurosci. 30, 593 (2009)

    Article  Google Scholar 

  23. R.L. Smith, The ascending fiber projections from the principal sensory trigeminal nucleus in the rat. J. Comp. Neurol. 148, 423 (1973)

    Article  Google Scholar 

  24. M. Peschanski, Trigeminal afferents to the diencephalons in the rat. Neuroscience 12, 465 (1984)

    Article  Google Scholar 

  25. P.M. Ma, The barrelettes-architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. Normal structural organization. J. Comp. Neurol. 309, 161 (1991)

    Google Scholar 

  26. M.H. Friedberg, S.M. Lee, F.F. Ebner, The contribution of the principal and spinal trigeminal nuclei to the receptive field properties of thalamic VPM neurons in the rat. J. Neurocytol. 33, 75 (2004)

    Article  Google Scholar 

  27. P. Veinante, M. Deschenes, Single-cell study of motor cortex projections to the barrel field in rats. J. Neurosci. 19, 5085 (1999)

    Google Scholar 

  28. D.H. Perkel, G.L. Gerstein, G.P. Moore, Neuronal spike trains and stochastic point processes. Biophys. J. 7, 419 (1967)

    Article  Google Scholar 

  29. D.R. Brillinger, Comparative aspects of the study of ordinary time series and of point processes, in Developments in Statistics, ed. by P.R. Krishnaiah (Academic, New York, 1978), p. 33

    Google Scholar 

  30. M.R. Jarvis, P.P. Mitra, Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput. 13, 717 (2001)

    Article  MATH  Google Scholar 

  31. C.E. Garabedian, S.R. Jones, M.M. Merzenich, A. Dale, C.I. Moore, Band-pass response properties of rat SI neurons. J. Neurophysiol. 90, 1379 (2003)

    Article  Google Scholar 

  32. A. Moreno, V. Garcia-Gonzalez, A. Sanchez-Jimenez, F. Panetsos, Principalis, oralis and interpolaris responses to whisker movements provoked by air jets in rats. NeuroReport 16, 1569 (2005)

    Article  Google Scholar 

  33. M. Díaz-Quesada, M. Maravall, Intrinsic mechanisms for adaptive gain rescaling in barrel cortex. J. Neurosci. 28, 696 (2008)

    Article  Google Scholar 

  34. L.M. Jones, D.A. Depireux, D.J. Simons, A. Keller, Robust temporal coding in the trigeminal system. Science 304, 1986 (2004)

    Article  ADS  Google Scholar 

  35. S.G. Sadeghi, M.J. Chacron, M.C. Taylor, K.E. Cullen, Neural variability, detection thresholds, and information transmission in the vestibular system. J. Neurosci. 27, 771 (2007)

    Article  Google Scholar 

  36. G.E. Carvell, D.J. Simons, Task- and subject-related differences in sensorimotor behavior during active touc. Somatosens. Motor Res. 12, 1 (1995)

    Article  Google Scholar 

  37. M.A. Harvey, R. Bermejo, H.P. Zeigler, Discriminative whisking in the head-fixed rat: optoelectronic monitoring during tactile detection and discrimination tasks. Somatosens. Motor Res. 18, 211 (2001)

    Article  Google Scholar 

  38. W.I. Welker, Analysis of sniffing of the albino rats. Behaviour 22, 223 (1964)

    Article  Google Scholar 

  39. L. Baccalá, K. Sameshima, Overcoming the limitations of correlation analysis for many simultaneously processed neural structures. Biol. Cybern. 84, 463 (2001)

    Article  MATH  Google Scholar 

  40. R. Dahlhaus, M. Eichler, J. Sandkühler, Identification of synaptic connections in neural ensembles by graphical models. J. Neurosci. Methods 77, 93 (1997)

    Article  Google Scholar 

  41. A. Korzeniewska, M. Manczak, M. Kaminski, K. Blinowska, S. Kasicki, Determination of information flow direction among brain structures by a modified Directed Transfer Function method (dDTF). J. Neurosci. Methods 125, 195 (2003)

    Article  Google Scholar 

  42. M. Bayram, R. Baraniuk, Multiple window time–frequency analysis, in Proceedings of IEEE-SP International Symposium on Time–Frequency and Time-Scale Analysis, Paris, p. 173 (1996)

    Google Scholar 

  43. E.G. Lovett, K.M. Ropella, Time–frequency coherence analysis of atrial fibrillation termination during procainamide administration. Ann. Biomed. Eng. 25, 975 (1997)

    Article  Google Scholar 

  44. Y. Xu, S. Haykin, R.J. Racine, Multiple window time–frequency analysis of EEG using Slepian sequences and Hermite functions. IEEE Trans. Biomed. Eng. 46, 861 (1999)

    Article  Google Scholar 

  45. S. Mallat, A Wavelet Tour of Signal Processing (Academic, New York, 1999)

    MATH  Google Scholar 

  46. M. Alegre, A. Labarga, I. Gurtubay, J. Iriarte, A. Malanda, J. Artieda, Movement related changes in cortical oscillatory activity in ballistic, sustained and negative movements. Exp. Brain Res. 148, 17 (2003)

    Article  Google Scholar 

  47. N.P. Castellanos, V.A. Makarov, Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. J. Neurosci. Methods 158, 300 (2006)

    Article  Google Scholar 

  48. H. Goelz, R. Jones, P. Bones, Wavelet analysis of transient biomedical signals and its application to detection of epileptiform activity in the EEG. Clin. Electroencephalogr. 31, 181 (2000)

    Google Scholar 

  49. V.T. Mäkinen, P.J.C. May, H. Tiitinen, Spectral characterization of ongoing and auditory event-related brain processes. Neurol. Clin. Neurophysiol. 104, 3 (2004)

    Google Scholar 

  50. F. Mormann, J. Fell, N. Axmancher, B. Weber, K. Lehnertz, C. Elger, Phase/amplitude reset and theta–gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus 15, 890 (2005)

    Article  Google Scholar 

  51. A. Murata, An attempt to evaluate mental workload using wavelet transform of EEG. Hum. Factors 47, 498 (2005)

    Article  Google Scholar 

  52. R. Quian Quiroga, H. Garcia, Single-trial event-related potentials with wavelet denoising. Clin. Neurophysiol. 114, 376 (2003)

    Article  Google Scholar 

  53. S. Schiff, A. Aldroubi, M. Unser, S. Sato, Fast wavelet transformation of EEG. Electroencephalogr. Clin. Neurophysiol. 91, 442 (1994)

    Article  Google Scholar 

  54. A. Grinsted, J.C. Moore, S. Jevrejeva, Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561 (2004)

    Article  ADS  Google Scholar 

  55. A. Klein, T. Sauer, A. Jedynak, W. Skrandies, Conventional and wavelet coherence applied to sensory-evoked electrical brain activity. IEEE Trans. Biomed. Eng. 53, 266 (2006)

    Article  Google Scholar 

  56. J.P. Lachaux, A. Lutz, D. Rudrauf, D. Cosmelli, M. Le Van Quyen, J. Martinerie, F.J. Varela, Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Clin. Neurophysiol. 32, 157 (2002)

    Article  Google Scholar 

  57. M. Le Van Quyen, J. Foucher, J.P. Lachaux, E. Rodriguez, A. Lutz, J. Martinerie, F.J. Varela, Comparsion of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J. Neurosci. Methods 111, 83 (2001)

    Article  Google Scholar 

  58. A. Pavlov, V. Makarov, I. Makarova, F. Panetsos, Sorting of neural spikes: when wavelet based methods outperform principal component analysis. Nat. Comput. 6, 269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  59. D.P. Percival, On estimation of the wavelet variance. Biometrika 82, 619 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  60. C. Torrence, P.J. Webster, The annual cycle of persistence in the El Niño-Southern Oscillation. Quarterly J. R. Meteorol. Soc. 124, 1985 (1998)

    ADS  Google Scholar 

  61. J.V. Schreiber, A. Schmitz, Surrogate time series. Physica D 142, 646 (2000)

    Article  MathSciNet  Google Scholar 

  62. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, D. Farmer, Detecting nonlinear structure in time series. Physica D 58, 77 (1992)

    Article  ADS  MATH  Google Scholar 

  63. A. Nunẽz, F. Panetsos, C. Avendanño, Rhythmic neuronal interactions and synchronization in the rat dorsal column nuclei. Neuroscience 100, 599 (2000)

    Article  Google Scholar 

  64. F. Panetsos, A. Nunẽz, C. Avendanño, Electrophysiological effects of temporary deafferentation on two characterized cell types in the nucleus gracilis of the rat. Eur. J. Neurosci. 9, 563 (1997)

    Article  Google Scholar 

  65. J. Aguilar, C. Rivadulla, C. Soto, A. Canedo, New corticocuneate cellular mechanisms underlying the modulation of cutaneous ascending transmission in anesthetized cats. J. Neurophysiol. 89, 3328 (2003)

    Article  Google Scholar 

  66. A. Canedo, J. Aguilar, Spatial and cortical influences exerted on cuneothalamic and thalamocortical neurons of the cat. Eur. J. Neurosci. 12, 2515 (2000)

    Article  Google Scholar 

  67. E. Malmierca, A. Nuñez, Corticofugal action on somatosensory response properties of rat nucleus gracilis cells. Brain Res. 810, 172 (1998)

    Article  Google Scholar 

  68. E. Malmierca, A. Nuñez, Primary somatosensory cortex modulation of tactile responses in nucleus gracilis cells of rats. Eur. J. Neurosci. 19, 1572 (2004)

    Article  Google Scholar 

  69. C.J.M. Vanhatalo, M.D. Palva, J.W. Holmes, J. Miller, K. Voipio, A. Kaila, Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc. Natl. Acad. Sci. U. S. A. 101, 5053 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hramov, A.E., Koronovskii, A.A., Makarov, V.A., Pavlov, A.N., Sitnikova, E. (2015). Analysis of Single Neuron Recordings. In: Wavelets in Neuroscience. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43850-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43850-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43849-7

  • Online ISBN: 978-3-662-43850-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics