Skip to main content

Developmental Expression and Possible Roles of Gangliosides in Brain Development

  • Chapter
Guidance Cues in the Developing Brain

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 32))

Abstract

Gangliosides are sialic acid containing glycosphingolipids structurally defined as hematosides, lacto-, neolacto-, globo-, and ganglio-series gangliosides (Ledeen 1978; Ledeen and Yu 1982; Wiegandt 1982, 1995; Yu 1994). Up to date, about 100 different ganglioside structures have been identified in neuronal and extraneural tissues (Yu 1994). Ganglio-sides are principle membrane constituents of vertebrate cells, synthesized by step-wise addition of carbohydrate moieties to ceramide during its transfer from the ER through the cis-and trans-Golgi compartments (for review see Tettamanti et al. 1987) and degraded via lysosomal pathways (Sandhoff et al. 1987). Their functional significance is still obscure. However, numerous experimental data suggest that apart from their basic function as structural membrane components per se, these glycolipids play an important role in signal transduction (Hakomori 1981) including cell/cell (Schnaar et al. 1998) and cell/extracellular matrix interactions (Cheresh et al. 1986). Three modes of action whereby gangliosides and their degradation products affect signal transduction have been proposed: (1) modulation of growth factor/hormone and integrin receptors, (2) modulation of cell cycle and proliferation by ganglioside derivatives, and (3) induction of signalling, together with transducer molecules by gangliosides organized in membrane microdomains (Kojima and Hakomori 1991; Hakomori et al. 1998; Probstmeier and Pesheva 1999; Prinetti et al. 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Asou H, Hirano S, Kyemura K (1989) Ganglioside composition of astrocytes. Cell Struct Funct 14:61–568

    Google Scholar 

  • Bouvier JD, Seyfried TN (1989) Ganglioside composition of normal and mutant mouse embryos. J Neurochem 52:60–466

    Article  Google Scholar 

  • Cheresh DA, Pierschbacher MD, Herzig MA, Mujoo K (1986) Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J Cell Biol 102:88–696

    Article  Google Scholar 

  • Chou KH, Nolan CE, Jungalwala FB (1982) Composition and metabolism of ganglio-sides in rat peripheral nervous system during development. J Neurochem 39:1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Cochran FB, Yu RK, Ledeen RW (1982) Myelin gangliosides in vertebrates. J Neurochem 39:773–779

    Article  PubMed  CAS  Google Scholar 

  • Constantine-Paton M, Blum AS, Mendez-Otero R, Barnstable CJ (1986) A cell surface molecule distributed in a dorsoventral gradient in the perinatal rat retina. Nature 324:459–462

    Article  PubMed  CAS  Google Scholar 

  • Daniotti JL, Landa CA, Gravotta D, Maccioni HJF (1990) GD3 ganglioside is prevalent in fully differentiated neurons from rat retina. J Neurosci Res 26:436–446

    Article  PubMed  CAS  Google Scholar 

  • Daniotti JL, Landa CA, Rösner H, Maccioni HJF (1991) GD3 prevalence in adult rat retina correlates with the maintenance of a high GD3-/GD2-synthase activity ratio throughout development. J Neurochem 57:2054–2058

    Article  PubMed  CAS  Google Scholar 

  • Daniotti JL, Landa CA, Rösner H, Maccioni HJF (1992) Adult rat retina interneurons synthesize GD3: GD3 expression by these cells is regulated by cell-cell interactions. J Neurochem 59:107–117

    Article  PubMed  CAS  Google Scholar 

  • Derrington E, Borroni E (1990) The developmental expression of the cholinergicspecific antigen Chol-1 in the central and peripheral nervous system of the rat. Dev Brain Res 52:131–140

    Article  CAS  Google Scholar 

  • Dreyfus H, Urban PF, Edelharth S, Mandel P (1975) Developmental patterns of gangliosides and of phospholipids in chick retina and brain. J Neurochem 25:245–250

    Article  PubMed  CAS  Google Scholar 

  • Dreyfus H, Louis JC, Harth S, Mandel P (1980) Gangliosides in cultured neurons. Neuroscience 6:1647–1655

    Article  Google Scholar 

  • Emory CR, Ala TA, Frey WH (1987) Ganglioside monoclonal antibody (A2B5) labels Alzheimer’s neurofibrillary tangles. Neurology 37:768–772

    Article  PubMed  CAS  Google Scholar 

  • Engel EL, Wood JG, Byrd FI (1979) Ganglioside patterns and cholera toxin-peroxidase labeling of aggregating cells from the chick optic tectum. J Neurobiol 10:429–440

    Article  PubMed  CAS  Google Scholar 

  • Eto Y, Shinoda S (1982) Gangliosides and neutral glycosphingolipids in human brain tumors: specificity and their significance. In: Makita A (ed) New vistas in glycolipid research. Plenum, New York, pp 279–290

    Google Scholar 

  • Felding-Habermann B, Jennemann R, Schmitt J, Wiegandt H (1986) Glycosphingolipid biosynthesis in early chick embryos. Eur J Biochem 166:651–658

    Article  Google Scholar 

  • Fishman PH, Brady RO (1976) Biosynthesis and function of gangliosides. Science 194:906–915

    Article  PubMed  CAS  Google Scholar 

  • Fredman P, Dumanski J, Davidsson P, Svennerholm L, Collins VP (1990) Expression of the ganglioside GD3 in human meningiomas is associated with monosomy of chromosome 22. J Neurochem 55:1838–1841

    Article  PubMed  CAS  Google Scholar 

  • Goldman JE, Hirano M, Yu RK, Seyfried TN (1984) GD3 ganglioside is a glycolipid characteristic of immature neuroectodermal cells. J Neurochem 7:179–192

    CAS  Google Scholar 

  • Greis C, Rösner H (1990a) C-pathway polysialogangliosides in the nervous tissue of vertebrates, reacting with the monoclonal antibody Q211. Brain Res 571:105–110

    Article  Google Scholar 

  • Greis C, Rösner H (1990b) Migration and aggregation of embryonic chicken neurons in vitro: possible functional implication of polysialogangliosides. Dev Brain Res 57:223–234

    Article  CAS  Google Scholar 

  • Hakomori S (1981) Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem 50:733–764

    Article  PubMed  CAS  Google Scholar 

  • Hakomori S, Yamamura S, Handa K (1998) Signal transduction through glyco(sphingo)lipids. Introduction and recent studies on glyco(sphingo)lipidenriched microdomains. Ann NY Acad Sci 845:1–10

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 50:49–92

    Article  Google Scholar 

  • Hilbig R, Rahmann H (1987) Phylogeny of vertebrate brain gangliosides. In: Rahmann H (ed) Gangliosides and modulation of neuronal functions. NATO ASI series 7. Springer, Berlin Heidelberg New York, pp 333–350

    Chapter  Google Scholar 

  • Hilbig R, Rösner H, Merz G, Segler-Stahl C, Rahmann H (1982) Developmental profiles in mouse and rat cerebral cortex. Roux’s Arch Dev Biol 191:281–284

    CAS  Google Scholar 

  • Hilbig R, Lauke G, Rahmann H (1984) Brain gangliosides during the life span (embryo-genesis to senescence) of the rat. Dev Neurosci 6:260–270

    Article  CAS  Google Scholar 

  • Hirabayashi Y, Hirota M, Matsumoto M, Tanaka H, Obata K, Ando S (1988a) Developmental changes of C-series polysialogangliosides in chick brains revealed by mouse monoclonal antibodies M6704 and M7103 with different epitope specificities. J Biochem 104:937–979

    Google Scholar 

  • Hirabayashi Y, Nakao T, Matsumoto M, Obata K, Ando S (1988b) Improved method for large-scale purification of brain gangliosides by Q-Sepharose column chromatography. Immunochemical detection of C-series polysialogangliosides in adult bovine brains. J Chromatogr 445:377–384

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi Y, Hyogo A, Nakoa T, Tsuchiya S, Suzuki Y, Matsumoto M, Kon K, Ando S (1990) Isolation and characterization of extremely minor gangliosides, GM1b and GD1 alpha, in adult bovine brains as developmentally regulated antigens. J Biol Chem 265:8144–8151

    PubMed  CAS  Google Scholar 

  • Iber H, van Echten G, Klein D, Sandhoff K (1990) pH-dependent changes of ganglio-side biosynthesis in neuronal cell culture. Eur J Cell Biol 52:236–240

    PubMed  CAS  Google Scholar 

  • Igarashi I (1998) Sphingosine- 1 -phosphate as an intercellular signaling molecule. Ann NY Acad Sci 845:19–31

    Article  PubMed  CAS  Google Scholar 

  • Irwin LN, Michael DB, Irwin CC (1980) Ganglioside patterns of fetal rat and mouse brain. J Neurochem 34:1527–1530

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka J, Wiegandt H (1972) An isomer of trisialoganglioside and the structure of tetra-and pentasialogangliosides from fish brain. Biochem Biophys Acta 260:279–289

    Article  PubMed  CAS  Google Scholar 

  • Kim SU, Morotto G, Yu RK (1986) Neuroimmunology of gangliosides in human neurons and glial cells in culture. J Neurochem 15:303–321

    CAS  Google Scholar 

  • Klenk E (1942) tber die Ganglioside, eine neue Gruppe von zuckerhaltigen Gehirnlipoiden. Hoppe-Seyler’s Z Physiol Chem 273:76–86

    Article  CAS  Google Scholar 

  • Kojima N, Hakomori S (1991) Cell adhesion, spreading, and motility of GM3expressing cells based on glycolipid-glycolipid interaction. J Biol Chem 266: 17552–17558

    PubMed  CAS  Google Scholar 

  • Kotani M, Kawashima I, Ozawa H, Terashima T, Tai T (1993) Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies. Glycobiol 3:137–146

    Article  CAS  Google Scholar 

  • Kotani M, Kawashima I, Ozawa H, Ogura K, Ishizuka I, Terashima T, Tai T (1994) Immunohistochemical localization of minor gangliosides in the rat central nervous system. Glycobiology 4:855–865

    Article  PubMed  CAS  Google Scholar 

  • Kotani M, Terashima T, Tai T (1995) Developmental changes of ganglioside expressions in postnatal rat cerebellar cortex. Brain Res 700:40–58

    Article  PubMed  CAS  Google Scholar 

  • Kotani M, Tajima Y, Shimoda Y, Irie A, Kubo H, Tai T (2000) Ganglioside GT1b in rat brain binds to p58, a brain-specific sodium-dependent inorganic phosphate cotransporter: expression cloning with a specific monoclonal antibody to ganglioside Glib-binding protein. J Biochem (Tokyo) 127:13–22

    Article  CAS  Google Scholar 

  • Kracun I, Rösner H, Kostovic J, Rahmann H (1983) Areal and laminar distribution of gangliosides in the fetal human neopallium at 28 weeks of gestation. Roux’s Arch Dev Biol 192:108–112

    Google Scholar 

  • Kracun I, Rösner H, Cosovic C, Stavljenic A (1984) Topographical atlas of the ganglio-sides of the adult human brain. J Neurochem 43:979–989

    Article  PubMed  CAS  Google Scholar 

  • Kracun I, Rösner H, Cosovic C (1986) Topographical distribution of the gangliosides in the developing and adult human brain. In: Tettamanti G, Ledeen RW, Sandhoff K, Nagai J, Toffano G (eds) Neuronal plasticity and gangliosides. Plenum, New York, pp 339–348

    Google Scholar 

  • Kracun I, Rösner H, Drnovsek V, Heffer-Lauc M, Cosovic C, Lauc G. (1991) Human brain gangliosides in development, aging and disease. Int J Dev Biol 35:289–295

    PubMed  CAS  Google Scholar 

  • Kracun I, Rösner H, Drnovsek V, Vukelic Z, Cosovic C, Trbojevic-Cepe M, Kubat M (1992) Gangliosides in the human brain development and aging. Neurochem Int 20:421–431

    Article  PubMed  CAS  Google Scholar 

  • Landa CH, Moskona AA (1985) Changes in ganglioside profile in chick embryo retina: studies on tissue and cell cultures. Int J Dev Neurosci 3:77–78

    Article  CAS  Google Scholar 

  • Landa CH, Panzetta P, Maccioni HJF (1984) Biosynthesis of gangliosides in cultured retina from chick embryos. Dev Brain Res 14:83–92

    Article  CAS  Google Scholar 

  • Ledeen RW (1978) Ganglioside structures and distribution: are they localized at the nerve ending? J Supramol Struct 8:1–17

    Article  PubMed  CAS  Google Scholar 

  • Ledeen RW, Yu RK (1982) Gangliosides: structure, isolation, and analysis. In: Ginsburg V (ed) Methods in enzymology. Academic Press, New York, pp 139–191

    Google Scholar 

  • Ledeen RW, Wu G, Lu ZH, Kozireski-Chuback D, Fang Y (1998) The role of GM1 and other gangliosides in neuronal differentiation. Overview and new finding. Ann NY Acad Sci 845:161–175

    Article  PubMed  CAS  Google Scholar 

  • Letinic K, Heffer-Lauc M, Rösner H, Kostonic I (1998) C-pathway polysialogangliosides are transiently expressed in the human cerebrum during fetal development. Neuroscience 86:1–5

    Article  PubMed  CAS  Google Scholar 

  • Levine SM, Seyfried TN, Yu RK. and Goldman JE, (1986) Immunocytochemical localization of GD3 ganglioside to astrocytes in murine cerebellar mutants. Brain Res 374: 260–269

    Article  PubMed  CAS  Google Scholar 

  • Maccioni HJF, Panzetta P, Arrieta D, Caputto R (1984) Ganglioside glycosyltransferase activities in the cerebral hemispheres from developing rat embryos. Int J Dev Neurosci 2:13–19

    Article  CAS  Google Scholar 

  • Maccioni HJF, Landa CA, Panzetta P (1989) Developmental regulation of ganglioside biosynthesis. Studies in the chick embryo retina. Neurol Neurobiol 49:117–127

    CAS  Google Scholar 

  • Mansson JE, Vanier MT, Svennerholm L (1978) Changes in the fatty acid and sphingosine composition of the major gangliosides of human brain with age. J Neurochem 30:273–275

    Article  PubMed  CAS  Google Scholar 

  • Mendez-Otero R, Constantine-Paton M (1990) Granule cell induction of 9–0-acetylgangliosides on cerebellar glia in microcultures. Dev Biol 138:400–409

    Article  PubMed  CAS  Google Scholar 

  • Mendez-Otero R, Santiago M (2001) Functional role of a glycolipid in directional move-ments of neurons. An Acad Bras Cienc 73:221–229

    Article  PubMed  CAS  Google Scholar 

  • Mendez-Otero R, Schlosshauer B, Barnstable CJ, Constantin-Paton M (1988) A developmentally regulated antigen associated with neural cell and process migration. J Neurosci 8:564–579

    PubMed  CAS  Google Scholar 

  • Merat A, Dickerson JWT (1973) The effect of development on the gangliosides of rat and pig brain. J Neurochem 20:873–880

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Tsuji S (1994) Significance of ganglioside-mediated glycosignal transduction in neuronal differentiation and development. Prog Brain Res 101:119–126

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Sanai Y, Nakaishi H (1987) Fundamentals of genetic control of gangliosides: the enigma of carbohydrate chain diversity in glycosphingolipids. In: Rahmann H (ed) Gangliosides and modulation of neuronal functions. NATO ASI Series 7. Springer, Berlin Heidelberg New York, pp 275–292

    Chapter  Google Scholar 

  • Nakaishi H, Sanai Y, Shiroki K, Nagai Y (1988) Analysis of cellular expression of gangliosides by gene transfection. I: GD3 expression in myc-transfected and transformed 3Y1 correlates with anchorage-independent growth activity. Biochem Biophys Res Commun 150:760–765

    Article  PubMed  CAS  Google Scholar 

  • Ogawa-Goto K, Abe T (1998) Gangliosides and glycosphingolipids of peripheral nervous system myelins - a minireview. Neurochem Res 23:305–310

    Article  PubMed  CAS  Google Scholar 

  • Panzetta P, Maccioni HJF, Caputto R (1980) Synthesis of retinal gangliosides during chick embryonic development. J Neurochem 35:1001–08

    Article  Google Scholar 

  • Panzetta PD, Gravotta D, Maccioni HJF (1987) Biosynthesis and expression of ganglio-sides during differentiation of chick embryo retina cells in vitro. J Neurochem 49:1763–1771

    Article  PubMed  CAS  Google Scholar 

  • Pohlentz G, Klein D, Schwarzmann G, Schmitz D, Sandhoff K (1988) Both GA2, GM2, and GD2 synthases and GM1b, GD1a, and GT1b synthases are single enzymes in Golgi vesicles from rat liver. Proc Natl Acad Sci USA 85:7044–7048

    Article  PubMed  CAS  Google Scholar 

  • Prinetti A, Iwabuchi K, Hakomori S (1999) Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of gangliosidedependent neuritogenesis. J Biol Chem 274:20916–20924

    Article  PubMed  CAS  Google Scholar 

  • Prinetti A, Chigonora V, Tettamati G, Sonnino S (2000) Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem 275:11658–11665

    Article  PubMed  CAS  Google Scholar 

  • Probstmeier R, Pesheva P (1999) Tenascin-C inhibits betal integrin-dependent cell adhesion and neurite outgrowth on fibronectin by a disialoganglioside-mediated signaling mechanism. Glycobiology 9:101–114

    Article  PubMed  CAS  Google Scholar 

  • Pukel CS, Lloyd KO, Travassos LR, Dippold WG, Oettgen HF, Lloyd JO (1982) GD3, a prominent ganglioside of human melanoma. Detection and characterisation by mouse monoclonal antibody. J Exp Med 155:1133–1147

    Article  PubMed  CAS  Google Scholar 

  • Rebhan M, Vacun G, Bayreuther K, Rösner H (1994) Altered ganglioside expression by SH-SY5Y cells upon retinoic acid-induced neuronal differentiation. Neuro Rep 5:941–944

    CAS  Google Scholar 

  • Reynolds R, Wilkin GP (1988) Expression of GD3 ganglioside by developing rat cerebellar Purkinje cells in situ. J Neurosci 20:311–319

    Article  CAS  Google Scholar 

  • Richardson PJ, Walker JH, Jones RT, Whittaker VP (1982) Identification of a choliner-gic-specific antigen Chol-1 as a ganglioside. J Neurochem 38:1605–1614

    Article  PubMed  CAS  Google Scholar 

  • Robert J, Rebel G, Mandel P (1977) Glycosphingolipids from cultured astroblasts. J LipidRes 18:517–522

    CAS  Google Scholar 

  • Rohrer H, Henke-Fahle S, El-Sharkaway T, Lux HD, Thoenen HC (1985) Progenitor cells from embryonic chick dorsal root ganglia differentiate in vitro to neurons: biochemical and electrophysiological evidence. EMBO J 4:1709–1714

    PubMed  CAS  Google Scholar 

  • Rösner H (1975) Changes in the contents of gangliosides and glycoproteins and in the ganglioside pattern of the perinatal chicken brain. J Neurochem 24:815816

    Google Scholar 

  • Rösner H (1977) Sialoglycoproteins and acetylcholinesterase of the developing mouse brain. Roux’s Arch Dev Biol 183:325–335

    Google Scholar 

  • Rösner H. (1980) Gangliosides changes in the chicken optic lobes and cerebrum during embryonic development. Transient occurrence of “novel” multisialogangliosides. Roux’s Arch Dev Biol 188:205–213

    Google Scholar 

  • Rösner H (1981) Isolation and preliminary characterization of novel polysialogangliosides from embryonic chick brain. J Neurochem 37:993–997

    Article  PubMed  Google Scholar 

  • Rösner H (1982) Ganglioside changes in the chicken optic lobes as biochemical indicators of brain development and maturation. Dev Brain Res 236:49–61

    Google Scholar 

  • Rösner H, Al-Aqtum M, Henke-Fahle S (1985a) Developmental expression of GD3 and polysialogangliosides in embryonic chicken nervous tissue reacting with monoclonal antiganglioside antibodies. Dev Brain Res 18:85–95

    Article  Google Scholar 

  • Rösner H, Rahmann H, Reuter G, Schauer R, Katalinic JP, Egge H. (1985b) Mass spectrometric identification of the pentasialoganglioside GP1c of embryonic chicken brain. Biol Chem Hoppe-Seyler 366:1177–1181

    Article  Google Scholar 

  • Rösner H, Willibald CJ, Henke-Fahle S (1986) Expression of ganglioside-antigens during neuronal differentiation studied by use of monoclonal antibodies. In: Tettamanti G, Ledeen RW, Sandhoff K, Nagai J, Toffano G (eds) Neuronal plasticity and gangliosides. Plenum Press, New York, pp 330–338

    Google Scholar 

  • Rösner H, Greis C, Henke-Fahle S (1988a) Developmental expression in embryonic rat and chicken brain of a polysialoganglioside-antigen reacting with the monoclonal antibody Q211. Dev Brain Res 42:161–171

    Article  Google Scholar 

  • Rösner H, Greis C, Willibald CJ, Henke-Fahle S (1988b) Developmental expression of gangliosides in nervous tissue. In: Ledeen R, Tettamanti G, Yu RK, Hogan E, Yates A (eds) New trends in ganglioside research. Springer, Berlin Heidelberg New York, pp 435–448

    Google Scholar 

  • Rösner H, Al-Aqtum M, Rahmann H (1992) Gangliosides and neuronal differentiation. Neurochem Int 20:339–351

    Article  PubMed  Google Scholar 

  • Sandhoff K, Christomanou H (1979) Biochemistry and genetics of gangliosidoses. Humangenetic 50:107–143

    Article  CAS  Google Scholar 

  • Sandhoff K, Schwarzmann G, Sarmientos F, Conzelmann E (1987) Fundamentals of ganglioside catabolism. In: Rahmann H (ed) Gangliosides and modulation of neuronal functions. NATO ASI series 7. Springer, Berlin Heidelberg New York, pp 231–250

    Chapter  Google Scholar 

  • Santiago MF, Berredo-Pinho M, Costa MR, Gandra M, Cavalcante LA, Mendez-Oetro R (2001) Expression and function of ganglioside 9–0-acetyl GD3 in postmitotic granule cell development. Mol Cell Neurosci 17:488–499

    Article  PubMed  CAS  Google Scholar 

  • Sbaschnig-Agler M, Dreyfus H, Norton WT, Sensenbrenner M, Farooq M, Burne MC, Ledeen RW (1988) Gangliosides of cultured astroglia. Brain Res 461:98–106

    Article  PubMed  CAS  Google Scholar 

  • Schaal H, Wille C, Wille W (1985) Changes of ganglioside pattern during cerebellardevelopment of normal and staggerer mice. J Neurochem 45:544–551

    Article  PubMed  CAS  Google Scholar 

  • Schlosshauer B, Blum AS, Mendez-Otero R, Barnstable CJ, Constantine-Paton M (1988) Developmental regulation of ganglioside antigens recognized by the JONES antibody. J Neurosci 8:580–592

    PubMed  CAS  Google Scholar 

  • Schnaar RL, Collins BE, Wright LP, Kiso M, Tropak MB, Roder JC, Crocker PR (1998) Myelin-associated glycoprotein binding to gangliosides. Structural specificity and functional implications. Ann NY Acad Sci 845:92–105

    Article  PubMed  CAS  Google Scholar 

  • Segler-Stahl K, Webster JC, Brunngraber EG (1983) Changes in the concentration and composition of human brain gangliosides with aging Gerantology 29:161168

    Google Scholar 

  • Sena A (1993) Gangliosides in neurobiology. Acta Med Rep 6:341–346

    CAS  Google Scholar 

  • Seybold V, Rahmann H (1985) Changes in developmental profiles of brain gangliosides during ontogeny of a teleost fish (Sarotherodon mossambicus, Cichlidae). Roux’s Arch Dev Biol 194:166–172

    CAS  Google Scholar 

  • Seyfried TN (1987) Ganglioside abnormalities associated with failed neural differentiation in a T-locus mutant mouse embryo. Dev Biol 123:286–291

    Article  PubMed  CAS  Google Scholar 

  • Seyfried TN, Yu RK (1985) Ganglioside GD3: structure, cellular distribution, and possible function. Mol Cell Biochem 68:3–10

    PubMed  CAS  Google Scholar 

  • Sonnino S, Bassi R, Chignoro V, Tettamanti G (1990) Further studies on the changes of chicken brain gangliosides during prenatal and postnatal life. J Neurochem 54:1653–1660

    Article  PubMed  CAS  Google Scholar 

  • Sparrow JR, Barnstable CJ (1988) A gradient molecule in developing rat retina: expression of 9–0-acetyl GD3 in relation to cell type, developmental age, and GD3 ganglioside. J Neurosci 21:398–409

    Article  CAS  Google Scholar 

  • Spiegel S, Cuvillier O, Edsallki C, Kohama T, Menzelke R, Olah Z, Olivera A, Pirianov G, Thomas DM, Tu Z, VanBrocklyn JR (1998) Sphingosine-1-phosphate in cell growth and cell death. Ann NY Acad Sci 845:11–18

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K (1965) The pattern of mammalian brain gangliosides. II. Evaluation of the extraction procedures, postmortem changes and the effect of formalin preservation. J Neurochem 12:969–979

    Article  CAS  Google Scholar 

  • Svennerholm L (1963) Chromatographic separation of human brain gangliosides. J Neurochem 10: 613–623

    Article  PubMed  CAS  Google Scholar 

  • Svennerholm L, Boström K, Fredman P, Mansson JE, Rosengren B, Rynmark BM (1989) Human brain gangliosides: developmental changes from early fetal stage to advanced stage. Biochim Biophys Acta 1005:109–117

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Hirokowa K, Ando S, Obata K (1991) Immunohistological study on brains of Alzheimer’s disease using antibodies to fetal antigens, C-series gangliosides and microtubule-associated protein 5. Acta Neuropathol (Berl) 81:626–631

    Article  CAS  Google Scholar 

  • Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okoda M, Fukumoto S, Haraguchi M, Takeda N, Fujimura K, Sakae M, Kishikawa M, Shiku H, Furukawa K, Aizawa S (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides, but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93:10662–10667

    Article  PubMed  CAS  Google Scholar 

  • Tettamanti G, Ghidoni R, Trinchera M (1987) Fundamentals of brain ganglioside biosynthesis. In: Rahmann H (ed) Gangliosides and modulation of neuronal functions. NATO ASI Series 7. Springer, Berlin Heidelberg New York, pp 191–204

    Chapter  Google Scholar 

  • Thangnipon W, Balazs R (1992) Developmental changes in gangliosides in cultured cerebellar granule neurons. Neurochem Res 17:45–59

    Article  PubMed  CAS  Google Scholar 

  • Thierfelder S, Pini S, Harrison F, Wiegandt H (1992) Immunohistochemical localisation of monoclonal antibody R 24-recognized ganglioside Glac2 in early chick embryos. Differentiation 49:7–15

    Article  PubMed  CAS  Google Scholar 

  • Van Echten G, Sandhoff K (1989) Modulation of ganglioside biosynthesis in primary cultured neurons. J Neurochem 52:207–214

    Article  PubMed  Google Scholar 

  • Van Echten G, Iber H, Stotz H, Takatsuki A, Sandhoff K (1990) Uncoupling of ganglio-side biosynthesis by Brefeldin A. Eur. J Cell Biol 51:135–139

    PubMed  Google Scholar 

  • Vanier MT, Holm M, Mansson JE, Svennerholm L (1973) The distribution of lipids in the human nervous system. V. Gangliosides and allied neutral glycolipids of infant brain. J Neurochem 21:1375–1384

    Article  PubMed  CAS  Google Scholar 

  • Vyas AA, Schnaar RL (2001) Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration. Biochimie 83:677–682

    Article  PubMed  CAS  Google Scholar 

  • Walkley SU, Siegel DA, Dobrenis K (1995) GM2 ganglioside and pyramidal neuron dendritogenesis. Neurochem Res 20:1287–1299

    CAS  Google Scholar 

  • Walkley SU, Siegel DA, Dobrenis K, Zervas M (1998) GM2 ganglioside as a regulator of pyramidal neuron dendritogenesis. Ann NY Acad Sci 845:188–199

    Article  PubMed  CAS  Google Scholar 

  • Wiegandt H (1982) The gangliosides. Adv Neurochem 4:149–223

    Article  CAS  Google Scholar 

  • Wiegandt H (1995) The chemical constitution of gangliosides of the vertebrate nervous system. Behav Brain Res 66:85–97

    Article  PubMed  CAS  Google Scholar 

  • Yang LJ-S, Zeller CB, Shaper NL, Kiso M, Hasegawa A, Shapiros RE, Schnaar RL (1996) Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci USA 93:814–818

    Article  PubMed  CAS  Google Scholar 

  • Yates AJ, Rampersand A (1998) Sphingolipids as receptor modulators. An overview. Ann NY Acad Sci 845:57–71

    Article  PubMed  CAS  Google Scholar 

  • Yavin E, Yavin Z (1979) Gangliosides profiles during neural tissues development. Acqui-sition in the prenatal rat brain and cerebral cell cultures. Dev Neurosci 2:25–37

    Article  CAS  Google Scholar 

  • Yu RK (1994) Development regulation of ganglioside metabolism Prog Brain Res101:31–44

    Google Scholar 

  • Yu RK, Ando S (1980) Structures of some new complex gangliosides of fish brain. Adv Exp Med Biol 125:35–45

    Google Scholar 

  • Yu RK, Macula LJ, Taki T, Weinfeld HM, Yu FS (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:18251829

    Google Scholar 

  • Zervas M, Walkley S (1999) Ferret pyramidal cell dendritogenesis: changes in morphology and ganglioside expression during cortical development. J Comp Neurol 413:429–448

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Kurono S, Fujita SC, Furuya S, Hirabayashi Y (1997) Developmentally regulated 0-acetylated sialoglycans in the central nervous system revealed by a new monoclonal antibody 493D4 recognizing a wide range of 0-acetylated glycoconjugates. Glycoconj J 14:847–857

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rösner, H. (2003). Developmental Expression and Possible Roles of Gangliosides in Brain Development. In: Kostović, I. (eds) Guidance Cues in the Developing Brain. Progress in Molecular and Subcellular Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55557-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55557-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62426-1

  • Online ISBN: 978-3-642-55557-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics