Skip to main content

Blood-Optic Nerve Barrier

  • Chapter
  • First Online:
Ischemic Optic Neuropathies

Abstract

The blood-optic nerve barrier is an important subject in any consideration of optic nerve and optic nerve head (ONH) vascular disorders. The capillaries in the ONH and the rest of the optic nerve, as in the retina [1–5] and in the central nervous system [6–10] have tight cell junctions between adjacent endothelial cells, without fenestration [11–13]. These tight junctions are responsible for the blood-optic nerve barrier, which has been shown by intravenous injection of tracer substances, such as horseradish peroxidase [14–16] and diaminoacridines [17].

For a complete bibliography and detailed review of previously published studies in the literature on the subject, please refer to bibliography in previous publications listed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cunha-Vaz JG, Shakib M, Ashton N. Studies on the permeability of the blood-retinal barrier. I. On the existence, development, and site of a blood-retinal barrier. Br J Ophthalmol. 1966;50(8):441–53.

    Article  PubMed  CAS  Google Scholar 

  2. Ishikawa T. Fine structure of retinal vessels in man and the Macaque monkey. Invest Ophthalmol. 1963;2:1–15.

    PubMed  CAS  Google Scholar 

  3. Lasansky A, Wald F. The extracellular space in the toad retina as defined by the distribution of ferrocyanide: a light and electron microscope study. J Cell Biol. 1962;15(3):463–79.

    Article  PubMed  CAS  Google Scholar 

  4. Lasansky A. The pathway between hyaloid blood and retinal neurons in the toad. Structural observations and permeability to tracer substances. J Cell Biol. 1967;34(2):617–26.

    Article  PubMed  CAS  Google Scholar 

  5. Shakib M, Cunha-Vaz JG. Studies on the permeability of the blood-retinal barrier: IV. Junctional complexes of the retinal vessels and their role in the permeability of the blood-retinal barrier. Exp Eye Res. 1966;5(3):229–34.

    Article  PubMed  CAS  Google Scholar 

  6. Barber VC, Graziadei P. The fine structure of cephalopod blood vessels. 3. Vessel innervation. Z Zellforsch Mikrosk Anat. 1967;77(2):162–74.

    Article  PubMed  CAS  Google Scholar 

  7. Mugnaini E, Walberg F. The fine structure of the capillaries and their surroundings in the cerebral hemispheres of Myxine Glutinosa. Z Zellforsch Mikrosk Anat. 1965;66(3):333–51.

    Article  PubMed  CAS  Google Scholar 

  8. Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967;34(1):207–17.

    Article  PubMed  CAS  Google Scholar 

  9. Stensaas LJ, Stensaas SS. Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad II. Electron microscopy. Z Zellforsch Mikrosk Anat. 1968;86(2):184–213.

    Article  PubMed  CAS  Google Scholar 

  10. Wolff E. Beiträge zur Ultrastruktur der Kapillaren ion der normalen Grosshirnrinde. Z Zellforsch Mikrosk Anat. 1963;60:409–31.

    Article  PubMed  CAS  Google Scholar 

  11. Anderson DR. Ultrastructure of meningeal sheaths. Normal human and monkey optic nerves. Arch Ophthalmol. 1969;82(5):659–74.

    PubMed  CAS  Google Scholar 

  12. Anderson Dr. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1979;82(6):800–14.

    Google Scholar 

  13. Anderson DR, Hoyt WF. Ultrastructure of intraorbital portion of human and monkey optic nerve. Arch Ophthalmol. 1969;82(4):506–30.

    PubMed  CAS  Google Scholar 

  14. Peyman CA, Apple D. Peroxidase diffusion processes in the optic nerve. Arch Ophthalmol. 1972;88(6):650–4.

    PubMed  CAS  Google Scholar 

  15. Tso MOM, Shih C-Y, McLean IW. Is there a blood-brain barrier at the optic nerve head? Arch Ophthalmol. 1975;93(9):815–25.

    PubMed  CAS  Google Scholar 

  16. Tsukahara I, Yamashita H. An electron microscopic study on the blood-optic nerve and fluid-optic nerve barrier. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1975;196(3):239–46.

    Article  PubMed  CAS  Google Scholar 

  17. Rodriguez-Peralta LA. Hematic and fluid barriers in the optic nerve. J Comp Neurol. 1966;126(1):109–21.

    Article  PubMed  CAS  Google Scholar 

  18. Olsson Y, Kristensson K. Permeability of blood vessels and connective tissue sheaths in retina and optic nerve. Acta Neuropathol. 1973;26(2):147–56.

    Article  PubMed  CAS  Google Scholar 

  19. Rodriguez-Peralta LA. The blood-optic nerve barrier. Anat Rec. 1963;145(2):277.

    Google Scholar 

  20. Okinami S, Ohkuma M, Tsukahara I. Kuhnt intermediary tissue as a barrier between the optic nerve and retina. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1976;201(1):57–67.

    Article  PubMed  CAS  Google Scholar 

  21. Cohen AI. Is there a potential defect in the blood-retinal barrier at the choroidal level of the optic nerve canal? Invest Ophthalmol. 1973;12(7):513–9.

    PubMed  CAS  Google Scholar 

  22. Missotten L. Study of the capillaries of the retina and the choroid capillaries with the electron microscope. Oph­thalmologica. 1962;144:1–12.

    Article  PubMed  CAS  Google Scholar 

  23. Spitznas M. Anatomical correlation of the normal fluoroangiography of the fundus. Doc Ophthalmol Proc Ser. 1976;9:177–80.

    Google Scholar 

  24. Grayson MC, Laties AM. Ocular localization of sodium fluorescein. Effects of administration in rabbit and monkey. Arch Ophthalmol. 1971;85(5):600–3 passim.

    PubMed  CAS  Google Scholar 

  25. Tsukahara I, Ota M. Histological study on the distribution of sodium fluorescein in the fundus. Proceedings of the 4th Congress European Society of Ophthalmology. Budapest; 1972. Basel: Karger; 1974. p. 307–11.

    Google Scholar 

  26. Ben-Sira I, Riva CE. Fluorescein diffusion in the human optic disc. Invest Ophthalmol. 1975;14(3):205–11.

    PubMed  CAS  Google Scholar 

  27. Laties AM, Rapoport S. The blood-ocular barriers under osmotic stress. Studies on the freeze-dried eye. Arch Ophthalmol. 1976;94(7):1086–91.

    PubMed  CAS  Google Scholar 

  28. McMahon RT, Tso MO, McLean IW. Histologic localization of sodium fluorescein in human ocular tissues. Am J Oph­thalmol. 1975;80(6):1058–65.

    PubMed  CAS  Google Scholar 

  29. Davson H. The blood-brain barrier. In: Bourne GH, editor. The structure and function of nervous tissue, vol. IV. London: Academic; 1972. p. 321–445.

    Google Scholar 

  30. Beggs JL, Waggener JD. Transendothelial vesicular transport of protein following compression injury to the spinal cord. Lab Invest. 1976;34(4):428–39.

    PubMed  CAS  Google Scholar 

  31. Beggs JL, Waggener JD, Miller W. Vasogenic edema in the injured spinal cord: possible role of microtubules in endothelial vasicular transport of HRP. In: Bailey GW, editor. Thirty-third Annual Proceedings of the Electron Microscopy Society of America. Baton Rouge: Claitor’s Publishing Division; 1975. p. 398–9.

    Google Scholar 

  32. Eto T, Omae T, Yamamoto T. An electron microscope study of hypertensive encephalopathy in the rat with renal hypertension. Arch Histol Jpn. 1971;33(2):133–43.

    PubMed  CAS  Google Scholar 

  33. Reyners H, de Reyners EG, Jadin JM, Maisin JR. An ultrastructural quantitative method for the evaluation of the permeability to horseradish peroxidase of cerebral cortex endothelial cells of the rat. Cell Tissue Res. 1975;157(1):93–9.

    Article  PubMed  CAS  Google Scholar 

  34. Westergaard E. Enhanced vesicular transport of exogenous peroxidase across cerebral vessels, induced by serotonin. Acta Neuropathol. 1975;32(1):27–42.

    Article  PubMed  CAS  Google Scholar 

  35. Westergaard E. The effect of serotonin, norepinephrine and cyclic AMP on the blood-brain barrier. J Ultrastruct Res. 1975;50:383.

    Google Scholar 

  36. Westergaard E, Brightman MW. Transport of proteins across normal cerebral arterioles. J Comp Neurol. 1973;152(1):17–44.

    Article  PubMed  CAS  Google Scholar 

  37. Baumbach GL, Cancilla PA, Hayreh MS, Hayreh SS. Experimental injury of the optic nerve with optic disc swelling. Lab Invest. 1978;39:50–60.

    PubMed  CAS  Google Scholar 

  38. Bruns RR, Palade GE. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol. 1968;37(2):277–99.

    Article  PubMed  CAS  Google Scholar 

  39. Hashimoto PH. Intracellular channels as a route for protein passage in the capillary endothelium of the shark brain. Am J Anat. 1972;134(1):41–57.

    Article  PubMed  CAS  Google Scholar 

  40. Hashimoto PH, Takaesu S, Chazono M, Amano T. Vascular leakage through intraendothelial channels induced by cholera toxin in the skin of guinea pigs. Am J Pathol. 1974;75(1):171–80.

    PubMed  CAS  Google Scholar 

  41. Hirano A, Dembitzer HM, Becker NH, Levine S, Zimmerman HM. Fine structural alterations of the blood-brain barrier in experimental allergic encephalomyelitis. J Neuropathol Exp Neurol. 1970;29(3):432–40.

    Article  PubMed  CAS  Google Scholar 

  42. Simionescu N, Siminoescu M, Palade GE. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol. 1975;64(3):586–607.

    Article  PubMed  CAS  Google Scholar 

  43. Machemer R. Angiographic-histologic correlation of eye vessel permeability with protein-bound fluorescent dye. Am J Ophthalmol. 1970;69(1):27–38.

    PubMed  CAS  Google Scholar 

  44. Yamashita H, Miki H, Tsukahara I, Ogawa K. A histochemical study on the blood-optic nerve and fluid-optic nerve barrier. Acta Histochem Cytochem. 1973;6:163–9.

    Article  CAS  Google Scholar 

  45. Hayreh SS, Servais GE, Virdi PS. Fundus lesions in malignant hypertension V. Hypertensive optic neuropathy. Ophthalmology. 1986;93(1):74–87.

    PubMed  CAS  Google Scholar 

  46. Hayreh SS, Servais GE, Virdi PS. Fundus lesions in malignant hypertension VI. Hypertensive choroidopathy. Ophthalmology. 1986;93(11):1383–400.

    PubMed  CAS  Google Scholar 

  47. Kishi S, Tso MOM, Hayreh SS. Fundus lesions in malignant hypertension I. A pathologic study of experimental hypertensive choroidopathy. Arch Ophthalmol. 1985;103(8):1189–97.

    PubMed  CAS  Google Scholar 

  48. Sossi N, Anderson DR. Blockage of axonal transport in optic nerve induced by elevation of intraocular pressure; effect of arterial hypertension induced by angiotensin I. Arch OphthalmoI. 1983;101(1):94–7.

    CAS  Google Scholar 

  49. Kishi S, Tso MOM, Hayreh SS. Fundus lesions in malignant hypertension II. A pathologic study of experimental hypertensive optic neuropathy. Arch Ophthalmol. 1985;103(8):1198–206.

    PubMed  CAS  Google Scholar 

  50. Hayreh SS. Fluids in the anterior part of the optic nerve in health and disease. Surv Ophthalmol. 1978;23(1):1–25.

    Article  PubMed  CAS  Google Scholar 

  51. McLeod O, Marshall J, Kohner EM. Role of axoplasmic transport in the pathophysiology of ischaemic disc swelling. Br J OphthalmoI. 1980;64(4):247–61.

    Article  CAS  Google Scholar 

  52. Ashton N. The eye in malignant hypertension. Trans Am Acad Ophthalmol Otolaryngol. 1972;76(1):17–40.

    PubMed  CAS  Google Scholar 

  53. Garner A, Ashton N, Tripathi R, et al. Pathogenesis of hypertensive retinopathy. An experimental study in the monkey. Br J Ophthalmol. 1975;59(1):3–44.

    Article  PubMed  CAS  Google Scholar 

  54. Dollery CT. Hypertensive retinopathy. In: Genest J, Kuchel O, Hamet P, Cantin M, editors. Hypertension: physiopathology and treatment. 2nd ed. New York: McGraw-Hill; 1983. p. 723–32.

    Google Scholar 

  55. Hayreh MS, Hayreh SS, Baumbach GL, Cancilla P, Martin-Amat G, Tephly TR, et al. Methyl alcohol poisoning III. Ocular toxicity. Arch Ophthalmol. 1977;95(10):1851–8.

    PubMed  CAS  Google Scholar 

  56. Hayreh SS. Acute ischemic disorders of the optic nerve: pathogenesis, clinical manifestations and management. Ophthalmol Clin North Am. 1996;9(3):407–42.

    Google Scholar 

  57. Kaur C, Foulds WS, Ling EA. Blood–retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog Retin Eye Res. 2008;27(6):622–47.

    Article  PubMed  CAS  Google Scholar 

  58. Kaur C, Sivakumar V, Yong Z, Lu J, Foulds WS, Ling EA. Blood–retinal barrier disruption and ultrastructural changes in the hypoxic retina in adult rats: the beneficial effect of melatonin administration. J Pathol. 2007;212(4):429–39.

    Article  PubMed  CAS  Google Scholar 

  59. Dobrogowska DH, Lossinsky AS, Tarnawski M, Vorbrodt AW. Increased blood–brain barrier permeability and endothelial abnormalities induced by vascular endothelial growth factor. J Neurocytol. 1998;27(3):163–73.

    Article  PubMed  CAS  Google Scholar 

  60. Croll SD, Ransohoff RM, Cai N, Zhang Q, Martin FJ, Wei T, et al. VEGF-mediated inflammation precedes angiogenesis in adult brain. Exp Neurol. 2004;187(2):388–402.

    Article  PubMed  CAS  Google Scholar 

  61. Mark KS, Burroughs AR, Brown RC, Huber JD, Davis TP. Nitric oxide mediates hypoxia-induced changes in paracellular permeability of cerebral microvasculature. Am J Physiol Heart Circ Physiol. 2004;286(1):H174–80.

    Article  PubMed  CAS  Google Scholar 

  62. Mayhan WG. VEGF increases permeability of the blood–brain barrier via a nitric oxide synthase/cGMP-dependent pathway. Am J Physiol. 1999;276(5 Pt 1):C1148–53.

    PubMed  CAS  Google Scholar 

  63. Fischer S, Wobben M, Marti HH, Renz D, Schaper W. Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res. 2002;63(1):70–80.

    Article  PubMed  CAS  Google Scholar 

  64. Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain. 2002;125(Pt 11):2549–57.

    Article  PubMed  Google Scholar 

  65. Kaur C, Sivakumar V, Foulds WS. Early response of neurons and glial cells to hypoxia in the retina. Invest Ophthalmol Vis Sci. 2006;47(3):1126–41.

    Article  PubMed  Google Scholar 

  66. Dietrich WD, Alonso O, Halley M. Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma. 1994;11(3):289–301.

    Article  PubMed  CAS  Google Scholar 

  67. Hirano A, Kawanami T, Llena JF. Electron microscopy of the blood–brain barrier in disease. Microsc Res Tech. 1994;27(6):543–56.

    Article  PubMed  CAS  Google Scholar 

  68. Zhang ZG, Zhang L, Tsang W, Soltanian-Zadeh H, Morris D, Zhang R, et al. Correlation of VEGF and angiopoietin expression with disruption of blood–brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab. 2002;22(4):379–92.

    Article  PubMed  CAS  Google Scholar 

  69. Shibuya M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis. 2006;9(4):225–30.

    Article  PubMed  CAS  Google Scholar 

  70. Spoerri PE, Afzal A, Li Calzi S, Shaw LC, Cai J, Pan H, et al. Effects of VEGFR-1, VEGFR-2, and IGF-IR hammerhead ribozymes on glucose-mediated tight junction expression in cultured human retinal endothelial cells. Mol Vis. 2006;12:32–42.

    PubMed  CAS  Google Scholar 

  71. Nussenblatt RB, Whitcup SM, Palestine AG. Uveitis: fundamentals and clinical practice. St. Louis: Mosby; 1996.

    Google Scholar 

  72. Cunningham Jr ET, Adamis AP, Altaweel M, Aiello LP, Bressler NM, D’Amico DJ, et al. Macugen Diabetic Retinopathy Study Group. A phase II randomised double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology. 2005;112(10):1747–57.

    Article  PubMed  Google Scholar 

  73. Hayreh SS, Zimmerman MB. Optic disc edema in non-arteritic anterior ischemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2007;245(8):1107–21.

    Article  PubMed  Google Scholar 

  74. Hayreh SS, Zimmerman MB. Non-arteritic anterior ischemic optic neuropathy: role of systemic corticosteroid therapy. Graefes Arch Clin Exp Ophthalmol. 2008;246(7):1029–46.

    Article  PubMed  CAS  Google Scholar 

  75. Hayreh SS. Posterior ischaemic optic neuropathy: clinical features, pathogenesis, and management. Eye. 2004;18(11):1188–206.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohan Singh Hayreh .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayreh, S.S. (2011). Blood-Optic Nerve Barrier. In: Ischemic Optic Neuropathies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11852-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11852-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11849-4

  • Online ISBN: 978-3-642-11852-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics